Susanti, Laila and Mustarichie, Resmi and Halimah, Eli and Kurnia, Dikdik and Setiawan, Andi and Maladan, Yustinus Anti-Alopecia Activity of Alkaloids Group from Noni Fruit against Dihydrotestosterone-Induced Male Rabbits and Its Molecular Mechanism: In Vivo and In Silico Studies. pharmaceuticals.

[img]
Preview
Text
Laila Dec 2022 pharmaceuticals-15-01557.pdf

Download (4MB) | Preview

Abstract

Androgenic alopecia (AA) is a condition that most commonly affects adult men and is caused by an increase in the hormone dihydrotestosterone (DHT) in the hair follicles. Anti-alopecia drugs should be discovered for hair follicles to enter the anagen growth phase. Therefore, this study evaluated the hair growth-promoting activity of Noni fruit’s water, ethyl acetate, n-hexane fractions, and sub-fractions from the active fraction in the alopecia male white rabbit model. The Matias method was modified by inducing rabbits using DHT for 17 days, followed by topical application of Noni fruit solution for 21 days. Meanwhile, hair growth was evaluated by histological observation of the follicular density and the anagen/telogen (A/T) ratio in skin tissue. In the first stage, five groups of male white rabbits were studied to obtain the active fraction; DHT+Minoxidil as standard, DHT+vehicle (NaCMC 1%), DHT+FW, DHT+FEA, and DHT+FH. The FEA as the active fraction was followed by open-column chromatography separation (DCM:Methanol) with a gradient of 10% to produce sub-fractions. In the second stage, the six main sub-fraction groups of male rabbits studied were DHT+FEA-1 to DHT+FEA-6. The follicular density of groups FEA-3 was 78.00 ± 1.52 compared with 31.55 ± 1.64 and 80.12 ± 1.02 in the Vehicle and Minoxidil groups. Additionally, group FEA-3 showed large numbers of anagen follicles with an A/T ratio of 1.64/1 compared to the vehicle group of 1/1.50 and 1.39/1 for Minoxidil control. Group FEA-3 was identified by LC-MS/MS�QTOF, followed by molecular docking to the androgen receptor (PDB: 4K7A), causing alopecia. The results showed that three alkaloid compounds with skeleton piperazine and piperidine, namely (compounds 2 (−4.99 Kcal/mol), 3 (−4.60 Kcal/mol), and 4 (−4.57 Kcal/mol)) had a binding affinity similar to Minoxidil, with also has alkaloid skeleton piperidine–pyrimidine (−4.83 Kcal/mol). The dynamic behavior showed the stability of all androgen receptor compounds with good RMSD, SMSF, and SASA values after being studied with 100 ns molecular dynamics (MD) simulations. This study produced a common thread in discovering a class of alkaloid compounds as inhibitors of androgen receptors that cause alopecia. Keywords: androgenic alopecia (AA); dihydrotestosterone (DHT); Noni fruit (Morinda citrifolia L.); anagen/telogen ratio; molecular docking dynamics simulation

Item Type: Article
Subjects: Q Science > Q Science (General)
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA) > Prodi Kimia
Depositing User: Prof Andi Setiawan
Date Deposited: 02 May 2023 09:02
Last Modified: 02 May 2023 09:02
URI: http://repository.lppm.unila.ac.id/id/eprint/50956

Actions (login required)

View Item View Item