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Abstract  This study aims to compare the performance of Ordinary Least Square (OLS), Least Absolute Shrinkage and 
Selection Operator (LASSO), Ridge Regression (RR) and Principal Component Regression (PCR) methods in handling 
severe multicollinearity among explanatory variables in multiple regression analysis using data simulation. In order to select 
the best method, a Monte Carlo experiment was carried out, it was set that the simulated data contain severe multicollinearity 
among all explanatory variables (ρ = 0.99) with different sample sizes (n = 25, 50, 75, 100, 200) and different levels of 
explanatory variables (p = 4, 6, 8, 10, 20). The performances of the four methods are compared using Average Mean Square 
Errors (AMSE) and Akaike Information Criterion (AIC). The result shows that PCR has the lowest AMSE among other 
methods. It indicates that PCR is the most accurate regression coefficients estimator in each sample size and various levels of 
explanatory variables studied. PCR also performs as the best estimation model since it gives the lowest AIC values compare 
to OLS, RR, and LASSO. 
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1. Introduction 
Multicollinearity is a condition that arises in multiple 

regression analysis when there is a strong correlation or 
relationship between two or more explanatory variables. 
Multicollinearity can create inaccurate estimates of the 
regression coefficients, inflate the standard errors of the 
regression coefficients, deflate the partial t-tests for the 
regression coefficients, give false, nonsignificant, p-values, 
and degrade the predictability of the model [1, 2]. Since 
multicollinearity is a serious problem when we need to make 
inferences or looking for predictive models, it is very 
important to find a best suitable method to deal with 
multicollinearity [3].   

There are several methods of detecting multicollinearity.  
Some of the common methods are by using pairwise scatter 
plots of the explanatory variables, looking at near-perfect 
relationships, examining the correlation matrix for high 
correlations and the variance inflation factors (VIF), using 
eigenvalues of the correlation matrix of the explanatory 
variables and checking the signs of the regression 
coefficients [4, 5].   

Several solutions for handling multicollinearity problem  
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have been developed depending on the sources of 
multicollinearity. If the multicollinearity has been created by 
the data collection, collect additional data over a wider 
X-subspace. If the choice of the linear model has increased 
the multicollinearity, simplify the model by using variable 
selection techniques. If an observation or two has induced 
the multicollinearity, remove those observations. When 
these steps are not possible, one might try ridge regression 
(RR) as an alternative procedure to the OLS method in 
regression analysis which suggested by [6].   

Ridge Regression is a technique for analyzing multiple 
regression data that suffer from multicollinearity. By adding 
a degree of bias to the regression estimates, RR reduces the 
standard errors and obtains more accurate regression 
coefficients estimation than the OLS. Other techniques, such 
as LASSO and principal components regression (PCR), are 
also very common to overcome the multicollinearity. This 
study will explore LASSO, RR and PCR regression which 
performs best as a method for handling multicollinearity 
problem in multiple regression analysis.    

2. Parameter Estimation in Multiple 
Regression 

2.1. Ordinary Least Squares (OLS) 
The multiple linear regression model and its estimation 

using OLS method allows to estimate the relation between a 
dependent variable and a set of explanatory variables. If data 
consists of n observations {𝑦𝑖 , 𝑥𝑖}𝑖=1𝑛  and each observation i 
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includes a scalar response yi  and a vector of p explanatory 
(regressors) xij for j=1,...,p, a multiple linear regression 
model can be written as 𝒀 = 𝑿𝜷 + 𝜺  where 𝒀𝑛𝑥1  is the 
vector dependent variable, 𝑿𝑛𝑥𝑝 represents the explanatory 
variables, 𝜷𝑝𝑥1 is the regression coefficients to be estimated, 
and 𝜺𝑝𝑥1  represents the errors or residuals. 𝜷�𝑂𝐿𝑆 =
(𝑿′𝑿)−1𝑿′𝒀 is estimated regression coefficients using OLS 
by minimizing the squared distances between the observed 
and the predicted dependent variable [1, 4]. To have 
unbiased OLS estimation in the model, some assumptions 
should be satisfied. Those assumptions are that the errors 
have an expected value of zero, that the explanatory 
variables are non-random, that the explanatory variables are 
lineary independent, that the disturbance are homoscedastic 
and not autocorrelated. Explanatory variables subject to 
multicollinearity produces imprecise estimate of regression 
coefficients in a multiple regression. There are some 
regularized methods to deal with such problems, some of 
them are RR, LASSO and PCR. Many studies on the three 
methods have been done for decades, however, investigation 
on RR, LASSO and PCR is still an interesting topic and 
attract some authors until recent years, see e.g. [7-12] for 
recent studies on the three methods. 

