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The locating chromatic number of a graph 𝐺 is defined as the cardinality of a minimum resolving partition of the vertex set 𝑉(𝐺)
such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in 𝐺 are not contained
in the same partition class. In this case, the coordinate of a vertex V in 𝐺 is expressed in terms of the distances of V to all partition
classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic
number for two families of barbell graphs.

1. Introduction

The partition dimension was introduced by Chartrand et al.
[1] as the development of the concept of metric dimension.
The application of metric dimension plays a role in robotic
navigation [2], the optimization of threat detecting sensors
[3], and chemical data classification [4]. The concept of
locating chromatic number is a marriage between the parti-
tion dimension and coloring of a graph, first introduced by
Chartrand et al in 2002 [5]. The locating chromatic number
of a graph is a newly interesting topic to study because there
is no general theorem for determining the locating chromatic
number of any graph.

Let 𝐺 = (𝑉, 𝐸) be a connected graph. We define the
distance as theminimum length of path connecting vertices 𝑢
and V in𝐺, denoted by 𝑑(𝑢, V). A 𝑘-coloring of𝐺 is a function
𝑐 : 𝑉(𝐺) 󳨀→ {1, 2, . . . , 𝑘}, where 𝑐(𝑢) ̸= 𝑐(V) for any two
adjacent vertices 𝑢 and V in 𝐺. Thus, the coloring 𝑐 induces
a partition Π of 𝑉(𝐺) into 𝑘 color classes (independent sets)
𝐶1, 𝐶2, . . . , 𝐶𝑘, where 𝐶𝑖 is the set of all vertices colored by
the color 𝑖 for 1 ≤ 𝑖 ≤ 𝑘. The color code 𝑐Π(V) of a vertex V in
𝐺 is defined as the 𝑘-vector (𝑑(V, 𝐶1), 𝑑(V, 𝐶2), . . . , 𝑑(V, 𝐶𝑘)),
where 𝑑(V, 𝐶𝑖) = min{𝑑(V, 𝑥) : 𝑥 ∈ 𝐶𝑖} for 1 ≤ 𝑖 ≤ 𝑘. The
𝑘-coloring 𝑐 of 𝐺 such that all vertices have different color
codes is called a locating coloring of 𝐺. The locating chromatic

number of 𝐺, denoted by 𝜒𝐿(𝐺), is the minimum 𝑘 such that
𝐺 has a locating coloring.

The following theorem is a basic theorem proved by
Chartrand et al. [5]. The neighborhood of vertex 𝑢 in a
connected graph 𝐺, denoted by 𝑁(𝑢), is the set of vertices
adjacent to 𝑢.

Theorem 1 (see [5]). Let 𝑐 be a locating coloring in a connected
graph 𝐺. If 𝑢 and V are distinct vertices of 𝐺 such that 𝑑(𝑢, 𝑡) =
𝑑(V, 𝑡) for all 𝑡 ∈ 𝑉(𝐺)−{𝑢, V}, then 𝑐(𝑢) ̸= 𝑐(V). In particular, if
𝑢 and V are non-adjacent vertices of 𝐺 such that𝑁(𝑢) = 𝑁(V),
then 𝑐(𝑢) ̸= 𝑐(V).

The following corollary gives the lower bound of the
locating chromatic number for every connected graph 𝐺.

Corollary 2 (see [5]). If 𝐺 is a connected graph and there is a
vertex adjacent to 𝑘 leaves, then 𝜒𝐿(𝐺) ≥ 𝑘 + 1.

There are some interesting results related to the determi-
nation of the locating chromatic number of some graphs.The
results are obtained by focusing on certain families of graphs.
Chartrand et al. in [5] have determined all graphs of order
𝑛 with locating chromatic number 𝑛, namely, a complete
multipartite graph of 𝑛 vertices. Moreover, Chartrand et
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al. [6] have succeeded in constructing tree on 𝑛 vertices,
𝑛 ≥ 5, with locating chromatic numbers varying from 3
to 𝑛, except for (𝑛 − 1). Then Behtoei and Omoomi [7]
have obtained the locating chromatic number of the Kneser
graphs. Recently, Asmiati et al. [8] obtained the locating
chromatic number of the generalized Petersen graph 𝑃(𝑛, 1)
for 𝑛 ≥ 3. Baskoro and Asmiati [9] have characterized all
trees with locating chromatic number 3. In [10] all trees
of order 𝑛 with locating chromatic number 𝑛 − 1 were
characterized, for any integers 𝑛 and 𝑡, where 𝑛 > 𝑡 + 3
and 2 ≤ 𝑡 < 𝑛/2. Asmiati et al. in [11] have succeeded in
determining the locating chromatic number of homogeneous
amalgamation of stars and their monotonicity properties and
in [12] for firecracker graphs. Next, Wellyyanti et al. [13]
determined the locating chromatic number for complete 𝑛-
ary trees.

