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ABSTRACT 
To classify DNA sequences, k-mer frequency is widely used since it can convert variable- 
length sequences into fixed-length and numerical feature vectors. However, in case of fixed- 
length DNA sequence classification, subsequences starting at a specific position of the given 
sequence can also be used as categorical features. Through the performance evaluation on 
six datasets of fixed-length DNA sequences, our algorithm based on the above idea achieved 
comparable or better performance than other state-of-the art algorithms. 

 

1. INTRODUCTION 
In recent years, biological data have been generated at a tremendous rate. According to [1], the num-

ber of DNA sequences contained in GenBank repository increased dramatically from 116,461,672 to 
181,336,445 between February 2010 and February 2015. The sequences in UniProt doubled during the pe-
riod of just one year, from 40.4 (June 2013) to 80.7 (August 2014) million [2]. Analysis and interpretation 
of these data are two of the most crucial tasks in bioinformatics, and classification and prediction methods 
are key techniques to address such tasks. 

As summarized by Xing et al. [3], the sequence classification methods can be categorized into three 
main groups. The first class is distance-based method, which defines distance functions to compute the 
similarity between two sequences. After that, some of the current classification methods, such as k-nearest 
neighbor classifier, are applied. The second category is feature-based methods. Before employing con-
ventional algorithms such as decision trees and Support Vector Machine (SVM) to address the problem, 
sequences are converted into numerical feature vectors. In order to improve the accuracy of prediction, 
feature selection plays a key role in this type of methods. The last type is model-based classification, 
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which applies hidden Markov model (HMM) and other statistical models to perform sequence classifica-
tion. 

With regard to the first category, in the research by Borozan et al. [4] in 2015, they exploited the 
complementarity between alignment-free and alignment-based similarity measures to improve biological 
sequence classification performance. They used five different sequence similarity measures: three of them 
were alignment-free and two of them were alignment-based, which revealed that their model outper-
formed previous models. In 2014, Chen et al. [5] also tackled the problem of categorical data in a typical 
distance-based manner. They defined four weighted functions for categorical features, two of them named 
as simple matching coefficient measures with global weights (WSMCglobal) and the other two named as 
simple matching coefficient measures with local weights (WSMClocal), then applied these functions to for-
mulate new nearest neighbor classification algorithms. The classifiers were evaluated by using real datasets 
and biological datasets. The results showed that their proposed classifiers outperformed the traditional 
methods. 

Moving to the second class, the application of feature selection technique and feature-based me-
thod to classify protein sequence data was carried out by Iqbal et al. [6] in 2014. The experimental re-
sults of their research showed that their model significantly improved in terms of accuracy, sensitivity, 
specificity, F-measure, and other performance measure metrics. In the study of Weitschek et al. [7] in 
2015, they used the combination of alignment-free approaches and rule-based classifiers so as to classify 
biological sequences. At first, the biological sequences were converted into numerical feature vectors 
with alignment-free techniques, then rule-based classifiers were applied in order to assign them to their 
taxa. 

The study about classifying occupancy, acetylation, and methylation of nucleosomes was carried out 
by Pham et al. [8]. Their method was also a kind of feature-based classification, which converted se-
quences into numerical feature vectors, then applied a conventional classification method. They adopted 
SVM with RBF kernel, and feature vectors were k-mer based vectors with a variety of window sizes (k = 3, 
4, 5, 6, etc.). Using 10 datasets derived from a research of Pokholok et al. [9], they gained a high prediction 
accuracy. In order to improve prediction accuracy, a technique termed feature selection was used by Hi-
gashihara et al. [10] to solve this problem. In this research, the importance of features was first measured 
by MeanDecreaseGini value computed through training and prediction by random forest, then features 
were ranked as the order from the most to least importance. Exploiting feature selection along feature 
ranking, they achieved slight improvements in prediction accuracy. What is more, by searching neighbors 
of the best feature subset, accuracy of prediction improved further. 

Although the active researches on sequence classification above, numerical and categorical features 
were separately studied until now. Since the numerical features like k-mer are typically position-indepen- 
dent and categorical features like nucleotide at a position are position-specific, we can expect that these 
two types of features could contribute to the classification performance in a complementary manner. In 
addition, it is still unclear how effective a feature selection algorithm is against the union of numerical 
and categorical features of sequence. In this study, we propose an effective framework for improving 
fixed-length DNA sequence classification by using the combination of categorical features (i.e. subse-
quence at a position like “A”, “AG”, etc.) and numerical features (i.e. k-mer frequency). By conducting 
feature selection on this mixture of features, we could also find which type of features is more effective in 
each dataset. 