2.2. Regularized Methods  

a. Ridge regression (RR) 
Regression coeficients 𝜷�𝑂𝐿𝑆 require X as a centered and 

scaled matrix, the cross product matrix (X’X) is nearly 
singular when X-columns are highly correlated. It is often the 
case that the matrix X’X is “close” to singular. This 
phenomenon is called multicollinearity. In this situation 
𝜷�𝑂𝐿𝑆  still can be obtained, but it will lead to significant 
changes in the coefficients estimates [13]. One way to detect 
multicollinearity in the regression data is to use the use the 
variance inflation factors VIF. The formula of VIF is 
(VIF)j=(𝑉𝐼𝐹)𝑗 = 1

1−𝑅𝑗
2. 

Ridge regression technique is based on adding a ridge 
parameter (λ) to the diagonal of X’X matrix forming a new 
matrix (X’X+λI). It’s called ridge regression because the 
diagonal of ones in the correlation matrix can be described as 
a ridge [6]. The ridge formula to find the coefficients is 
𝛽̂𝜆 = (𝑿′𝑿 + 𝜆𝑰)−𝟏𝑿′𝒀, 𝜆 ≥ 0 . When 𝜆  =0, the ridge 
estimator become as the OLS. If all 𝜆’s are the same, the 
resulting estimators are called the ordinary ridge estimators 
[14, 15]. It is often convenient to rewrite ridge regression in 
Lagrangian form:  

𝛽̂𝜆 =
𝑎𝑟𝑔𝑚𝑖𝑛
𝛽0,𝛽 � 1

2𝑛
‖𝑦 − 𝑿𝛽‖22 + 𝜆‖𝛽‖22�. 

Ridge regression has the ability to overcome this 
multicollinearity by constraining the coefficient estimates, 
hence, it can reduce the estimator’s variance but introduce 
some bias [16].   
b. The LASSO 

The LASSO regression estimates 𝜷�𝑂𝐿𝑆  by the 
optimazation problem:  

𝛽̂𝜆 =
𝑎𝑟𝑔𝑚𝑖𝑛
𝛽0,𝛽 �

1
2𝑛

‖𝑦 − 𝑿𝛽‖22 + 𝜆‖𝛽‖1� 

for some  𝜆 ≥ 0. By Lagrangian duality, there is one-to-one 
correspondence between constrained problem ‖𝛽‖1 ≤ 𝑡 
and the Lagrangian form. For each value of t in the range 
where the constraint ‖𝛽‖1 ≤ 𝑡  is active, there is a 
corresponding value of λ that yields the same solution form 
Lagrangian form. Conversely, the solution of 𝛽̂𝜆  to the 
problem solves the bound problem with  𝑡 = �𝛽̂𝜆�1 [17, 18].  

Like ridge regression, penalizing the absolute values of 
the coefficients introduces shrinkage towards zero. However, 
unlike ridge regression, some of the coefficients are 
shrunken all the way to zero; such solutions, with multiple 
values that are identically zero, are said to be sparse. The 
penalty thereby performs a sort of continuous variable 
selection. 
c. Principal Component Regression (PCR) 

Let V=[V1,...,Vp} be the matrix of size p x p whose 
columns are the normalized eigenvectors of 𝑿′𝑿, and let 
λ1,..., λp be the corresponding eigenvalues. Let 
W=[W1,...,Wp]= XV. Then Wj= XVj is the j-th sample 
principal components of X. The regression model can be 
written as 𝑌 = 𝑿𝛽 + 𝜍 = 𝑿𝑽𝑽′𝛽 + 𝜍 = 𝑾𝛾  where 
 𝛾 = 𝑽′𝛽. Under this formulation, the least estimator of 𝛾 is  

𝛾� = (𝑾′𝑾)−1𝑾′𝒀 = 𝜦−1𝑾′𝒀. 
And hence, the principal component estimator of β is 

defined by 𝛽� = 𝑽𝛾� = 𝑽𝜦−1𝑾′𝒀  [19-21]. Calculation of 
OLS estimates via principal component regression may be 
numerically more stable than direct calculation [22]. Severe 
multicollinearity will be detected as very small eigenvalues. 
To rid the data of the multicollinearity, principal component 
omit the components associated with small eigen values.  

2.3. Measurement of Performances 

To evaluate the performances at the methods studied, 
Average Mean Square Error (AMSE) of regression 
coefficient 𝜷�  is measured. The AMSE is defined by  

𝐴𝑀𝑆𝐸�𝜷�� =
1
𝑛
��𝜷�(𝑙) − 𝜷�

2
𝑚

𝑙=1

 

where 𝛽̂(𝑙)  denotes the estimated parameter in the l-th 
simulation. AMSE value close to zero indicates that the slope 
and intercept are correctly estimated. In addition, Akaike 
Information Criterion (AIC) is also used as the performance 
criterion with formula: 𝐴𝐼𝐶𝐶 = 2𝑘 − 2ln (𝐿�)  where 
𝐿� = 𝑝�𝑥�𝜃�,𝑀�,𝜃�  are the parameter values that maximize 
the likelihood function, x = the observed data, n = the number 
of data points in x, and k = the number of parameters 
estimated by the model [23, 24]. The best model is indicated 
by the lowest values of AIC. 

