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Abstract

The aim of this study is to derive the estimates of the parameters
of generalized beta of the second kind (GB2) distribution by using
the maximum likelihood estimation (MLE). Due to the difficulty
in finding the analytical solution by MLE approach, the estimate
is determined numerically by using iteration and Newton-Raphson
methods. The Newton-Raphson method is used to estimate
parameters, to find a confidence interval, to estimate the bias, and to
estimate the variance for some difference sample size configuration
viz. for n= 20, 30, 50,100 and 500. The estimation of the parameters

a, b, p and q attains the values close to the rea vaue of the
parameters. If the size of the sample increases, the confidence interval
becomes narrower and the bias and variance become smaller.
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1. Introduction

Many papers which have discussed the distribution of income used beta
distribution [1]; gamma distribution [2-5]; and Weibull model [6]. The
generalized beta distribution of the second kind (GB2) is a very flexible
four-parameter distribution. It is used a lot to analyze income distribution.
References [7] and [8] suggested the generalized beta of the second kind
(GB2) as a model for the size distribution of income and indicators
of poverty. It captures the characteristics of income distribution including
skewness, peakness in low-middle range, and long right hand tail. This
distribution therefore provides good description of income distribution
[7, 9-11]. GB2 is used in mathematical economic, in insurance company,
health science and in industry. Although a large number of functional forms
have been proposed, the four-parameter generalized beta of the second kind
(GB2) model is now widely acknowledged to give an excellent description
of income distributions, providing the goodness-of-fit with relative
parsimony, while also including many other models as special or limiting
cases [7, 12-15]. [16] addressed issues of time-inconsistency in top-coded
US Current Population Survey earnings data by fitting GB2 distributions
that account for top-coding, and derive a consistent time series of Gini
coefficients from the estimates. In [17], the model of optimization of the
behavior predicts that the earnings distribution has the GB2 shape.

A random variable has a distribution of generalized beta of the second
kind (GB2) with parameter (a, b, p, q) if the probability density function is
of the form:
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Parameter b is a scale parameter, a, p and g are each shape parameter,

f(x) = x>0;a,b, p, q>0. (@)

_TI(pr@ . - N i
B(p, q) = F(p+q is the beta function, and TI'(-) is the gamma

function [7]. The kth moment of the GB2 distribution is E(xk)z
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the distribution depends on ap (lower tail) and aq (upper tail), with larger
values of a reducing the density at both tails, and the relative sizes of pand g

affecting skewness [10, 18].

and exists only if —ap < k < ag. Tail behavior of

The aim of this study is to estimate the parameters of the GB2
distribution by using the maximum likelihood estimation (MLE) method and
then the simulation by using Software R is used to estimate the parameters
for some difference sample size configuration, namely for the sample sizes:
20, 30, 50 100 and 500.

2. The Estimation

The estimation of parameters GB2 by MLE

To estimate the parameter by using the maximum likelihood estimation
(MLE) method, first we define the likelihood function as follows:
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Applying the natural logarithm to equation (2) above, we have
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where B(p, q) = % B(p, g) isthe betafunction and I'(p) isthe

gamma function, then equation (3) can be written as:
n
InL(a, b, p, g|x) =nina+ (ap —1)Zln(xi) —napIlnb-nInT(p)
i=1

+nInC(q) - nInT(p + q)
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Next, we set the first derivatives with respect to the parameters of

interest equal to zero asfollows:

aInL(e) _
0

0.

Thefirst derivative with respect to a is set equal to zero,

dlnL(a b, p.qlx) _,
oa S

+ P In(x) - nﬁlnﬁ—%{(p+ q)ZIn{h_(%ja}
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The first derivative with respect to b is set equal to zero,

dlnL(a b, p,alx) _,
ob -
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Thefirst derivative with respect to p is set equal to zero,

olnL(a b, p, q|x) _
op -
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Since y(p) =

oInT(p+q) _I'(p+4)
a(p+0q) r(p+q)’

y(p+0q)= p >0,

where y(p) isafunction psi (diganma).
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Equation (7) can be written as follows:
~ n I ) ~ I 6 R R R n I 1 X| a ~ 0 8
ay . In(x)-aninb—ny(p) - ny(p+&-» . In +(?j 0.8

Thefirst derivative with respect to g is set equal to zero,

olnL(a, b, p, q[x) _

op 0
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Equations (5), (6), (8) and (9) are very difficult to be solved by
analytical method. Thus, the Newton-Raphson method will be used to
estimate the parameters a, b, p and g. To estimate the parameters a, b, p and
g by using Newton-Raphson method, first we find the gradient vector and the
first derivative vector from the logarithm function with respect to a, b, p and
g and define g(A) asfollows:

[dInL(a, b, p, q|X)]
oa
aInL(a, b, p, q|x)

_dlnL(a b, pqlx) _ ob
g(r) = a “|alnL(a b, p,alx) |

op
aInL(a, b, p, q|x)
I aq |

(10)

The Hessian matrix which was found from the second derivative of the
logarithm function with respect to the parameters a, b, p and g and is defined
as H(L):
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2%In L(a, b, p, q|x)
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The iteration process by using the Newton-Raphson method is:
A=A —[(HQ) ™ g)], wherei =1,23, .... (12)

To find the gradient vector (g(1)), we use the first derivative from
respective parameters. From equations (5), (6), (8) and (9), we find the
Hessian matrix H(X), by using the second derivative of the logarithm

function with respect to the respective parameters.