The generalized Petersen graph 𝑃(𝑛,𝑚), 𝑛 ≥ 3 and 1 ≤
𝑚 ≤ ⌊(𝑛 − 1)/2⌋, consists of an outer 𝑛-cycle 𝑦1, 𝑦2, . . . , 𝑦𝑛,
a set of 𝑛 spokes 𝑦𝑖𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, and 𝑛 edges 𝑥𝑖𝑥𝑖+𝑚,
1 ≤ 𝑖 ≤ 𝑛, with indices taken modulo 𝑛. The generalized
Petersen graphwas introduced byWatkins in [14]. Let us note
that the generalized Petersen graph 𝑃(𝑛, 1) is a prism defined
as Cartesian product of a cycle 𝐶𝑛 and a path 𝑃2.

Next theorems give the locating chromatic numbers for
complete graph 𝐾𝑛 and generalized Petersen graph 𝑃(𝑛, 1).

Theorem3 (see [6]). For 𝑛 ≥ 2, the locating chromatic number
of complete graph 𝐾𝑛 is 𝑛.

Theorem 4 (see [8]). The locating chromatic number of
generalized Petersen graph 𝑃(𝑛, 1) is 4 for odd 𝑛 ≥ 3 or 5 for
even 𝑛 ≥ 4.

The barbell graph is constructed by connecting two
arbitrary connected graphs𝐺 and𝐻 by a bridge. In this paper,
firstly we discuss the locating chromatic number for barbell
graph 𝐵𝑚,𝑛 for 𝑚, 𝑛 ≥ 3, where 𝐺 and 𝐻 are complete graphs
on𝑚 and 𝑛 vertices, respectively. Secondly, we determine the
locating chromatic number of barbell graph 𝐵𝑃(𝑛,1) for 𝑛 ≥ 3,
where 𝐺 and𝐻 are two isomorphic copies of the generalized
Petersen graph 𝑃(𝑛, 1).

2. Results and Discussion

Next theoremproves the exact value of the locating chromatic
number for barbell graph 𝐵𝑛,𝑛.

Theorem 5. Let 𝐵𝑛,𝑛 be a barbell graph for 𝑛 ≥ 3. Then the
locating chromatic number of 𝐵𝑛,𝑛 is 𝜒𝐿(𝐵𝑛,𝑛) = 𝑛 + 1.

Proof. Let 𝐵𝑛,𝑛, 𝑛 ≥ 3, be the barbell graph with the vertex
set 𝑉(𝐵𝑛,𝑛) = {𝑢𝑖, V𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set 𝐸(𝐵𝑛,𝑛)
= ⋃𝑛−1𝑖=1 {𝑢𝑖𝑢𝑖+𝑗 : 1 ≤ 𝑗 ≤ 𝑛 − 𝑖} ∪ ⋃𝑛−1𝑖=1 {V𝑖V𝑖+𝑗 : 1 ≤ 𝑗 ≤
𝑛 − 𝑖} ∪ {𝑢𝑛V𝑛}.

First, we determine the lower bound of the locating
chromatic number for barbell graph 𝐵𝑛,𝑛 for 𝑛 ≥ 3. Since
the barbell graph 𝐵𝑛,𝑛 contains two isomorphic copies of a
complete graph 𝐾𝑛, then with respect to Theorem 3 we have
𝜒𝐿(𝐵𝑛,𝑛) ≥ 𝑛. Next, suppose that 𝑐 is a locating coloring

using 𝑛 colors. It is easy to see that the barbell graph 𝐵𝑛,𝑛
contains two vertices with the same color codes, which is a
contradiction. Thus, we have that 𝜒𝐿(𝐵𝑛,𝑛) ≥ 𝑛 + 1.

To show that 𝑛 + 1 is an upper bound for the locating
chromatic number of barbell graph 𝐵𝑛,𝑛 it suffices to prove
the existence of an optimal locating coloring 𝑐 : 𝑉(𝐵𝑛,𝑛) 󳨀→
{1, 2, . . . , 𝑛 + 1}. For 𝑛 ≥ 3 we construct the function 𝑐 in the
following way:

𝑐 (𝑢𝑖) = 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑐 (V𝑖) =
{{{{
{{{{
{

𝑛, for 𝑖 = 1

𝑖, for 2 ≤ 𝑖 ≤ 𝑛 − 1

𝑛 + 1, otherwise.