The remainder of this paper is organized as follows. In Section 2, we describe the validation datasets 
and how the model works. We present the experiments and results of evaluating the model in Section 3. 
Finally, some conclusions and discussions are given in Section 4. 

2. MATERIALS AND METHODS 
2.1. Datasets 

To show the validity of the proposed method in dealing with genetic sequence classification problem, 
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we applied our approach to six datasets listed in Table 1. 

2.1.1. UCI Datasets 
We chose the benchmark datasets from UCI machine learning repository, Splice and Promoter data-

sets, for evaluation of our model. These datasets were used in researches [11, 12]. The Splice dataset is 
about the splice-junction gene sequences. There are two types of splice junctions. The exon-intron “EI” is 
the part of DNA sequence ranging from the ending of an exon and the starting of an intron while in-
tron-exon “IE” is a region of DNA between the ending of an intron and beginning of exon. The part of 
sequence which does not belong to “IE” and “EI” is called no junction “N”. This dataset is composed of 
3175 labeled samples and each sample has the length of 60 base pair. 

During RNA transcription process, transcription factors such as RNA polymerase and accessory pro-
teins bind to the promoter region and carry out the initiation of transcription. Promoter parts are DNA 
sequences located adjacent to the initial sites of transcription. Promoter dataset consists of 106 labeled 
promoter sequences, “Positive” and “Negative”, with length of 57 base pair. “Positive” sequence contains a 
DNA region from promoter whereas “Negative” sequence does not include a DNA from promoter. 

2.1.2. Nucleosome Benchmark Datasets 
The other four datasets are about nucleosome forming and inhibiting sequences of four species (H. 

sapiens, C. elegans, D. melanogaster, and S. cerevisiae). The first three datasets were collected by Guo et al. 
[13]. These datasets were previously used in the research [13-15] and their details are described as follows. 
Human (H. sapiens) involved 2273 nucleosome-forming sequences (positive) and 2300 nucleo-
some-inhibiting sequences (negative). Worm (C. elegans) includes 2567 nucleosome-forming sequences 
(positive) and 2608 nucleosome-inhibiting sequences (negative). Fly (D. melanogaster) contains 2900 
nucleosome-forming sequences (positive) and 2850 nucleosome-inhibiting sequences (negative). All the 
sequences in these three datasets have the same length of 147 base pair. In addition, Yeast (S. cerevisiae) 
consists of 1880 nucleosome-forming sequences (positive) and 1740 nucleosome-inhibiting sequences  
 
Table 1. Description of datasets. 

No. Dataset Description # Classes # Sample 
Sequence 

length (base) 

1 Splice 
Primate splice-junction gene sequences 

with associated imperfect domain theory 
3 

3175  
(762 + 765 + 1648) 

60 

2 Promoter 
E. coli promoter gene sequences 

with partial domain theory 
2 

106  
(53 + 53) 

57 

3 Human 
H. sapiens nucleosome-forming and  

nucleosome-inhibiting sequences 
2 

4573  
(2273 + 2300) 

147 

4 Worm 
C. elegans nucleosome-forming and  

nucleosome-inhibiting sequences 
2 

5175  
(2567 + 2608) 

147 

5 Fly 
D. melanogaster nucleosome-forming and 

nucleosome-inhibiting sequences 
2 

5750  
(2900 + 2850) 

147 

6 Yeast 
S. cerevisiae nucleosome-forming and 

nucleosome-inhibiting sequences 
2 

3620  
(1880 + 1740) 

150 
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(negative). Each of these sequences has the length of 150 base pair and this dataset was used in [15, 18, 19]. 