3. Methods 
In this study, we consider the true model as  𝒀 = 𝑿𝜷 + 𝜺. 
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We simulate a set of data with sample size n= 25, 50, 75, 100, 
200 contain severe multicolleniarity among all explanatory 
variables (ρ=0.99) using R package with 100 iterations. 
Following [25] the explanatory variables are generated by  

𝑥𝑖𝑗 = (1 − 𝜌2)1/2𝑢𝑖𝑗 + 𝜌𝑢𝑖𝑗 ,
𝑖 = 1,2, … ,𝑛    𝑗 = 1,2, … ,𝑝. 

Where 𝑢𝑖𝑗  are independent standard normal 
pseudo-random numbers and ρ is specified so that the 
theoretical correlation between any two explanatory 
variables is given by 𝜌2. Dependent variable (𝒀) for each 𝑝 
explanatory variables is from 𝒀 = 𝑿𝜷 + 𝜺  with β 
parameters vectors are chosen arbitrarily (𝛽0=0, and β=1 
otherwise) for p= 4, 6, 8, 10, 20 and ε~N (0, 1). To measure 
the amount of multicolleniarity in the data set, variance 
inflation factor (VIF) is examined. The performances of OLS, 
LASSO, RR, and PCR methods are compared based on the 
value of AMSE and AIC. Cross-validation is used to find a 
value for the λ value for RR and LASSO.  

4. Results and Discussion 
The existence of severe multicollinearity in explanatory 

variables for all given cases are examined by VIF values. 
The result of the analysis to simulated dataset with p = 4, 6, 8, 
10, 20 with n = 25, 50, 75, 100, 200 gives the VIF values 
among all the explanatory variables are between 40-110. 
This indicates that severe multicollinearity among all 
explanatory variables is present in the simulated data 
generated from the specified model and that all the 
regression coefficients appear to be affected by collinearity. 
LASSO method is for choosing which covariates to include 
in the model. It is based on stepwise selection procedure. In 
this study, LASSO, cannot overcome severe 
multicollinearity among all explanatory variables since it can 
reduce the VIF in data set a little bit. Whereas in every cases 
of simulated data set studied, RR reduces the VIF values less 
than 10 and PCR reduce the VIF to 1. Using this data, we 
compute different estimation methods alternate to OLS. The 
experiment is repeated 100 times to get an accurate 
estimation and AMSE of the estimators are observed. The 
result of the simulations can be seen in Table 1.  

In order to compare the four methods easily, the AMSE 
results in Table 1 are presented as graphs in Figure 1 - Figure 
5. From those figures, it is seen that OLS has the highest 
AMSE value compared to the other three methods in every 
cases being studied followed by LASSO. Both OLS and 
LASSO are not able to resolve the severe multicollinearity 
problems. On the other hand, RR gives lower AMSE than 
OLS and LASSO but still high as compare to that in PCR. 
Ridge regression and PCR seem to improve prediction 
accuracy by shrinking large regression coefficients in order 
to reduce over fitting. The lowest AMSE is given by PCR in 
every case.   

It clearly indicates that PCR is the most accurate estimator 
when severe multcollinearity presence. The result also show 

that sample size affects the value of AMSEs. The higher the 
sample size used, the lower the value of AMSE from each 
estimators. Number of explanatory variables does not seem 
to affect the accuracy of PCR. 