(1)

By using the coloring 𝑐, we obtain the color codes of 𝑉(𝐵𝑛,𝑛)
as follows:

𝑐Π (𝑢𝑖)

=
{{{{
{{{{
{

0, for 𝑖𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛

2, for (𝑛 + 1)𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛 − 1

1, otherwise,

𝑐Π (V𝑖) =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

0, for 𝑖𝑡ℎ component, 2 ≤ 𝑖 ≤ 𝑛 − 1

for 𝑛𝑡ℎ component, 𝑖 = 1, and

for (𝑛 + 1)𝑡ℎ component, 𝑖 = 𝑛,

3, for 1𝑠𝑡 component, 1 ≤ 𝑖 ≤ 𝑛 − 1

2, for 1𝑠𝑡 component, 𝑖 = 𝑛

1, otherwise.

(2)

Since all vertices in 𝑉(𝐵𝑛,𝑛) have distinct color codes, then
the coloring 𝑐 is desired locating coloring. Thus, 𝜒𝐿(𝐵𝑛,𝑛) =
𝑛 + 1.

Corollary 6. For 𝑛,𝑚 ≥ 3, and 𝑚 ̸= 𝑛, the locating chromatic
number of barbell graph 𝐵𝑚,𝑛 is

𝜒𝐿 (𝐵𝑚,𝑛) = max {𝑚, 𝑛} . (3)

Next theorem provides the exact value of the locating
chromatic number for barbell graph 𝐵𝑃(𝑛,1).

Theorem 7. Let 𝐵𝑃(𝑛,1) be a barbell graph for 𝑛 ≥ 3. Then the
locating chromatic number of 𝐵𝑃(𝑛,1) is
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𝜒𝐿 (𝐵𝑃(𝑛,1)) =
{
{
{

4, for odd 𝑛

5, for even 𝑛.
(4)

Proof. Let 𝐵𝑃(𝑛,1), 𝑛 ≥ 3, be the barbell graph with the vertex
set 𝑉(𝐵𝑃(𝑛,1)) = {𝑢𝑖, 𝑢𝑛+𝑖, 𝑤𝑖, 𝑤𝑛+𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set
𝐸(𝐵𝑃(𝑛,1)) = {𝑢𝑖𝑢𝑖+1, 𝑢𝑛+𝑖𝑢𝑛+𝑖+1, 𝑤𝑖𝑤𝑖+1, 𝑤𝑛+𝑖𝑤𝑛+𝑖+1 : 1 ≤ 𝑖 ≤
𝑛− 1} ∪ {𝑢𝑛𝑢1, 𝑢2𝑛𝑢𝑛+1, 𝑤𝑛𝑤1, 𝑤2𝑛𝑤𝑛+1} ∪ {𝑢𝑖𝑢𝑛+𝑖, 𝑤𝑖𝑤𝑛+𝑖 : 1 ≤
𝑖 ≤ 𝑛} ∪ {𝑢𝑛𝑤𝑛}.

Let us distinguish two cases.

Case 1 (𝑛 odd). According to Theorem 4 for 𝑛 odd we have
𝜒𝐿(𝐵𝑃(𝑛,1)) ≥ 4. To show that 4 is an upper bound for the
locating chromatic number of the barbell graph 𝐵𝑃(𝑛,1) we
describe an locating coloring 𝑐 using 4 colors as follows:

𝑐 (𝑢𝑖) =
{{{{
{{{{
{

1, for 𝑖 = 1

3, for even 𝑖, 𝑖 ≥ 2

4, for odd 𝑖, 𝑖 ≥ 3.

𝑐 (𝑢𝑛+𝑖) =
{{{{
{{{{
{

2, for 𝑖 = 1

3, for odd 𝑖, 𝑖 ≥ 3

4, for even 𝑖, 𝑖 ≥ 2.

𝑐 (𝑤𝑖) =
{{{{
{{{{
{

1, for odd 𝑖, 𝑖 ≤ 𝑛 − 2

2, for even 𝑖, 𝑖 ≤ 𝑛 − 1

3, for 𝑖 = 𝑛.

𝑐 (𝑤𝑛+𝑖) =
{{{{
{{{{
{

1, for even 𝑖, 𝑖 ≤ 𝑛 − 1

2, for odd 𝑖, 𝑖 ≤ 𝑛 − 2

4, for 𝑖 = 𝑛.

(5)

For 𝑛 odd the color codes of 𝑉(𝐵𝑃(𝑛,1)) are

𝑐Π (𝑢𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛 + 1
2

𝑖 − 1, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, 𝑖 > 𝑛 + 1
2

𝑛 − 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1
2

0, for 3𝑡ℎ component, 𝑖 even, 𝑖 ≥ 2

for 4𝑡ℎ component, 𝑖 odd, 𝑖 ≥ 3

1, otherwise.

𝑐Π (𝑢𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛 + 1
2

𝑖 − 1, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1
2

𝑛 − 𝑖 + 2, for 1𝑠𝑡 component, 𝑖 > 𝑛 + 1
2

0, for 4𝑡ℎ component, 𝑖 even, 𝑖 ≥ 2

for 3𝑡ℎ component, 𝑖 odd, 𝑖 ≥ 3

1, otherwise.