2.2. Features 

In this study, we used the combination of the five different vectors named as 1-categorical vector 
(1CAT), 2-categorical vector (2CAT), 2-mer vector (2MER), 3-mer vector (3MER), and 4-mer vector 
(4MER). Given a biological sequence s of length n, S1, S2, ∙∙∙, Sn, where Si ∈ {A, C, G, T} and i = 1, 2, ∙∙∙, n, 
each of these vectors can be defined as follows: 

2.2.1. 1-Categorical Vector (1CAT) 
1CAT = (A1, A2, ∙∙∙, An), where n is the length of sequence s and Ai is a nucleotide at position ith, i = 1, 

2, ∙∙∙, n. For example, with sequence s, AGGTCCTACT, 1CAT = (A, G, G, T, C, C, T, A, C, T). 

2.2.2. 2-Categorical Vector (2CAT) 
2CAT = (B1, B2, ∙∙∙, Bn−1), where n is the length of DNA sequence s and Bi is two consecutive nucleo-

tides from position ith to position at (i + 1)th, i = 1, 2, ∙∙∙, n − 1. For instance, with sequence s above, 2CAT = 
(AG, GG, GT, TC, CC, CT, TA, AC, CT). 

2.2.3. 2-Mer Vector (2MER), 3-Mer Vector (3MER), and 4-Mer Vector (4MER) 
In term of biological sequence, k-mers can be defined as all possible subsequences of length k within a 

sequence. A k-mer is a string of k successive nucleotides contained the genetic sequence and there are 4k 
possible k-mers: 1 2 4

, , , ks s s . The k-mer vector denoted as kMER is defined by 

[ ] [ ]( )1 2 4
, , ,kMER kc cs s c s =   , where [ ]ic s  is a number of occurrences of the is  in a sequence s and i  

= 1, 2, ∙∙∙, 4k. Therefore, using sequence s above, 2MER will be (0, 1, 1, 0, 0, 1, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0). 

2.3. Algorithm 

The proposed algorithm consists of main four steps. The flowchart of our algorithm is shown in Fig-
ure 1, and works as below: 

1) Block A in Figure 1 is in charge of converting DNA sequences into feature vectors. 
2) At Block B in Figure 1, feature ranking is conducted by the randomForest function for R [17]. 
3) Block C in Figure 1 is responsible for feature selection by performing learning and predicting with 
the ksvm function for R in kernlab package [16]. Each feature subset is evaluated by the average of 
prediction accuracies of 10-fold cross-validation. 
4) The prediction performance of the proposed approach is achieved at Block D in Figure 1 where the 
best feature subset {f1, ∙∙∙, fk} obtained in the previous step are used to evaluate by 10-fold cross-valida- 
tion ten times. Herein, the best feature subset is the feature subset with the best accuracy. 

2.4. Feature Selection 

Nowadays, there has been a remarkable increase the number of researches exploiting feature selection 
techniques. They have been applied to both supervised learning and unsupervised learning. Their aims are 
threefold: the most important one being to avoid overfitting and improve model performance, the second 
advantage being to reduce computational time and space required to execute models, and the final goal 
being to identify which features are relevant to a problem and to gain a deeper insight into the data. 

The feature selection approach used in our research is a kind of greedy algorithm, and works as two 
following steps. 

Step 1) With pre-calculated feature set F = {f1, f2, ∙∙∙, fm} being ordered top-to-bottom as highest-to- 
smallest important values, we evaluate a feature subset {f1, f2, ∙∙∙, f10}, a feature subset {f1, f2, ∙∙∙, f20}, and so 
on, until a feature subset {f1, f2, ∙∙∙, fm} by conducting training and predicting with ksvm function [16]. 
Step 2) Neighbors of the feature subset with the best accuracy of prediction in the preceding step are 
tested. 
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         Figure 1. The flowchart of the proposed algorithm. 

3. EXPERIMENTS AND RESULTS 
3.1. Feature Ranking by Random Forest 

Random forests are well-known ensemble learning method which can conduct both classification and 
regression. Apart from these tasks, the randomForest function for R in randomForest package [17] can 
measure the importance of all features by Mean Decrease Accuracy or Mean Decrease Gini values. In this 
research we adopted the Mean Decrease Accuracy value as the importance of features. The connection 
between rank and Mean Decrease Accuracy normalized into the range between 0 and 1 in each dataset is 
shown in the Figure 2. 

In general, there is a sharp decrease in the importance of features in Promoter and Human datasets in 
the areas of top 1 - 5. This is then followed by a steady decline trend in the rest region. With Splice, Worm 
and Fly datasets, the importance of features fall slowly in the region of from top 1 to 16. The importance in 
the remainder declines gradually. 

