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Physical and Chemical Properties of Kapok (Ceiba pentandra) 
and Balsa (Ochroma pyramidale) Fibers1

Renny Purnawati2Fauzi Febrianto 2,†I Nyoman J Wistara2Siti Nikmatin3
Wahyu Hidayat4Seung Hwan Lee5Nam Hun Kim 5,†

ABSTRACT1)

Natural fibers derived from lignocellulosic materials are considered to be more environment-friendly than 
petroleum-based synthetic fibers. Several natural fibers, such as seedpod fibers, have a potential for development, including 
kapok and balsa fibers. The characteristics of both fibers were evaluated to determine their suitability for specific valuable 
applications. The purpose of this study was to analyze some important fundamental properties of kapok and balsa fibers, 
including their dimensions, morphology, chemical components, and wettability. The results showed that the average 
fiber lengths for kapok and balsa were 1.63 and 1.30 cm, respectively. Kapok and balsa fibers had thin cell walls 
and large lumens filled with air. The kapok fiber was composed of 38.09% α-cellulose, 14.09% lignin, and 2.34% 
wax content, whereas the balsa fiber was composed 44.62% α-cellulose, 16.60% lignin, and 2.29% wax content. The 
characteristics of kapok and balsa fibers were examined by X-ray diffraction, Fourier-transform infrared spectroscopy 
and differential scanning calorimetry analyses. The contact angle of the distilled water on kapok and balsa fibers was 
more than 90°, indicating that both fibers are hydrophobic with low wettability properties because of to the presence 
of wax on the fiber surface.

Keywords: balsa fiber, chemical compounds, fiber dimension, kapok fiber, morphology, relative crystallinity, 
wettability

1. INTRODUCTION

Indonesia has a large amount of natural 
lignocellulosic fibers with potential use in a variety 
of industrial products based on available technology. 

Despite some technological advancement, specific 
characteristics of the materials have become an 
important factor in developing new fiber-based 
products. Several natural fibers with the potential to 
be developed are fibers from the fruit of kapok (Ceiba 

1 Date Received May 17, 2018, Date Accepted July 9, 2018
2 Department of Forest Products, Faculty of Forestry, Bogor Agricultural University, Indonesia
3 Department of Physics, Faculty of Mathematics and Natural Science, Bogor Agricultural University, Indonesia
4 Department of Forestry, Faculty of Agriculture, Lampung University, Indonesia
5 Department of Forest Biomaterials Engineering, College of Forest and Environmental Science, Kangwon National University, 

Republic of Korea
† Corresponding author: Fauzi Febrianto (e-mail: febrianto76@yahoo.com, ORCID: 0000-0002-0964-2179)
† Corresponding author: Nam Hun Kim (e-mail: kimnh@kangwon.ac.kr, ORCID: 0000-0002-4416-0554)



Renny PurnawatiFauzi FebriantoI Nyoman J WistaraSiti NikmatinWahyu Hidayat
Seung Hwan LeeNam Hun Kim

- 394 -

pentandra) and balsa (Ochroma pyramidale); however, 
these fibers, especially balsa fibers, have not been 
thoroughly studied until now.

Indonesia is one of the world's biggest kapok 
exporters. Around 52,800 tons of kapok were produced 
from 143.7 ha of community plantations in Java (BPS, 
2015). Meanwhile, balsa wood is one of the fast-growing 
species in Indonesian plantation forests, and the fibers 
from its fruits could add to the product value.

Balsa and kapok fibers have similar physical 
properties. Kapok trees are widely distributed in tropical 
areas. They are 60-70 m tall, their trunks expand to 
3 m in diameter, and they have palm-shaped leaves. 
An adult kapok tree produces hundreds of seedpods 
with black seeds and yellow fibers. The extracted fibers 
are smooth and light; they are used in manufacturing 
pillows, life preservers, sleeping bags, and insulation. 
Moreover, kapok has also been investigated as an 
absorbent material for oil and acoustic insulation (Likon 
et al., 2013; Wang et al., 2012; Rengasamy et al., 2011; 
Veerakumar and Selvakumar, 2010).