Table 1.  Average Mean Square Error of OLS, LASSO, RR, and PCR 

p n 
AMSE 

OLS LASSO RR PCR 

4 

25 5.7238 3.2880 0.5484 0.0169 

50 3.2870 2.5210 0.3158 0.0035 

75 2.3645 2.0913 0.2630 0.0029 

100 1.7750 1.6150 0.2211 0.0017 

200 0.8488 0.8438 0.1512 0.0009 

6 

25 15.3381 6.5222 0.5235 0.0078 

50 5.3632 4.0902 0.4466 0.0051 

75 4.0399 3.4828 0.3431 0.0031 

100 2.8200 2.5032 0.2939 0.0020 

200 1.3882 1.3848 0.2044 0.0013 

8 

25 20.4787 8.7469 0.5395 0.0057 

50 8.2556 5.9925 0.4021 0.0037 

75 5.6282 4.7016 0.3923 0.0018 

100 3.8343 3.4771 0.3527 0.0017 

200 1.9906 1.9409 0.2356 0.0008 

10 

25 27.9236 12.3202 1.2100 0.0119 

50 12.1224 7.8290 0.5129 0.0089 

75 7.0177 5.8507 0.4293 0.0035 

100 4.7402 4.3165 0.3263 0.0022 

200 2.5177 2.4565 0.2655 0.0013 

20 

25 396.6900 33.6787 1.0773 0.0232 

50 33.8890 16.4445 0.7861 0.0065 

75 18.5859 13.1750 0.6927 0.0052 

100 12.1559 9.7563 0.5670 0.0032 

200 5.5153 5.2229 0.4099 0.0014 

 

Figure 1.  AMSE of OLS, LASSO, RR and PCR for p=4 
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Figure 2.  AMSE of OLS, LASSO, RR and PCR for p=6 

 

Figure 3.  AMSE of OLS, LASSO, RR and PCR for p=8 

 

Figure 4.  AMSE of OLS, LASSO, RR and PCR for p=10 

 

Figure 5.  AMSE of OLS, LASSO, RR and PCR for p=20 

To choose the best model, we use Akaike Information 
Criterion (AIC) of the models obtained using the four 
methods being studied. The AIC values for all methods with 
different number of explanatory variables and sample sizes is 
presented in Table 2 and displayed as bars-graphs in Figure 6 
– Figure 10. 

Figure 6 –Figure 10 show that the greater the sample sizes 
are the lower the values of AIC and in contrary to sample 
sizes, number of explanatory variables does not seem to 
affect the value of AIC. OLS has the highest AIC values in 
every level of explanatory variables and sample sizes. 
LASSO as one of the regularized method has the highest AIC 
values compare to RR and PCR. The differences of AIC 
values between the PCR performances from RR are small. 
PCR is the best methods among the selected methods 
including based on the value of AIC. It is consistent with the 
result in Table 1 where PCR has the smallest AMSE value 
among all the methods applied in the study. PCR is 
approximately effective and efficient for a small and high 
number of regressors. This finding is in accordance with 
previous study [20]. 

Table 2.  AIC values for OLS, RR, LASSO, and PCR with different 
number of explanatory variables and sample sizes 

p Methods 
n 

25 50 75 100 200 

4 

OLS 8.4889 8.2364 8.2069 8.1113 8.0590 

LASSO 8.4640 8.2320 8.2056 8.1108 8.0589 

RR 8.3581 8.1712 8.1609 8.0774 8.0439 

PCR 8.2854 8.1223 8.1173 8.0439 8.0239 

6 

OLS 8.7393 8.3541 8.2842 8.1457 8.0862 

LASSO 8.6640 8.3449 8.2806 8.1443 8.0861 

RR 8.4434 8.2333 8.1995 8.0868 8.0598 

PCR 8.3257 8.1521 8.1327 8.0355 8.0281 

8 

OLS 8.8324 8.3983 8.3323 8.2125 8.1060 

LASSO 8.7181 8.3816 8.3259 8.2104 8.1058 

RR 8.3931 8.2039 8.2062 8.1247 8.0660 

PCR 8.2488 8.1069 8.1162 8.0550 8.0254 

10 

OLS 9.0677 8.4906 8.3794 8.2595 8.1142 

LASSO 8.9011 8.4556 8.3711 8.2570 8.1140 

RR 8.4971 8.2275 8.2120 8.1446 8.0608 

PCR 8.2405 8.0969 8.1035 8.0674 8.0104 

20 

OLS 11.3154 9.1698 8.7443 8.5138 8.2652 

LASSO 9.8490 9.0324 8.7055 8.4968 8.2638 

RR 8.5775 8.4475 8.3195 8.2202 8.1390 

PCR 8.2628 8.2138 8.1375 8.0759 8.0535 
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Figure 6.  Bar-graph of AIC for p=4 

 

Figure 7.  Bar-graph of AIC for p=6 

 

Figure 8.  Bar-graph of AIC for p=8 

 

Figure 9.  Bar-graph of AIC for p=10 

 

Figure 10.  Bar-graph of AIC for p=20 

5. Conclusions 
Based on the simulation results at p = 4, 6, 8, 10, and 20 

and the number of data n = 25, 50, 75, 100 and 200 
containing severe multicollinearity among all explanatory 
variables, it can be concluded that RR and PCR method are 
capable of overcoming severe multicollinearity problem. In 
contrary, the LASSO method does not resolve the problem 
very well when all variables are severely correlated even 
though LASSO do better than OLS. In Overall PCR 
performs best to estimate the regression coefficients on data 
containing severe multicolinearity among all explanatory 
variables.  
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