Features with high importance in validation datasets are listed in Table 2. From this table it is clear 
that Human, Worm, and Fly datasets have features with high importance containing mainly “A” (adenine) 
and “T” (thymine). However, the percentage of “C” (cytosine) and “G” (guanine) increase slightly in the 
Fly dataset. More observations are that TTT, TTTT, AA, AAA, AAAA, AAAT, ATTT features are highly 
important in Human and Worm datasets. It is similar to the case of Fly dataset where TTT, TT, TTTT,  

https://doi.org/10.4236/jbise.2017.108030


 

 

https://doi.org/10.4236/jbise.2017.108030 395 J. Biomedical Science and Engineering 
 

 
            Figure 2. Mean Decrease Accuracy along feature ranking from top 1 - 60. 
 
Table 2. List of important features. 

No. Dataset List of top 10 features with high importance sorted by descending order of rank 
1 Splice B30, B29, B31, B28, A29, A30, B32, A32, B34, A31 
2 Promoter B17, B16, B15, B14, A15, B39, A17, B18, A16, B38 
3 Human TTTT, AAA, TTT, AAAA, TT, AA, AAAT, ATTT, TG, TAAA 
4 Worm B1, AAA, AA, A1, TTT, AAAA, AAAT, TTTT, ATTT, AATT 
5 Fly TA, GC, CG, TTT, TT, TTTT, ATA, CA, AAAA, TAT 
6 yeast AAAA, TTTT, TA, AAA, TTT, TAT, ATA, CGCG, CA, TT 

 
ATA, AAAA, TAT are so important. AAAA, TTTT, TA, AAA, TTT, TAT, ATA are highly important for 
Yeast dataset. This coincides with the results in the research of Higashihara et al. [10] for classification of 
nucleosome datasets. The research showed that T and A were both highly important. Additionally in Ta-
ble 2, it was partially demonstrated that the combination of numerical and categorical might be effective. 
In case of Worm dataset, the first and the fourth important features are categorical (B1 and A1), and others 
are numerical. 

For Splice and Promoter datasets, however, features in 2CAT vectors are so important. B30, B29, B31, 
B28 features are highly important in Splice dataset, which means that the nucleotides around the center of 
splice sequences play a vital role in prediction. This finding agrees with the structure of splice site se-
quences where splice-junctions are at the middle of sequences. B17, B16, B15, B14 are highly important in 
Promoter dataset. Figure 3 demonstrates the relationship between features in 2CAT vectors of Splice and 
Promoter datasets and Mean Decrease Accuracy normalized into the interval of [0, 1]. The figure illu-
strates that the highly important features in 2CAT vector of Splice dataset are located at the region of from 
25 to 35. While those of Promoter dataset settled at the area of between 12 to 18. 

3.2. Prediction Accuracy of Feature Subsets along Ranking 

As described in step 1 in subsection 2.4, feature subsets along the ranking were assessed by SVM. 
With Human, Worm and Fly datasets, there are 63 different feature subsets at intervals of 10: {f1, f2, ∙∙∙, f10}, 
{f1, f2, ∙∙∙, f20}, {f1, f2, ∙∙∙, f30}, ∙∙∙, {f1, f2, ∙∙∙, fm} being tested. The prediction accuracy is based on the average 
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accuracy of 10-fold cross-validation. However, there are around 45 feature subsets for Promoter dataset 
and Splice dataset. The results of prediction are demonstrated in Table 3. 

3.3. Prediction Accuracy of Neighbors around the Best Feature Subset 

With best feature subset obtained in subsection 3.2, we conducted step 2 in subsection 2.4. The results 
and the number of features in each feature subset are presented in Table 4. 

3.4. Evaluation 

3.4.1. Evaluation Metrics 
The six key terms are used to computing classification evaluation metrics. Positives (P) is the number 

of positive samples. Negatives (N) is the number of negative samples. True positives (TP) is the number of 
the positive samples that were correctly classified by the classifier. True negatives (TN) is the number of 
the negative samples that were correctly classified by the classifier. False positives (FP) is the number of 
the negative samples that were incorrectly classified as positive. False negatives (FN) is the number of the 
positive samples that are misclassified as negative. 