Balsa trees are fast-growing evergreen trees that can 
reach up to 30 m in height and 1.8 m in diameter 
at breast height. They typically have buttress roots. They 
have a reputation as the lightest commercial wood for 
various purposes. The silky fibers of its fruit can be 
used as a material for pillows, mattresses, and cushions. 
Nevertheless, there are no detailed studies previously 
reported on the basic properties of balsa fiber.

Kapok and balsa fibers as natural resources can 
potentially be developed for several applications 
(Purnawati et al., 2018). However, the characteristics 
of kapok and balsa fibers must be identified in order 
to determine their suitability for various applications 
and products. The purpose of this study was to analyze 
some important properties of kapok and balsa fibers, 
including their morphology, chemical composition, 
relative crystallinity, thermal properties, and wettability.

 

2. MATERIALS and METHODS

2.1. Materials

Kapok and balsa seedpods were obtained from the 
plant collection of Bogor Agricultural University, 
Dramaga, West Java (Fig. 1).

 

Fig. 1. Trees of kapok (a) and balsa (b) with their
seedpods.

 
Kapok and balsa fibers were removed from their pods, 

separated from their seeds, and dried at room 
temperature (25 °C). The fibers were then ground to 
40-60 mesh size for the purpose of chemical component 
analysis.

 

2.2. Methods

2.2.1. Microscopy

Kapok and balsa fibers were successively rinsed with 
10%, 30%, and 50% aqueous ethanol. Then, the fibers 
were stained with 1% safranine solution for 24 h. 
Finally, they were rinsed with 50% ethanol to remove 
the excess dye. Fiber morphology was observed by 
digital photomicroscopy (Carton CB-10, Thailand) 
using a 5 MP USB eyepiece camera. Fiber dimensions 
(length, diameter, and cell wall thickness) were analyzed 
by FIJI ImageJ 1.51p software for Windows.

Fiber morphology was also analyzed using scanning 
electron microscopy (SEM; JEOL-JSM-6510) at an 
accelerating voltage of 10 kV. Samples were placed 
on a carbon tape attached to a 1-cm-diameter holder 
and coated with osmium.
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2.2.2. X-ray diffraction analysis

The relative crystallinity index (CrI) of the materials 
was tested using an X-ray diffractometer (XRD, 
Shimadzu XRD-7000 MaximaX series). A Ni-filtered 
CuKα X-ray operating at 40 kV and 30 mA was used 
to analyze the cellulose crystalline properties for both 
fibers. Relative crystallinity was calculated by the 
following formula (Segal et al., 1959):

 
        CrI = [(I200 � Iam/I200)] × 100, ·············· (1)

 
where I200 is the maximum intensity of the lattice 
diffraction of cellulose type I and Iam is the intensity 
diffraction of the amorphous cellulose.

The size of the crystals (т) was calculated using 
the Scherrer equation (Smilgies, 2009) as follows:

 

                Č ŀŦƗ ĕġĥƝ

ăƠ
·························· (2)

 
where т is the mean size of the ordered (crystalline) 
domains, K is the shape factor (approximately 0.9), 
λ is the X-ray wavelength, β is the line full-width 
at half-maximal intensity, and θ is the Bragg angle.

 
2.2.3. Wettability

The sessile-drop method was chosen for contact angle 
measurement, and the dynamic contact angle was 
determined using a Phoenix 300 Contact Angle 
Analyzer (Surface Electro Optics, Korea) (Suryadi, 
2017). Demineralized water and methanol were used 
as the polar liquids, and hexane was used as the 
non-polar liquid. The three-probe liquids were placed 
on the surface of the fiber. Each droplet was 5 μL 
in volume, and a total of three droplets were analyzed 
for each liquid. The contact angle measurement was 
performed by capturing a droplet image using 
Surfaceware 8 software and a camera-based contact 
angle analysis system. The process of capturing the 
image was continuously conducted at the beginning 

of the test, after 5 min, and after 10 min. The angles 
were measured on both sides of the droplet. All tests 
were carried out at room temperature (25 °C).

 
2.2.4. Differential scanning calorimetry analysis

Kapok and balsa fibers were tested by differential 
scanning calorimetry (DSC) to measure the thermal 
transition of the fibers. A fiber sample of approximately 
10 mg was placed in a small aluminum crucible and 
subjected to a temperature program; Shimadzu DSC-60 
was operated in a dynamic mode in the temperature 
range of 30 °C to 500 °C and a heating rate of 10 
°C/min in a nitrogen environment purged at 25 mL/min.

