Program Book

THE 6TH INTERNATIONAL SYMPOSIUM OF INDONESIAN WOOD RESEARCH SOCIETY

"The Utilization of Biomass from Forest and Plantation for Environment Conservation Efforts"

Supported by:

- Toba Pulp Lestari
- PTPN4
- GRUTI
- PT. SUMBER KARINDO SAKTI
<table>
<thead>
<tr>
<th>No</th>
<th>The Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Characteristics of Tropical Woods Lignin and Its Reactivity in Alkaline Delignification
Dedeh Sarip Nawawi, Anne Carolina, Nyoman J Wistara</td>
<td>G - 01</td>
</tr>
<tr>
<td>2</td>
<td>Evaluation of binding effects in wood flour board containing ligno-cellulose nanofibers
Yoichi Kojima, Hikaru Kobori, Shigehiko Suzuki, Hirokazu Ito, Rie Makise, Masaki Okamoto</td>
<td>G - 02</td>
</tr>
<tr>
<td>3</td>
<td>Physical and Mechanical Properties of Platinum Teak Wood
Danang Sudarwoko Adi, Sudarmanto, Ismadi, M. Gopar, Wahyu Dwianto</td>
<td>G - 03</td>
</tr>
<tr>
<td>4</td>
<td>Anatomical Properties and Fiber Characteristics of Platinum Teak Wood as a New Promising Teak Wood from LIPI
Danang Sudarwoko Adi, Ika Wahyuni, Dwi Ajias P, Yusup Amin, Teguh Darmawan, Wahyu Dwianto, Witjaksono</td>
<td>G - 04</td>
</tr>
<tr>
<td>5</td>
<td>Physical and mechanical properties of Hwangiangmok (Yellow-hearted Pine)
Ae-Hee Lee, Jae-Hyuk Jang, Se-Hwi Park and Nam-Hun Kim</td>
<td>G - 05</td>
</tr>
<tr>
<td>6</td>
<td>Fine fibrosis characteristics of four tropical woods for nanocellulose production
Wahyu Hidayat, Jae-Hyuk Jang, Sa-Ra Jang, Se-Hwi Park, Fauzi Febrianto and Nam-Hun Kim</td>
<td>G - 06</td>
</tr>
<tr>
<td>7</td>
<td>Chemical Composition and Color Variation of Platinum Teak Wood - a Fast Growing Teak Wood from LIPI
Danang Sudarwoko Adi, Ika Wahyuni, Dwi Ajias P, Yusup Amin, Teguh Darmawan, Wahyu Dwianto</td>
<td>G - 07</td>
</tr>
<tr>
<td>8</td>
<td>Wood Properties of Shorea almon and Its Suitability for Furniture
Listya Mustika Dewi, Sri Rulliati, Abdurachman, Jasni</td>
<td>G - 08</td>
</tr>
<tr>
<td>9</td>
<td>Mechanical Characteristic of Coconut and Oil Palm Empty Fruit Brunch Fiber Based Composites With Soaking Treatment In Vertical Garden Board Application
M. Gopar and Ismadi</td>
<td>G - 09</td>
</tr>
<tr>
<td>10</td>
<td>Mechanical Characteristic of Coconut Fiber Based Composites With Time Watering Variation In Vertical Garden Board Application
Ismadi and M. Gopar</td>
<td>G - 10</td>
</tr>
<tr>
<td>11</td>
<td>The Possibility Of Oxidation Treatment Application In Manufacturing Binderless Particleboard Using Several Wood Species From Community Forest
Suhasman, Andi Detti Yunianti, Sahriyanti Saad</td>
<td>G - 11</td>
</tr>
<tr>
<td>12</td>
<td>Chemical Analysis of the Essential Oil Constituents in the Leaves of Pogostemon sp from Different Place in East Kalimantan
Harinda Kuspradini, Farida Aryani, Yanti</td>
<td>G - 12</td>
</tr>
</tbody>
</table>
G-06

Fine Fibrosis Characteristics of Four Tropical Woods for Nanocellulose Production

Wahyu Hidayat1,2, Jae-Hyuk Jang1, Sa-Ra Jang1, Se-Hwi Park1, Fauzi Febrianto3
and Nam-Hun Kim1

1College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701,
Republic of Korea;
2Department of Forestry, Faculty of Agriculture, University of Lampung, Jl. Prof. Dr. Sumantri
Brojonegoro No. 1Bandar Lampung, 35145, Indonesia
3Faculty of Forestry, Bogor Agricultural University, Gd. Fahutan IPB Dramaga,Bogor 16680, Indonesia
e-mail: away_rie@yahoo.com

ABSTRACT

Nanocellulose in nano-scales has attracted attention in many different research areas, especially nanocomposite
development, by virtue of its impressive mechanical properties (Kalla et al., 2011). Nanocellulose can be produced
from any kind of plant cell walls by simple mechanical methods or a combination of both chemical and mechanical
methods. In this study, fine fibers and nanocelluloses were prepared from four different tropical wood species
(Albizia, Gmelina, Mangium, Mindi) by using mechanical grinder, such as cutter mill and wetdisk mill. The energy
consumption, filtration time and dimensions of the fibers were varied with grinding time. The effect of grinding time
on the dimensions of fibers was investigated with measuring microscope and scanning electron microscope.
Dimension of nanocellulose from Albizia was further decreased with increasing grinding time showing the least
length and diameter of 620nm and 22nm, respectively. Albizia consumed significantly lower energy at same
grinding time compared with other species. Filtration time of Albizia showed comparable value even though it
spent lower grinding time compared with other species. Nanocellulose-reinforced polyvinyl alcohol nanocomposites
were prepared by film casting. There was no significant difference in transparency among the nanocomposites
reinforced by four different species of nanocellulose at the same level of grinding time.

Keywords: nanocellulose, cellulose nanofiber, microfibrillated cellulose, tropical wood, nanocomposite
Organized by:
Faculty of Forestry, University of Sumatera Utara
Indonesian Wood Research Society (IWoRS)

SECRETARIAT OFFICE:
Faculty of Forestry, University of Sumatera Utara
Jl. Tri Dharma Ujung No.1 Kampus USU Medan 20155 North Sumatera, Indonesia
Phone. +62618220605, Fax. +62618201920
E-mail: iwor2014@mapeki.org