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Abstract. We study the Tweedie family distributions as special cases of exponential
dispersion models (EDMs) which are two-parameter distributions from the exponen-
tial family that have a scale parameter λ. According to such parameterization, the
mean and variance for the Tweedie random variable X are given by E(X) = µ and
Var(Y)= λµp, respectively, where p is an extra parameter that controls the variance of
the distribution which is called “variance power” parameter. From this perspective,
some properties of Tweedie distribution are discussed. The multivariate extensions of
Tweedie family are also presented.

Keywords. cumulant generating function, α-stable distributions, variance
function

1 INTRODUCTION

Generalized Linear Model (GLM) is a flexible generalization of ordinary linear
regression that allows for response variables that have other than a normal
distribution. The GLM generalizes linear regression by allowing the linear
model to be related to the response variable following distribution in the expo-
nential family via link function. According to McCullagh and Nelder [1], the
random component of a GLM is specified by an exponential family density of
the following form:

p(x;λ) = a(x) exp {[θx − κ(θ)]} , x ∈ R

for suitable functions a and κ. Jørgensen [2] extended the one parameter
exponential family by adding a dispersion parameter λ and he called it as
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"exponential dispersion model" (EDM). An exponential dispersion model with
parameter θ ∈ Θ and λ ∈ Λ ⊆ R+ is a family distribution for Y with probability
density function of the form

p(x;θ, λ) = a(x, λ) exp {λ [θx − κ(θ)]} , x ∈ R,

θ is the canonical parameter and λ is the dispersion parameter. For this family
of distributions, we have the well-known relationships

E(x) = µ = κ
′

(θ)

and
Var(x) = λκ

′′

(θ) = λV(µ).

One of special interest is the class of EDM with power mean-variance re-
lationships is V(µ) = µp for some p. Following Jorgensen [2] we call these
“Tweedie distribution” in honor of Tweedie’s first comprehensive research on
this subject [3]. Jorgensen showed that the Tweedie distribution exists for any
p outside the interval (0, 1), and most of the commonly encountered distribu-
tions are special cases of the Tweedie distribution, e.g., Normal (p = 0), Poisson
(p = 1), Gamma (p = 2), and Inverse Gaussian (p = 3). For p > 2, the Tweedie
distribution is generated by stable distributions and has support on the positive
values, and for p < 0, the distribution has a positive mean and the support is on
the whole real line. The distributions with 1 < p < 2 are especially appealing
for modeling quantity data when exact zeros are possible.

Apart from the well-known distributions with p = 0, 1, 2, or3, none of the
Tweedie distributions have density functions with explicit analytic forms. This
complicates the use of these distributions in statistical modeling. In particular,
it prevents their use with likelihood based estimation, testing or diagnostic
procedures. Nevertheless, this does not prohibit their use in generalized linear
models, where the inferential scheme only requires the knowledge of the first
two moments [1]. On the other hand, Tweedie distributions do have simple,
analytic moment generating functions.

In this paper, we discuss our study on the Tweedie family distributions in
the framework of EDM and α-stable distribution [4]. The rest of the paper is
organized as follow. In Section 2 we present some properties of the Tweedie
family, in Section3 the multivariate extention of Tweedie family is discussed,
we present a special case of multivariate Tweedie model i.e. "normal stable
Tweedie" (NST) model in Section 4 and the final remark in Section 5
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2 THE TWEEDIE FAMILY DISTRIBUTIONS

The well-known positive σ-stable distribution generating Lévy process
(
Xα

t

)
t>0

were introduced by [5] and defined by probability measures:

ξα,t(dx) =
1
πx

∑ t jΓ(1 + α j)sin(− jπα)

j!α j(α − 1)− j [(1 − α)x]α j1x>0dx = ξα,t(x)dx (2.1)

where α in (0,1) is the index parameter, Γ(.) is the classical gamma function,
and IA denotes the indicator function of any given event A that takes the value
1 if the event accurs and 0 otherwise. Recall that a random variable X has an
α-stable distribution if, for all X1, . . . ,Xn being independent copies of X and for
all bn belonging to R,

X1 + . . . + Xn
d
= n1/αX + bn

where d
= denotes the equality in distribution. The parameter α can be extended

on (0, 2]. We then obtain the inverse Gaussian distribution for α = 1/2 with
density:

ξ1/2,t(dx) =
t

√
2πx3

exp
(
−t2

2x

)
1x>0dx = ξ1/2,t(x)dx. (2.2)

For α ∈ [1, 2] one defines a family of (extreme) stable distributions concentrated
on the real line R where special case are Cauchy (α = 1) and normal (α = 2)
distributions with

ξ1,t(dx) =
t

π (t2 + x2)
dx = ξ1,t(x)dx

and

ξ2,t(dx) =
1
√

2πt
exp

(
−x2

2t

)
dx = ξ2,t(x)dx.

The left limit case α→ 0 leads to gamma distribution generated by the proba-
bility measure

ξ0,t(dx) =
xt−1e−x

Γ(t)
Ix>0dx = ξ0,t(x)dx.