 
2.2.5. Chemical analysis

The chemical compositions, including extractives, 
ash, and lignin content, of kapok and balsa fibers were 
determined in accordance with the TAPPI standards 
(TAPPI T204 om-88, 1988; TAPPI T211 om-02, 2002; 
and TAPPI T222 om-88, 1988). The holocellulose (α
-cellulose + hemicellulose) content was estimated by 
the acid chloride method, and the α-cellulose content 
was determined by treating the holocellulose with a 
sodium hydroxide solution (Browning, 1967). Wax 
content was determined in accordance with the AATCC 
Test Method 97 (American Association of Textile 
Chemists and Colorists, 2012).

The functional groups in kapok and balsa fibers were 
determined using Fourier-transform infrared (FTIR) 
spectroscopy (MB3000 ABB). Approximately 2 mg of 
fiber was mashed, mixed with 200 mg KBr, and then 
pressed into 1-mm-thick disks. The spectra were 
recorded in the range of 4000�450 cm-1. 

3. RESULTS and DISCUSSION

3.1. Fiber morphology

Examination by SEM showed that kapok and balsa 
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fibers had a hollow structure with a thin fiber wall 
and a large lumen filled with air (Fig. 2b and Fig. 
2d). Single-cell seed fibers such as kapok, balsa, and 
cotton are different from other natural fibers such as 
wood, hemp, jute etc. Unicellular cellulosic fibers are 
typically oval- or cylindrical, are long with pointed ends, 
and have thin cell walls with large lumens, which led 
to low fiber densities for both kapok and balsa.

Meiwu et al. (2010) and Mwaikambo (2006) stated 
that kapok was the lightest fiber in the world. The 
apparent specific gravity of the Indian kapok fiber was 
approximately 0.0554, whereas that of Japanese kapok 
was approximately 0.0388. Moreover, kapok fiber was 
six times lighter than cotton (Mwaikambo, 2006). 
Meanwhile, cotton fiber had a density of 0.29 g/cm3 
according to a study conducted by Meiwu et al. (2010). 

Balsa fiber had a light brown color, whereas kapok 
had a yellowish white color. Both fibers were luminous 
because of the wax content of the fiber surface, showing 
similarity to the silk fibers. Both fibers were about two 
times longer than non-timber lignocellulosic fibers, such 
as pineapple, corn, coconut, bagasse, banana, hay, and 
sorghum (Reddy and Yang, 2005). However, the kapok 
and balsa fiber lengths were shorter than those of cotton, 
hemp, and flax (Mwaikambo, 2006).

Parameters such as fiber length, diameter, and cell 
wall thickness of kapok and balsa are shown in Table 
1. The length of the kapok fiber ranged from 13.79 
to 18.84 mm, whereas that of balsa ranged from 10.36 
to 15.70 mm. Kapok fibers were longer than balsa fibers, 
but their diameter and cell wall thickness were less 
than those of balsa fibers. Kapok fibers had an 
exceptional liquid-retention capability considering their 
large lumens. Their excellent thermal and acoustic 
insulating properties, high buoyancy, and good 
absorbency for oil and other non-polar liquids 
distinguish kapok from most other cellulosic fibers 
(Wang et al., 2012; Lim and Huang, 2007; Zheng et 
al., 2015). Balsa fibers may have similar properties 
because of their similar morphology.

Fig. 2. SEM images of the kapok fiber (a and b) and
balsa fiber (c and d).

Dimension Kapok Balsa

Length (mm) 16.32 ± 2.54 13.01 ± 2.69

Width (µm) 17.59 ± 3.72 19.25 ± 2.69

Cell wall thickness 
(µm) 1.34 ± 0.77 2.40 ± 0.97

Table 1. Dimensions of kapok and balsa fibers

 

3.2. X-ray diffraction analysis

Fig. 3 shows X-ray diffractograms that display peaks 
of 2θ= 22.15° in kapok fibers and 22.31° in balsa 
fibers, which are characteristic of cellulose type I 
crystals. The crystallinity index (CrI) of the kapok fiber 
was 35.65%, and that of balsa fiber was 31.40%. 
According to Poletto et al. (2014), the CrI for both 
fiber types was similar to the values for jute (34.3%), 
kenaf (34.9%), and ramie (34.8%).