( )Accuracy Acc TP TN
TP TN FP FN

+
=

+ + +
                          (1) 

 

 
(a)                                            (b) 

Figure 3. Mean Decrease Accuracy of features in 2CAT vector on (a) Splice and (b) Promoter 
datasets. 

 
Table 3. Prediction accuracies obtained by using either the whole set of features and the best feature 
subset in step 1. 

No. Dataset 
The whole set of features The best feature subset in step 1 

Improvement (%) 
# Feature Acc (%) # Feature Acc (%) 

1 Splice 455 94.55 40 96.77 2.22 

2 Promoter 449 94.34 90 100 5.66 

3 Human 629 85.94 420 86.35 0.41 

4 Worm 629 89.06 180 89.28 0.22 

5 Fly 629 80.16 140 81.79 1.63 

6 Yeast 635 100 30 100 0.00 

https://doi.org/10.4236/jbise.2017.108030


 

 

https://doi.org/10.4236/jbise.2017.108030 397 J. Biomedical Science and Engineering 
 

Table 4. Prediction accuracies in step 2 compared with those in step 1. 

No. Dataset 
The best feature subset in step 1 The best feature subset in step 2 

Improvement (%) 
# Feature Acc (%) # Feature Acc (%) 

1 Splice 40 96.77 48 96.93 0.16 

2 Promoter 90 100 90 100 0 

3 Human 420 86.35 428 86.49 0.14 

4 Worm 180 89.28 177 89.53 0.25 

5 Fly 140 81.79 148 81.93 0.14 

6 Yeast 30 100 22 100 0.00 
 

( )Sensitivity Sen TP
TP FN

=
+

                              (2) 

( )Specificity Sp TN
TN FP

=
+

                               (3) 

( )
( )( )( )( )

Matthews correlation coefficient MCC TP TN FP FN
TP FP TP FN TN FP TN FN

× − ×
=

+ + + +
  (4) 

3.4.2. Performance Evaluation of the Method 
Using the best feature subsets obtained in the step 2 in subsection 2.4, we applied our model to classi-

fy the DNA sequences in the validation datasets and compared its performance with the previous research. 
For evaluation, we mainly carried out 10-fold cross-validation ten times, and then computed average pre-
diction results. With Promoter data, however, we employed leave one out ten times due to the fact that the 
number of its samples is small, 106 samples. 

For Splice and Promoter datasets, we compared the performance of proposed model with the perfor-
mance of previous model conducted by Nguyen et al. [12]. The results from this research are known as the 
best performance prior to our research. The motivation behind this model was the desire to apply a deep 
learning model for text classification to DNA sequence classification. At first, the researchers translated 
DNA sequence into sequence of words as a text sentence, then applied the representation technique for 
text to this produced sequence. Lastly, two-dimensional matrices representing DNA sequences using one 
hot vectors were directly used as input to the convolutional neural network model. 

However, for Human, Worm and Fly datasets, the performance of our model was compared with the 
results taken from researches [13-15]. The predictors iNuc-PseKNC was proposed by Guo et al. in 2014 
[13] and two years later, Tahir and Hayat introduced the predictors iNuc-PseSTNC in 2016 [14]. Both 
predictors achieved better results on predicting nucleosome positioning than previous predictors. In late 
2016, Awazu developed two models predicting nucleosome positioning called as 3LS and TNS models 
[15]. 

For Yeast dataset, we compared our results with those taken from [15, 18, 19]. Chen et al. [18] devel-
oped the predictor based on DNA deformation energy in 2015 while Yi et al. [19] introduced the predictor 
based on the nearest neighbor algorithm in 2012. 

3.5. Comparison with Other Methods 

As can be seen from Table 5, the prediction accuracy of our method for Promoter dataset reached 
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100%. This means that all samples in this dataset were correctly predicted by our proposed model. This 
result has not obtained by any previous methods. Our method also achieved the high prediction accuracy 
for Splice dataset with 96.81%. 

To confirm whether the average of prediction accuracies of our method and the previous method are 
significantly different, we performed the two-sample t-test assuming equal variances. The p-values of these 
t-test comparisons are illustrated in Table 6. All the p-values are far smaller than 0.05, which means that 
our method outperforms the previous research in the term of prediction accuracy on these two datasets. 

