Annual International Symposium of Institute of Forest Science

KNU IFS 2018

2018. 9. 6. ~ 7.

College of Forest Science and Environmental Sciences Kangwon National University Chuncheon Republic of Korea

KNU

Session 12. Research activities on the utilization of woody biomass in Kenner China, and Indonesia

-	Venue:	Room	104	(Building	No.1),	College	of	Forest	and	Environmental	Sciences
---	--------	------	-----	-----------	--------	---------	----	--------	-----	---------------	----------

Time	Title	Authors	Modernin
15:40 ~ 16:00	Development of mass reduction and heating value prediction model for optimizing torrefaction process for wood pellet	Sun-Yong Park, Kwang-Cheol Oh, Chung-Geon Lee, La-Hoon Cho, In-Seon Jeong, Min-Jun Kim, Seok-Jun Kim, Young-Kwang Jeon, Dae-Hyun Kim	
16:00 ~ 16:20	Environmentally friendly and high performance of bamboo fiber reinforced composites	Yue Qi, Wen-Ji Yu, Ding-Hua Ren, Yang-Lun Yu, Rong-Xian Zhu, Ya-Hui Zhang, Ya-Mei Zhang, Yu-Xiang Huang	
16:20 ~ 16:40	Optimum Conditions for Manufacturing of Wood Fiber Insulation Boards	Min Lee, Jae-hyuk Jang, Sang-min Lee	Professo Nam Hit
16:40 ~ 17:00	New technology of termite control for wooden structure	Sae-Min Yoon, Jung-Eun Park, Won-Joung Hwang, Yong-Seok Choi, Dong-Won Son, Jin-Young Chung	Kim & Dr. Sang Ber Parti
17:00 ~ 17:20	Peatland restoration for local community based bioenergy production in Indonesia	Soo-Min Lee , Han-Seob Joeng, Don-Ho Lee, Himlal Baral	
17:20 ~ 17:40	Torrefaction of Wood Pellets using Counter Flow Multi-Baffle (COMB) Technology	Wahyu Hidayat, Udin Hasanudin, Dewi Agustina Iryani, Agus Haryant, Amrul, Si-Hyun Lee, Sang-Do Kim	
17:40 ~ 18:00	Design and performance test of a modified charcoal kiln for thermal therapy	Nam Hun Kim, Yun Ki Kim, Ah Ran Kim, Hee Soo Lee, Wae Jung Kim, Byantara darsan Purusatama	

Torrefaction of Wood Pellets using Counter Flow Multi-Baffle (COMB) Technology

Wahyu Hidayat^{1,*}, Udin Hasanudin¹, Dewi Agustina Iryani², Agus Haryanto¹, Amrul², Sihyun Lee³ and Sangdo Kim³

¹Faculty of Agriculture, University of Lampung, Bandar Lampung 35145, Indonesia,

²Faculty of Engineering, University of Lampung, Bandar Lampung 35145, Indonesia,

³Climate Change Research Division, Korean Institute of Energy Research, Daejon, 34129, Republic of Korea

* Corresponding Author(s): Wahyu Hidayat (wahyu.hidayat@fp.unila.ac.id)

Abstract

Jabon (Anthocephalus cadamba) is a promosing fast growing wood species that is widely planted in community forests and industrial plantation forests but the wood has a relatively low density, durability, and mechanical properties which limited its application as structural timbers. One of the alternative utilizations of jabon wood is by converting into wood pellet for bioenergy. The aim of this study was to improve the properties of wood pellets from jabon through rapid torrefaction using Counter-Flow Multi Baffle (COMB) reactor, a pilot plant for torrefaction of biomass with a capacity of 20 kg/h that has a main advantage of performing torrefaction within a short period of time. Wood pellets were classified according to its length and then torrefied at 300°C with a residence time of 3 min. Torrefied pellets (black pellets) were succesfully produced. The initial moisture content of the long and short pellets of 12.76% and 12.47% decreased up to 2.85% and 2.61% after torrefaction. Water immersion test for 1 min, 5 min, 30 min, 1 h, 6 h, 12 h, and 24 h showed that the raw pellets (control) fully disintegrated after 30 min, while black pellets showed no significant disintegration even after 24 h test which is an advantage for long period storage of pellets. The initial calorific values of long and short pellets of 17.69 MJ/kg and 17.35 MJ/kg increased up to 31.79 MJ/kg and 32.02 MJ/kg after torrefaction. The results proposed that rapid torrefaction using COMB could provide a great improvement in bioenergetic properties of wood pellets from fast growing species as jabon wood.