Tweedie [3] proposed a classification of all stable distribution with α ∈
[−∞, 2] introducing the "power variance" parameter p defined by :

(p − 1)(1 − α) = 1
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and equivalent to :

p = p(α) =
α − 2
α − 1

or α = α(p) =
p − 2
p − 1

In the case of α → −∞ or p = p(−∞) = 1, leads to Poisson distribution with
probability mass function

f−∞,t(x) =
txe−t

x!
, ∀x ∈ N

Table 1: Summary of stable Tweedie models [2] with unit mean domain Mp

and support Sp of distribution.
Distribution p = p(α) α = α(p) Mp Sp

Extreme stable p < 0 1 < α < 2 (0,∞) R
Gaussian p = 0 α = 2 R R
Do not exist 0 < p < 1 2 < α < ∞
Poisson p = 1 α = −∞ (0,∞) N
Compound Poisson 1 < p < 2 α < 0 (0,∞) [0,∞)
Non-central gamma p = 3/2 α = −1 (0,∞) [0,∞)
Gamma p = 2 α = 0 (0,∞) (0,∞)
Positive stable p > 2 0 < α < 1 (0,∞) (0,∞)
Inverse Gaussian p = 3 α = 1/2 (0,∞) (0,∞)
Extreme stable p = ∞ α = 1 R R

The cumulant generating function of a univariate σ-finite positive measure
µα,t generating the NEF Fp,t = F(ξα,t) is given by

Kξα,t(θ) = log Lξα,t(θ) = t log Lξα,1(θ) = tKξα,1(θ)

with Lξα,t the Laplace transform of the NEF Fp,t. Parameters θ and µ are one-to-
one connected by the following expression

µ =
d

dθ
κ(θ) = µ(θ)

{
exp(θ) for p = 1[
(1 − p)θ

]1/(1−p) for p , 1.

Also, the corresponding variance function is given by

VFp,t(µ) = K′′ξα,t(θ) = tK′′ξα,1(θ) = tVp(µ/t),
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where Vp is the unit variance function.
We define the univariate stable Tweedie NEFs Fp,t = F(ξp,t) generated by the

σ-finite positive measures ξp,t such that their cumulant functions are Kνp,t = tKνp,1

with

Kξp,1(θ0) =


exp(θ0) for p = 1
− log(−θ0) for p = 2[
1/(2 − p)

] [
(1 − p)θ0

](p−2)/(p−1) for 1 , 1, 2
(2.3)

for all θ0 in their respective canonical domains

Θ(ξp,1) =


R for p = 0, 1
[0,∞) for p < 0 or 0 < p < 1
(−∞, 0) for 1 < p 6 2 or p = ∞
(−∞, 0] for 2 < p < ∞.

Using α parameterization, i.e. α = α(p) = 1 +
1

(1 − p)
, then the Tweedie

cumulant functions for p , 1, 2 in (2.3) can be written as

Kξα,1(θ) =
α − 1
α

(
θ

α − 1

)α
for values of θ such that θ/(α − 1) > 0.

Dunn and Smyth [6] gave a survey of published applications showing that
Tweedie distributions have been used in a diverse range of fields. A significant
number of scientific papers have been dedicated to exploring various members
of the Tweedie class in diverse fields of actuarial science [7, 8, 9, 10] , survival
analysis [11], fishery predictions [12] and rainfall modeling [13, 14].

3 MULTIVARIATE TWEEDIE MODEL

In this section we discuss the multivariate extension of Tweedie family distri-
bution. In order to define the multivariate Tweedie (probability) models, we
consider first the intermediate weight parameter γ = λκα(θ), and write the
cumulant generating function (CGF) as follows:

s 7→ γ
[(

1 +
s
θ

)α
− 1

]
(3.1)
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Since γ and κα(θ) have the same sign, it follows that the domain for γ is either
R+ orR−, depending on the sign of (α−1)/α. Our starting point is the bivariate
singular distribution with joint CGF

(s1, s2)> 7→ γ
[(

1 +
s1

θ1
+

s2

θ2

)α
− 1

]
,

whose marginals are Tweedie distributions of the form (3.1).
Now we define the multivariate Tweedie models as follow. A multivariate

(additive) Tweedie model denoted Tw∗pk (µ,Λ) is defined by the joint CGF:

K(s;θ, γ) =
∑
i< j

γi j

[(
1 +

si

θi
+

s j

θ j

)α
− 1

]
+

k∑
i=1

γi

[(
1 +

si

θi

)α
− 1

]
, (3.2)

where γ = λκνα(θ) and the weight parameters γi j and γi all have the same sign
as (α − 1)/α.

By taking s j = 0 for j , i in the expression (3.2) we find that the ith marginal
follows a univariate Tweedie distribution with CGF (3.1) withθ = θi and γ = γii

defined by
γii =

∑
j: j,i

γi j + γi.