With Human, Worm and Fly datasets, we compared the performance of the proposed model and the 
performances of models in [13-15] on four metrics: Accuracy, sensitivity, specificity and Matthews corre-
lation coefficient. Table 7 indicates the results of all methods in detail. From this table, the first thing to 
note is that our method outperformed all of competing methods on Worm dataset with Acc of 89.35%, 
Sen of 92.45% and MCC of 0.79. The second result worth pointing out is that on the Fly dataset our model 
also achieved better results than those of the other previous models with Acc of 81.75%, Sen of 79.14%, Sp 
of 84.40% and MCC of 0.64 except 3LS. Moreover, on Human dataset, the prediction Acc of the proposed 
method (86.33%) was higher than that of iNuc-PseKNC, TNS but lower than iNuc-PseSTNC and 3LS. Al-
though iNuc-PseKNC model achieved the same MCC (0.73) with our model, Acc, Sen of our method were 
better than those of iNuc-PseKNC except for sensitivity. For Yeast dataset, our method and TNS com-
pletely outperformed the previous methods. Our model achieved the Acc of 100%, Sen of 100%, Sp of 
100% and MCC of 1.0. 

4. DISCUSSION AND CONCLUSIONS 
In this research, we proposed a simple but powerful model for solving DNA sequence classification 

problems. The model was tested on six different datasets: Splice, Promoter, Human, Worm, Fly, and Yeast 
datasets. On Splice and Promoter datasets, the experimental results show that there was a significant in-
crease in the performance of our model. The improvements were also proved by performing the two- 
sample t-test assuming equal variances, and all p-values were less than 0.05. Especially, the proposed mo- 
del reached the accuracy of 100% on Promoter and Yeast datasets. 

We also compared our model with the other four models: iNuc-PseKNC [13], iNuc-PseSTNC [14], 
TNS and 3LS [15]. In terms of accuracy, sensitivity and MCC, our method achieved better performance 
than any other competing method for predicting nucleosome positioning in worm genome. For fly ge-
nome, the proposed method also outperformed the other methods except 3LS model. For predicting nuc- 
 
Table 5. Prediction accuracy comparison of proposed model and accuracy in [12]. 

No. Dataset 
Accuracy (%) in [12] Accuracy by our method (%) Improvement in 

average (%) Minimum Maximum Average Minimum Maximum Average 

1 Splice 95.87 96.73 96.18 96.65 96.93 96.81 0.63 

2 Promoter 99.06 99.06 99.06 100 100 100 0.94 

 
Table 6. Assessment of our model and model in [12] by two-sample t-test assuming equal variances. 

No. Dataset 
degrees of 
freedom 

t-statistic P(T ≤ t) one-tail P(T ≤ t) two-tail 

1 Splice 11 −4.365114612 0.000563331 0.001126662 

2 Promoter 11 ∞ 0 0 
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Table 7. Performance comparison of our model and previous models. 

Dataset Method Acc (%) Sen (%) Sp(%) MCC 

Human 

Our method 86.33 89.77 82.93 0.73 
iNuc-PseKNC [13] 86.27 87.86 84.70 0.73 
iNuc-PseSTNC [14] 87.60 89.31 85.91 0.75 

3LS [15] 90.01 91.69 88.35 0.80 
TNS [15] 81.67 - - - 

Worm 

Our method 89.35 92.45 86.30 0.79 
iNuc-PseKNC [13] 86.90 90.30 83.55 0.74 
iNuc-PseSTNC [14] 88.62 91.62 86.66 0.77 

3LS [15] 87.86 86.54 89.21 0.76 
TNS [15] 83.94 - - - 

Fly 

Our method 81.75 79.14 84.40 0.64 
iNuc-PseKNC [13] 79.97 78.31 81.65 0.60 
iNuc-PseSTNC [14] 81.67 79.76 83.61 0.63 

3LS [15] 83.41 84.07 82.74 0.67 
TNS [15] 70.82 - - - 

Yeast 

Our method 100 100 100 1.00 
TNS [15] 100 - - - 

Chen et al. [18] 98.10 98.20 98.00 0.96 
Yi et al. [19] 99.06 - - - 

 
leosome positioning in human genome, our method performance was higher than iNuc-PseKNC and 
TNS, but lower than the other two models. Therefore, it can be concluded that our model is effective for 
DNA sequence classification. 