The second derivative of equation (5) with respectto ais

®InL(a b, p,alx) _,
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The second derivative of equation (5) with respecttobis
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The second derivative of equation (5) with respecttopis
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The second derivative of equation (5) with respect to q is

d%InL(a b, p, q|X) _

0aoq 0

(14)

(15)
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The second derivative of equation (6) with respectto ais
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The second derivative of equation (6) with respecttobis
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The second derivative of equation (6) with respecttopis
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The second derivative of equation (6) with respectto qis
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> L%ja: - 0. 20
e :

The second derivative of equation (8) with respect to ais
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The second derivative of equation (8) with respecttopis

o*InL(a b, p.alx) _

opop 0

ny'(p) - ny'(p+q) =0. (23)
The second derivative of equation (8) with respectto qis

o*InL(a b, p.alx) _

opaq 0

-ny'(p+q) =0. (24)
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The second derivative of equation (9) with respectto ais

ogoa -

_Z” %f—m(%) = 0. (25)
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The second derivative of equation (9) with respecttobis
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The second derivative of equation (9) with respect tois

*InL(a b, p,alx) _,
aqop -

ny'(p +§) = 0. (27)

The second derivative of equation (9) with respecttoqis
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ny'(4) - ny'(p+q) = 0. (28)

3. Simulation Result and Discussion

To find the Hessian matrix, we substitute the result from the second
derivative of logarithm function with respect to the respective parameters
a, b, p and q into equation (11). For the iteration process by Newton-
Raphson method, we use the software R. In this simulation, we use the initial



16 Warsono, Waryoto, Mustofa Usman and Wamiliana

values for the respective parameters as a=2;, b=12 p=15 and
g = 0, 75. In generating the sample, we use the sample sizes for n equals to
20, 30, 50, 100 and 500 and the number of iterations 100 for respective
sample sizes. From the simulation, we calculate the mean, bias, variances
and confidence interval (CI) for respective sample sizes n = 20, 30, 50, 100
and 500.

Table 1. Estimation value, confidence interval (Cl), bias, and variances of
generalized beta Il (GB2) for the parameters a=2;, b=12;, p=15 and

g = 0.75, sample sizes n = 20, 30, 50, 100 and 500

Samplesize | Parameters a=2 b=12 p=15 gq=0.75
Estimation 2.02889 1.23003 15.02581 0.76278
. Cl [2.01148; 2.04630] | [1.21727; 1.24279] | [14.99674; 15.05488] | [0.74040; 0.78516]
Bias 0.02889 0.03003 0.02581 0.01278
Variance 0.0000789261 0.0000423958 0.0002199300 0.0001304063
Estimation 2.02609 1.22833 15.02016 0.76178
he 30 Cl [2.01521; 2.03697] | [1.21715; 1.23951] | [15.01211; 15.02822] | [0.75515; 0.76841]
Bias 0.02609 0.02833 0.02016 0.01178
Variance 0.0000307998 0.0000325219 0.0000168876 0.0000114491
Estimation 2.01791 1.22602 15.01780 0.76107
N5 Cl [2.01428; 2.02154] | [1.22457; 1.22747] | [15.01527; 15.02033] | [0.75810; 0.76403]
Bias 0.01791 0.02602 0.01780 0.01107
Variance 0.0000034302 0.0000005464 0.0000016640 0.0000022841
Estimation 2.01088 1.20308 15.00697 0.75039
100 Cl [2.00914; 2.01261] | [1.20208; 1.20407] | [15.00651; 15.00743] | [0.75003; 0.75075]
Bias 0.01088 0.00308 0.00697 0.00039
Variance 0.0000007826 0.0000002569 0.0000000550 0.0000000338
Estimation 2.00999 1.20301 15.00400 0.75020
o~ 500 Cl [2.00990; 2.01008] | [1.20281; 1.20321] | [15.00388; 15.00413] | [0.75019; 0.75021]
Bias 0.00999 0.00301 0.00400 0.00020
Variance 0.0000000021 0.0000000102 0.0000000039 0.0000000001

From the results of the simulation given in Table 1, we can conclude that
when the sample size increases, the estimation values and the real values are
close. Further, when the sample size is larger, the confidence interval will be
narrower, the bias and variances will be smaller and close to zero.



Estimation of Parameters of Generalized Beta ... 17

Figures 1 to 6 describe the estimation of parameters and its confidence
intervals, bias and variances.
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Figure 1. The graph of the a estimation and its confident interval (Cl).
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Figure 2. The graph of the b estimation and its confident interval (Cl).
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Figure 3. The graph of the p estimation and its confidence interval (Cl).
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Figure 4. The graph of the g estimation and its confidence interval (Cl).
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Figure 5. The graph of bias for the parameters a, b, p and q of the (GB2).
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Figure 6. The graph of variances for the parameters a, b, p and q of the

(GB2).
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4, Conclusion

The estimation of parameters of generalized beta of the second

kind (GB2) uses maximum likelihood estimation (MLE) method. Then the
estimation is continued by iteration and Newton-Raphson methods. The
results show that the estimation of the parameters a, b, p and q attains the

values close to the rea value of the parameters, if the size of the sample

increases. The larger the sample size, the narrower the confidence interval is.

The larger the sample sizeis, the smaller the bias and the variance are.
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