Keywords: Anthocephalus cadamba; Black pellet; Torrefaction; Wood pellet

Annual International Symposium of Institute of Forest Science (KNUIFS 2018)

Chuncheon, 6-7 September 2018

Torrefaction of Wood Pellets using Counter Flow Multi-Baffle (COMB) Technology

Wahyu Hidayat¹, Udin Hasanudin¹, Dewi Agustina Iryani², Agus Haryanto¹, Amrul², Sangdo Kim^{3,} Sihyun Lee³

¹Faculty of Agriculture, University of Lampung, Bandar Lampung 35145, Indonesia ²Faculty of Engineering, University of Lampung, Bandar Lampung 35145, Indonesia ³Climate Change Research Division, Korean Institute of Energy Research, Daejon, 34129, Republic of Korea

E-mail: wahyu.hidayat@fp.unila.ac.id

02 Materials & Method

Results & Discussion

Chapter 01

Introduction

Chapter

Chapter Chapter 03 04

Social Forestry

SOCIAL FORESTRY IN INDONESIA

Government target (2015-2019): allocating **12.7 million hectares** of state forest areas to be managed by communities through social forestry schemes.

Abundant forest biomass potential

- The use of forest biomass for energy is relatively small and restricted to domestic firewood and some small industrial plants.
- Indonesia is developing production of a modern bioenergy such as wood pellets derived from wood residues, but it was only 40 thousand tons in 2013 (FAO, 2016). About 37 thousand tons of that production were exported mostly to South Korea (94.4%) followed by Japan (2.2%), and European countries (<1%).

Biomass from Community Forests

Forest industry sectors should be encouraged to adapt to the use of the species from planted forests and develop suitable conversion technologies for production of value-added product.

Wood Pellet: low-cost and eco-friendly bioenergy

The aim of this study was to improve the properties of wood pellets from jabon (*Anthocephalus cadamba*) through rapid torrefaction using Counter-Flow Multi Baffle (COMB) reactor.

White Pellet

Black Pellet

Chapter 01

Materials & Method

Chapter 03

Chapter 04

Materials

Wood pellet from sawdust of jabon wood: sawmill waste

Chemical and bioenergy properties of jabon

Parameter	Value
Cellulose ¹	52.4 %
Pentosan ¹	16.2 %
Lignin ¹	25.4 %
Silica ¹	0.1 %
Extractives dissolve in ¹	
- Alcohol-benzene	4.7 %
- Cold water	1.6 %
- Hot water	3.1 %
- NaOH 1%	18.4 %
Ash contents ²	1.3 %
pH ²	5.0
Heating Value ²	19.15 MJ/kg (4,578 cal/g)

Note: ¹Martawijaya et al., 1989; ²Wood Physics Laboratory, KNU.

Counter-Flow Multi Baffle (COMB) Reactor

20 KPH COMB Reactor at Forest Products Laboratory, University of Lampung

Counter-Flow Multi Baffle (COMB) Reactor

COMB Column

11

Process Condition

Parameter	Value
Feeder frequency (Hz)	17.6
Flow rate (cm ³ /min)	4.76
Column DP (mm.Aq)	302.7
Bag Filter DP (mm.Aq)	25.2
Gas cooler IN temperature (°C)	153.0
Bag filter IN temperature (°C)	46.3
ID fan inlet temperature (°C)	39.2
Column inlet temperature (°C)	334.7
Column top temperature (°C)	298.1
Column outlet temperature (°C)	237.9
Cyclone inlet temperature (°C)	203.6

Wood Pellet Evaluation

- Moisture content
- Density
- Hygroscopic property
- Calorific value

Visual appearance of the jabon wood pellet

Tabel 1. Moisture content and density of jabon pellets

	Sampla	Moisture	Density	(g/cm³)	Density reduction (%)		
Pellet Size	Sample	content (%)	Air dry	Oven dry	Air dry	Oven dry	
	Raw pellet	12.76 (1.46)	1.18 (0.03)	1.05 (0.03)	-	-	
Long	Brown pellet	5.17 (1.56)	1.01 (0.02)	0.96 (0.02)	14.67	8.51	
	Black pellet	2.85 (0.64)	0.93 (0.03)	0.91 (0.03)	21.05	13.44	
	Raw pellet	12.47 (1.09)	1.10 (0.09)	0.97 (0.07)	-	-	
Short	Brown pellet	4.11 (1.53)	0.97 (0.07)	0.93 (0.05)	11.88	4.82	
	Black pellet	2.61 (0.45)	0.78 (0.08)	0.76 (0.08)	28.74	21.85	

Notes: The means are averages of 3 replicates. Numbers in parenthesis are standard deviations.

Hygroscopic property: Long pellet

Hygroscopic property: Long pellet

Hygroscopic property: Short pellet

Hygroscopic property: Short pellet

Calorific value

Figure 1. Calorific values of jabon pellets

Conclusions

- The initial moisture content of the long and short pellets of 12.76% and 12.47% decreased up to 2.85% and 2.61% after torrefaction.
- The raw pellets fully disintegrated after 30 min, while black pellets showed no significant disintegration even after 24 h test which is an advantage for long period storage of pellets.
- The initial calorific values of long and short pellets of 17.69 MJ/kg and 17.35 MJ/kg increased up to 31.79 MJ/kg and 32.02 MJ/kg after torrefaction.
- The results proposed that rapid torrefaction using COMB could provide a great improvement in bioenergetic properties of wood pellets from fast growing species as jabon wood.

Thank you for your attention!

Hidayat *et al.* : Torrefaction of Wood Pellets using Counter Flow Multi-Baffle (COMB) Technology