𝑐Π (𝑤𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 3𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑛 − 𝑖, for 3𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

0, for 2𝑛𝑑 component, 𝑖 even, 𝑖 ≤ 𝑛 − 1

for 1𝑠𝑡 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2

1, otherwise.

𝑐Π (𝑤𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

𝑖, for 4𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑖 + 1, for 3𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑛 − 𝑖, for 4𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 3𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

0, for 1𝑠𝑡 component, 𝑖 even, 𝑖 ≤ 𝑛 − 1

for 2𝑛𝑑 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2

1, otherwise.
(6)

Since all vertices in 𝐵𝑃(𝑛,1) have distinct color codes, then the
coloring 𝑐 with 4 colors is an optimal locating coloring and it
proves that 𝜒𝐿(𝐵𝑃(𝑛,1)) ≤ 4.

Case 2 (𝑛 even). In view of the lower bound fromTheorem 7
it suffices to prove the existence of a locating coloring 𝑐 :
𝑉(𝐵𝑃(𝑛,1)) 󳨀→ {1, 2, . . . , 5} such that all vertices in 𝐵𝑃(𝑛,1)
have distinct color codes. For 𝑛 even, 𝑛 ≥ 4, we describe the
locating coloring in the following way:

𝑐 (𝑢𝑖) =

{{{{{{{
{{{{{{{
{

1, for 𝑖 = 1

3, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 2

4, for odd 𝑖, 3 ≤ 𝑖 ≤ 𝑛 − 1

5, for 𝑖 = 𝑛.
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𝑐 (𝑢𝑛+𝑖) =
{{{{
{{{{
{

2, for 𝑖 = 1

3, for odd 𝑖, 𝑖 ≥ 3

4, for even 𝑖, 𝑖 ≥ 2.

𝑐 (𝑤𝑖) =

{{{{{{{
{{{{{{{
{

1, for odd 𝑖, 𝑖 ≤ 𝑛 − 3

2, for even 𝑖, 𝑖 ≤ 𝑛 − 2

3, for 𝑖 = 𝑛 − 1

4, for 𝑖 = 𝑛.

𝑐 (𝑤𝑛+𝑖) =
{{{{
{{{{
{

1, for even 𝑖, 𝑖 ≤ 𝑛 − 2

2, for odd 𝑖, 𝑖 ≤ 𝑛 − 1

5, for 𝑖 = 𝑛.
(7)

In fact, our locating coloring of 𝐵𝑃(𝑛,1), 𝑛 even, has been
chosen in such a way that the color codes are

𝑐Π (𝑢𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 2𝑛𝑑 and 5𝑡ℎ components, 𝑖 ≤ 𝑛
2

𝑖 − 1, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛
2

𝑛 − 𝑖, for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛
2

0, for 3𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 2

for 4𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1

2, for 4𝑡ℎ component, 𝑖 = 1

for 3𝑡ℎ component, 𝑖 = 𝑛

1, otherwise.

𝑐Π (𝑢𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛
2

𝑖 − 1, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛
2

𝑛 + 𝑖, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑛 − 𝑖 + 1, for 2𝑛𝑑 and 5𝑡ℎ components, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 2, for 1𝑡ℎ component, 𝑖 > 𝑛
2

0, for 3𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1

for 4𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛

2, for 3𝑡ℎ component, 𝑖 = 1

1, otherwise.

𝑐Π (𝑤𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 4𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 1, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

for 3𝑡ℎ component, 𝑖 ≤ 𝑛
2 − 1

𝑛 − 𝑖, for 4𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 − 1, for 3𝑡ℎ component, 𝑛
2 ≤ 𝑖 ≤ 𝑛 − 1

0, for 1𝑠𝑡 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 3

for 2𝑛𝑑 component, 𝑖 even, 𝑖 ≤ 𝑛 − 2

2, for 1𝑠𝑡 component, 𝑖 = 𝑛 − 1

for 2𝑛𝑑 component, 𝑖 = 𝑛

1, otherwise.

𝑐Π (𝑤𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 2 for 3𝑡ℎ component, 𝑖 ≤ 𝑛
2 − 1

𝑛 − 𝑖, for 3𝑡ℎ component, 𝑛
2 ≤ 𝑖 ≤ 𝑛 − 1

for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 > 𝑛
2

0, for 1𝑠𝑡 component, 𝑖 even, 𝑖 ≤ 𝑛 − 2

for 2𝑛𝑑 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 1

2, for 1𝑠𝑡 and 3𝑡ℎ components, 𝑖 = 𝑛

1, otherwise.
(8)

Since for 𝑛 even all vertices of 𝐵𝑃(𝑛,1) have distinct color codes
then our locating coloring has the required properties and
𝜒𝐿(𝐵𝑃(𝑛,1)) ≤ 5. This concludes the proof.
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