 

Fig. 3. X-ray diffractograms of kapok (black) and 
balsa (gray) fibers.
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Fiber type Time (min)
Contact angle (°)

Water Methanol Hexane

Kapok 0 120.74 ± 1.45 12.33 ± 0.30 12.67 ± 0.35

 5 117.24 ± 0.32 0 0

 10 113.12 ± 0.20 0 0

Balsa 0 109.98 ± 1.51 11.81 ± 0.08 11.88 ± 0.04

 5 104.46 ± 1.58 0 0

 10 102.82 ± 0.13 0 0

Table 3. Contact angles of liquids tested on the fiber surface

(a) (a)

(b) (b)

(c) (c)

Kapok Balsa

Fig. 4. Contact angle for kapok and balsa fibers with
three test liquids: (a) water, (b) methanol, and (c) 
hexane.

Variable Kapok Balsa

Relative crystallinity (%) 35.65 31.40

Crystallite width (nm) 4.70 3.70

Table 2. Crystalline characteristics of kapok and balsa
fibers

Table 2 presents the crystallinity index (%) and the 
crystallite width for kapok and balsa fibers. The crystal 
widths of both fibers were larger than those of kenaf 
(Lee et al., 2008) and wood cellulose (Eun et al., 2008). 

 

3.3. Wettability

The contact angles for the three types of liquid tested 
(water, methanol, and hexane) on kapok and balsa fibers 
after 0, 5, and 10 min following the droplet deposition 
are presented in Table 3.

The study of wettability uses contact angle measure-
ments which simulate the degree of wetting during the 
interaction between solids and liquids. A small contact 
angle (<90°) refers to high wettability, whereas a large 
contact angle (>90°) refers to a low wettability.

Table 3 shows that the contact angle of water with 
kapok fiber was higher than that with balsa fiber. This 
phenomenon indicated a lower wettability for kapok 
fiber than that for balsa fiber. The larger the contact 
angle, the longer the liquid would stay above the fiber 
surface (i.e., low wettability). The other two test liquids, 
methanol and hexane, formed very small contact angles 

(Fig. 4) and exhibited much lower surface energies than 
water.

Contact angle is the angle between the fiber surface 
and the tangent to the drop profile at the drop edge 
(Njobuenwu et al., 2007). A large contact angle with 
water illustrates a hydrophobic and non-polar fiber 
surface. Hydrophobic properties are associated with the 
wax content of the fiber surface. Schellbach et al. (2015) 
stated that the wetting characterization of natural fibers 
through contact angle measurement aims to predict the 
compatibility and interaction between fiber and 
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Fig. 5. DSC curves of kapok (red) and balsa (green).

Chemical 
component (%) Kapok Balsa

Moisture content 11.23 ± 0.08 11.45 ± 0.16

Solubility
a. Cold water
b. Hot water
c. NaOH 1%

 
2.70 ± 0.38
4.42 ± 0.12

30.20 ± 0.72

 
3.21 ± 0.07
6.04 ± 2.42

26.02 ± 0.92

Holocellulose 83.73 ± 0.49 81.97 ± 0.63

α-cellulose 38.09 ± 0.61 44.62 ± 1.05

Lignin 14.10 ± 0.84 16.60 ± 0.49

Ash 1.05 ± 0.04 0.94 ± 0.03

Silica 0.45 ± 0.03 0.49 ± 0.13

Wax content 2.34 ± 0.06 2.29 ± 0.11

Table 4. Chemical components of kapok and balsa 
fibers

polymers that have various surface energies.
 

3.4. Analysis of thermal properties

The DSC technique can be used to determine a drop 
in crystallinity and decomposition of plant fiber 
cellulose (Mwaikambo and Ansell 2002). There are 
three types of weight/mass loss during thermal 
degradation: water removal (drying), organic matter 
release (devolatilization), and bonded-carbon oxidation 
(slow combustion). From the DSC results, kapok and 
balsa fibers were shown to follow a similar fiber 
degradation process (Fig. 5). 