The combination vector can reflect not only the categorical features of DNA sequence, but also the 
numerical features of sequence. It can characterize a genetic sequence. Moreover, we utilized the ability of 
executing categorical data and numerical data of random forest and SVM to solve our problem. We also 
made use of the advantages of random forest in automatically producing variable importance to rank fea-
tures, then applied the feature ranking to conduct feature selection. The used feature selection technique is 
a greedy based on technique which does not learning and predicting on all possible feature subsets. This 
can reduce dramatically computational cost. However, one limitation of this model is that all DNA se-
quences in one dataset need to be the same length. 

Due to the fact that our proposed model was successful in classifying DNA sequence data, in the fu-
ture, the proposed model can be extended to other areas of sequence recognition like the classification 
protein sequence data. 

ACKNOWLEDGEMENTS 
In this research, the super-computing resource was provided by Human Genome Center, the Institute 

of Medical Science, the University of Tokyo. Additional computation time was provided by the super 
computer system in Research Organization of Information and Systems (ROIS), National Institute of Ge-
netics (NIG). This work was supported by JSPS KAKENHI Grant Number 26330328. 

https://doi.org/10.4236/jbise.2017.108030


 

 

https://doi.org/10.4236/jbise.2017.108030 400 J. Biomedical Science and Engineering 
 

REFERENCES 
1. GenBank and WGS Statistics. https://www.ncbi.nlm.nih.gov/genbank/statistics/ 

2. UniProt Consortium (2014) UniProt: A Hub for Protein Information. Nucleic Acids Research, 43, D204-D212.  

3. Xing, Z., Pei, J. and Keogh, E. (2010) A Brief Survey on Sequence Classification. ACM SIGKDD Explorations 
Newsletter, 12, 40-80. https://doi.org/10.1145/1882471.1882478 

4. Borozan, I., Watt, S. and Ferretti, V. (2015) Integrating Alignment-Based and Alignment-Free Sequence Simi-
larity Measures for Biological Sequence Classification. Bioinformatics, 31, 1396-1404.  
https://doi.org/10.1093/bioinformatics/btv006 

5. Chen, L. and Guo, G. (2014) Nearest Neighbor Classification of Categorical Data by Attributes Weighting. Ex-
pert Systems with Applications, 42, 3142-3149. https://doi.org/10.1016/j.eswa.2014.12.002 

6. Iqbal, M.J., Faye, I., Samir, B.B. and Said, A.M. (2014) Efficient Feature Selection and Classification of Protein 
Sequence Data in Bioinformatics. The Scientific World Journal, 2014, Article ID: 173869.  

7. Weitschek, E., Cunial, F. and Felici, G. (2015) LAF: Logic Alignment Free and Its Application to Bacterial Ge-
nomes Classification. BioData Mining, 8, 2015. https://doi.org/10.1186/s13040-015-0073-1 

8. Pham, T.H., Tran, T.B., Ho, T.B., Satou, K. and Valiente, G. (2005) Qualitatively Predicting Acetylation and 
Methylation Areas in DNA Sequences. Genome Informatics, 16, 3-11. 

9. Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell, G.W., Walker, K., Rolfe, 
P.A., Herbolsheimer, E., Zeitlinger, J., Lewitter, F., Gifford, D.K. and Young, R.A. (2005) Genome-Wide Map of 
Nucleosome Acetylation and Methylation in Yeast. Cell, 122, 517-527. https://doi.org/10.1016/j.cell.2005.06.026 

10. Higashihara, M., Rebolledo-Mendez, J.D., Yamada, Y. and Satou, K. (2008) Application of a Feature Selection 
Method to Nucleosome Data: Accuracy Improvement and Comparison with Other Methods. WSEAS Transac-
tions on Biology and Biomedicine, 5, 153-162. 

