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ABSTRACT 
 

The generalized gamma (GG) distribution as a generalization of the gamma distribution is 
considered in this paper.  A moment of a generating function (mgf) of the GG distribution is 
mathematically developed. Based on the mgf, limiting properties of the generalized beta of the 
second kind (GB2) distribution are discussed.  Its properties related to the other well-known 
distributions, such as, gamma and exponential distributions are obtained.  
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INTRODUCTION 
 
In the statistical literature, modeling of data by generalized probability models has been noted to 
be advantageous by numerous authors, because selecting the best probability model in a 
particular case is not an easy task. In survival or lifetime data, each generalization usually includes 
exponential, Weibull, gamma, and lognormal distributions as its either limiting or special cases. A 
detailed discussion of these as well as many other related distributions is provided by McDonald 
(1984) and McDonald and Richards (1987).  A general guideline of model selection of some 
generalized models, such as the generalized beta of the second kind (GB2), has been outlined by 
them.  The GB2 distribution involves four parameters and is a particularly useful family of 
distributions. It includes the generalized gamma (GG) distribution.  
 
This paper proposes to discuss about the generalized gamma (GG) distribution. The main aim of 
this paper is to provide a gentle discussion of moment properties of the GG distribution. The 
properties include relationship with the GB2’s moment and limiting properties to the moment of 
gamma and exponential distributions. In order to achieve this purpose, in Section 2 and 3 we 
develop moment generating functions of the GB2 and the GG distributions, respectively. Section 4 
contains a description of relationship between moments of the GB2 distribution and the GG 
distribution. In Section 5, this paper examines limiting behavior of the GG’s moment. Finally we 
conclude the paper in Section 6. 
 

Moment Generating Function Of The Gb2 Distribution.  The probability density function 
(pdf) of the GB2 distribution in this paper is given by  
 

 
 

 
where 0>a , 0>b , 01 >m , and 02 >m . 

 
 
 
The moment generating function (mgf) of the GB2 distribution is stated in the following theorem. 
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Theorem 1. Let  X  be a random variable of the GB2 (a,b,m1,m2) distribution, then the mgf of X  
                     is given by 
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After expanding 
tx

e  by MacLaurin’s series (Spiegel, 1968), one finds that the equation (2) is 
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Therefore the mgf of the GB2 distribution is: 
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Moment Generating Function Of The Gg Distribution. The pdf of the GG distribution in this 
paper is given by the following form 
 

where 0>a , 0>γ ,  and 01 >m . 

 
 
 
 
 
 
 
 
The moment generating function (mgf) of the GB2 distribution is stated in the theorem 2 of this 
paper. 
 
 
Theorem 2. Let  X  be a random variable of the GG (a, γ,  and m1) distribution, then the mgf of   
                   X  is given by 
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Similar to section 2, by letting 
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By expanding 
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e  with MacLaurin’s series, the equation (4) can be rerwitten as 
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So, the mgf of the GG(a, γ, m1) distribution can be written in the following form 
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Relationship Between Moment Of The Gg Distribution And Moment Ofthe Gb2 

Distribution. The relationship between the mgf of the GG distribution and the mgf of the GB2 
distribution can be seen in the following proposition. 
 
Proposition 1.  The GB2 (a,b,m1,m2) distribution converges to the GG distribution as m2 tends to 

              ∞ and  b = γ 
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The Stirling’s approximation formula (Spiegel, 1968) of the gamma function is  
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Then the limiting moment property of the GLL(α,β,m1,m2) distribution can be written as: 
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This is the moment generating function of the GG. Therefore, the GB2 (a,b,m1,m2) distribution 
converges to the GG distribution as m2 tends to ∞ and  b = γ. 

 
Limiting Moment Of The Gg Distribution. In this section we discuss the limiting behaviors of 
the GG family of distributions. The limiting behaviors of the GG distribution are assesed in the 
propotion 2 and 3. 
 
Proposition 2. The GG distribution converges to the gamma distribution as a = 1. 
 
Proof: 
Letting a=1, the mgf of the GG distribution becomes 
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This is the moment generating function of the gamma distribution provided by Casella and Berger 
(1990). 
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Proposition 3. The GG distribution converges to the exponential distribution as a = 1 and m1 =1 
 
Proof: 
 
 For a = 1 and m1 =1, the mgf of  the GG distribution becomes  
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Similar to the proof of proposition 2, we may find that  Mx(t) ( ) 1
1

−
−= tγ . This is the moment 

generating function of the exponential distribution provided by Casella and Berger (1990) 
 

 
CONCLUSION 

 

The moment of the generalized gamma distribution is the limiting moment of the generalized beta 
of the second kind distribution. Moreover, the moments of the gamma and exponential 
distributions are special cases of the moment of the generalized gamma distribution. 
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