The first peak is endothermic, and it indicated water 
desorption, as seen in the temperature range of 29.9 
°C � 65.1 °C for kapok fiber and 29.9 °C � 57.0 °C 
for balsa fiber. The second and third peaks are 
exothermic, and they occurred at 322.8 °C and 444.1 
°C for kapok fiber and at 333.2 °C and 434.7 °C for 
balsa fiber. The second peak was expected to represent 
the degradation of the hemicellulose, as well as the 
amorphous part of cellulose. According to Jin et al. 
(2010), hemicellulosic depolymerization might occur 
at a temperature of 180 °C � 340 °C, and breakage of 
the cellulosic glycosidic bond might occur at 275 °C
� 350 °C (Poletto et al., 2012). 

The third peak expressed the final decomposition 

of cellulose, as well as lignin degradation. Gaan et al. 
(2009) identified three stages of cellulose thermal 
decomposition. The first stage occurred at a temperature 
of 100 °C and represented the release of water. The 
second stage, at a temperature of 360 °C, was a rapid 
dehydration and decarboxylation reaction that produced 
combustible gases such as aldehydes, ketones, and 
ethers. The third stage, at 400 °C, was classified as 
the second stage of decomposition and charcoal 
formation. Lignin degradation occurred at a temperature 
of 250 °C � 500 °C because of its high stability, which 
made it difficult to decompose (Poletto et al., 2012).

 

3.5. Chemical components

The solubility of balsa fiber in hot and cold water 
was higher than that of kapok fiber, and its content 
of α-cellulose, lignin, and silica was also higher than 
that of kapok fiber (Table 4). In contrast, the solubility 
in 1% NaOH and the content of ash and wax were 
higher for balsa than for kapok. Compared with cotton 
fiber, kapok fiber had a lower cellulose content and 
a higher lignin content (Mani et al., 2012). Cotton 
contained a significant amount of cellulose, ranging 
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Fig. 6. FTIR spectra of kapok (red) and balsa (blue) fibers.

from 82% to 96%, with a lignin content of 0% � 5% 
(Mwaikambo, 2006). 

Previous studies on the chemical components of 
kapok stated that its fiber contained a large amount 
of organic lignin at 15% � 22%, 35% � 50% of 
cellulose, 22% � 45% of hemicellulose, and 2% � 3% 
of wax. It also contained small amounts of starch, 
approximately 2.1% of protein, and some inorganic 
substances, notably iron content of 1.3% � 2.5% (Smole 
et al., 2013). Considering the content of α-cellulose, 
kapok was more similar to wood than flax and other 
plant fibers (Fengel, 1986).

 

3.6. Functional group characterization 

The FTIR spectra of kapok and balsa fibers are shown 
in Fig. 6. There were similar absorption bands for both 
fibers. An -OH functional group appeared at a 
wavenumber of 3356 cm-1 for kapok fiber and at 3425 
cm-1 for balsa fiber, and C-H stretching was found at 
a wavenumber of 2916 cm-1 for kapok fiber and at 
2908 cm-1 for balsa fiber. Both functional groups of 
-OH and C-H at these wavenumbers indicated the 
presence of cellulose, hemicellulose, and lignin (Moran 
et al. 2008). Meanwhile, the carbonyl group (C=O) 

found at 1736 cm-1 indicated the presence of 
hemicellulose (Chandrabakty, 2014).

The absorption peak at 1250 cm-1 for both fibers 
was associated with stretching of the aryl-alkyl ether 
group in lignin (Nazir et al., 2013). Meanwhile, the 
characteristic band located at 1034 cm-1 for balsa fiber 
and 1049 cm-1 for kapok fiber indicated the vibration 
of C-O-C or C-O in cellulose (Solikhin et al., 2016).

 

4. CONCLUSION 

Kapok and balsa fibers had hollow structures with 
thin fiber walls and large lumen; therefore, they could 
potentially be developed as absorbent and insulating 
materials. There were similarities in terms of structure 
and properties between kapok and balsa fibers derived 
from seedpods. Kapok and balsa fibers were 
significantly hydrophobic because of the wax content 
found on the surfaces of both fibers. The chemical 
compositions of natural fibers, represented by the 
percentage of cellulose, hemicellulose, lignin, and wax, 
also contributed largely to the characteristics of the 
products. The main chemical components of kapok and 
balsa were cellulose, hemicellulose, and lignin as 
supported by FTIR, XRD, and DSC analyses. 
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