11. Li, J. and Wong, L. (2003) Using Rules to Analyse Bio-Medical Data: A Comparison between C4.5 and PCL. 
Proceedings of Advances in Web-Age Information Management 4th International Conference, Chengdu, 17-19 
August, 254-265. https://doi.org/10.1007/978-3-540-45160-0_25  

12. Nguyen, N.G., Tran, V.A., Ngo, D.L., Phan, D., Lumbanraja, F.R., Faisal, M.R., Abapihi, B., Kubo, M. and Satou, 
K. (2016) DNA Sequence Classification by Convolutional Neural Network. Journal of Biomedical Science and 
Engineering, 9, 280-286. https://doi.org/10.4236/jbise.2016.95021 

13. Guo, S.H., Deng, E.Z., Xu, L.Q., Ding, H., Lin, H., Chen, W. and Chou, K.C. (2014) iNuc-PseKNC: A Se-
quence-Based Predictor for Predicting Nucleosome Positioning in Genomes with Pseudo k-Tuple Nucleotide 
Composition. Bioinformatics, 30, 1522-1529. https://doi.org/10.1093/bioinformatics/btu083 

14. Tahir, M. and Hayat, M. (2016) iNuc-STNC: A Sequence-Based Predictor for Identification of Nucleosome Po-
sitioning in Genomes by Extending the Concept of SAAC and Chou’s PseAAC. Molecular BioSystems, 12, 2587- 
2593. https://doi.org/10.1039/C6MB00221H 

15. Awazu, A. (2016) Prediction of Nucleosome Positioning by the Incorporation of Frequencies and Distributions 
of Three Different Nucleotide Segment Lengths into a General Pseudo k-Tuple Nucleotide Composition. Bioin-
formatics, 33, 42-48. https://doi.org/10.1093/bioinformatics/btw562 

16. Karatzoglou, A., Smola, A., Hornik, K. and Zeileis, A. (2004) Kernlab—An S4 Package for Kernel Methods in R. 
Journal of Statistical Software, 11, 1-20. https://doi.org/10.18637/jss.v011.i09  

17. Liaw, A. and Wiener, M. (2002) Classification and Regression by Randomforest. R News, 2, 18-22.  
http://CRAN.R-project.org/doc/Rnews/  

18. Chen, W., Feng, P., Ding, H., Lin, H. and Chou, K.C. (2015) Using Deformation Energy to Analyze Nucleosome 

https://doi.org/10.4236/jbise.2017.108030
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://doi.org/10.1145/1882471.1882478
https://doi.org/10.1093/bioinformatics/btv006
https://doi.org/10.1016/j.eswa.2014.12.002
https://doi.org/10.1186/s13040-015-0073-1
https://doi.org/10.1016/j.cell.2005.06.026
https://doi.org/10.1007/978-3-540-45160-0_25
https://doi.org/10.4236/jbise.2016.95021
https://doi.org/10.1093/bioinformatics/btu083
https://doi.org/10.1039/C6MB00221H
https://doi.org/10.1093/bioinformatics/btw562
https://doi.org/10.18637/jss.v011.i09
http://cran.r-project.org/doc/Rnews/


 

 

https://doi.org/10.4236/jbise.2017.108030 401 J. Biomedical Science and Engineering 
 

Positioning in Genomes. Genomics, 107, 69-75. https://doi.org/10.1016/j.ygeno.2015.12.005 

19. Yi, X.F., He, Z.S., Chou, K.C. and Kong, X.Y. (2012) Nucleosome Positioning Based on the Sequence Word 
Composition. Protein and Peptide Letters, 19, 79-90. https://doi.org/10.2174/092986612798472811 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jbise@scirp.org 

https://doi.org/10.4236/jbise.2017.108030
https://doi.org/10.1016/j.ygeno.2015.12.005
https://doi.org/10.2174/092986612798472811
http://papersubmission.scirp.org/
mailto:jbise@scirp.org

	Combined Use of k-Mer Numerical Features and Position-Specific Categorical Features in Fixed-Length DNA Sequence Classification
	ABSTRACT
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. Datasets
	2.1.1. UCI Datasets
	2.1.2. Nucleosome Benchmark Datasets

	2.2. Features
	2.2.1. 1-Categorical Vector (1CAT)
	2.2.2. 2-Categorical Vector (2CAT)
	2.2.3. 2-Mer Vector (2MER), 3-Mer Vector (3MER), and 4-Mer Vector (4MER)

	2.3. Algorithm
	2.4. Feature Selection

	3. EXPERIMENTS AND RESULTS
	3.1. Feature Ranking by Random Forest
	3.2. Prediction Accuracy of Feature Subsets along Ranking
	3.3. Prediction Accuracy of Neighbors around the Best Feature Subset
	3.4. Evaluation
	3.4.1. Evaluation Metrics
	3.4.2. Performance Evaluation of the Method

	3.5. Comparison with Other Methods

	4. DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