For multivariate Tweedie distributions, the exponential dispersion model
weight parameters λii and λi j are defined by

λii =
γii

κα(θi)
for i = 1, . . . , k (3.3)

and
λi j =

γi j

κ1/2
α (θi, θ j)

for i < j, (3.4)

where κ1/2
α is a function defined by

κ1/2
α (θi, θ j) =

α − 1
α

(
θi

α − 1

)α/2 ( θ j

α − 1

)α/2
.

Using the parameters λii the marginal mean are of the form

λiiµi = λiiκα(θi)
α
θi

= λii

(
θi

α − 1

)α−1

for i = 1, . . . , k (3.5)
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Table 2: Summary of Multivariate Tweedie Dispersion Models on Rk with
Support Sp,k and Mean Domain Mp,k

Distribution(s) p α = α(p) Sp,k Mp,k

Multivariate extreme stable p < 0 1 < α < 2 Rk (0,∞)k

Multivariate Gaussian p = 0 α = 2 Rk Rk

[Do not exist] 0 < p < 1 2 < α < ∞
Multivariate Poisson p = 1 α = −∞ Nk

0 (0,∞)k

Multivarite compound Poisson 1 < p < 2 α < 0 [0,∞)k (0,∞)k

Multivariate non-central gamma p = 3/2 α = −1 [0,∞)k (0,∞)k

Multivariate gamma p = 2 α = 0 (0,∞)k (0,∞)k

Multivariate positive stable p > 2 0 < α < 1 (0,∞)k (0,∞)k

Multivariate inverse Gaussian p = 3 α = 1/2 (0,∞)k (0,∞)k

Multivariate extreme stable p = ∞ α = 1 Rk Rk

The multivariate gamma distribution above is different from the one discussed by [? ], the
multivariate gamma here has the joint CGF of the form corresponds to definition :

K(s, θ,Λ) = −
∑

i< j λi j log
(
1 − si

θi
−

s j

θ j

)
−

∑k
i=1 λi log

(
1 − si

θi

)
.

and the variances are

λiiκα(θi)
α(α − 1)
θ2

i

= λiiµ
p
i for i = 1, . . . , k.

This defines the multivariate additive Tweedie random vector X ∼ Tw∗pk (µ,Λ),
with mean vector Diag(Λ)µwhere its elements are defined by (3.5), i.e.

Diag(Λ)µ =

(
λ11

(
θ1

α − 1

)α−1

, . . . , λkk

(
θk

α − 1

)α−1)>
and the covariance matrix for X has the form Λ � V(µ), where the elements of
Λ = (λi j)i, j=1,...,k are defined in (3.3) and (3.4) and V(µ) has entries

Vi j = (µiµ j)p/2,

then the covariance matrix of X is

Σ = Λ �V(µ) =


λ11µ

p
1 λ12(µ1µ2)p/2 . . . λ1k(µ1µk)p/2

λ21(µ2µ1)p/2 λ22µ
p
2 . . . λ2k(µ1µk)p/2

...
...

. . .
...

λk1(µkµ1)p/2 λk2(µkµ1)p/2 . . . λkkµ
p
k

 .
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The multivariate additive Tweedie model Tw∗pk (µ,Λ) satisfies the following
additive property:

Tw∗pk (µ,Λ1) + Tw∗pk (µ,Λ2) = Tw∗pk (µ,Λ1 +Λ2)

To obtain the reproductive form Twk(µ,Σ), we need to use the following
duality transformation:

Twp
k(µ,Σ) = λ−1Tw∗pk (µ,Λ).

The distribution Twk(µ,Σ) has mean vector µ as follow

µ =

((
θ1

α − 1

)α−1

, . . . ,
(
θk

α − 1

)α−1)>
and covariance matrix

Σ �V(µ) = Diag(µ)p/2 ΣDiag(µ)p/2

where Σ = Diag(Λ)−1ΛDiag(Λ)−1.
One can see [15] and [16] for more details on multivariate Tweedie mod-

els. An interesting behaviour of negatively correlated multivariate Tweedie
distribution (bivariate case) was revealed from the simulation study done by
[16]. They showed that for a large negative correlation the scatter of bivariate
Tweedie distribution depicted a curve which reminds us to the inverse ex-
ponential function, also the distribution lies only on the positive side of the
Euclidean space. These behaviour appears to be new because of positive sup-
port of the multivariate Tweedie. While for large positive correlation the scatter
of bivariate Tweedie distribution depicted a straight line with positive slope as
commonly seen in the same case on multivariate Gaussian distribution.

4 NORMAL STABLE TWEEDIE MODEL

Motivated by normal gamma [17] and normal inverse Gaussian [18] models,
Boubacar Maïnassara, Y. and Kokonendji [19] introduced a new form of gen-
eralized variance functions which are generated by the so-called normal stable
Tweedie (NST) models of k-variate distributions (k > 1). The generating σ-finite
positive measure µα,t onRk of NST models is composed by the probability mea-
sure ξα,t of univariate positive σ-stable distribution generating Lévy process in
2.1.
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For a k-dimensional NST random vector X = (X1, . . . ,Xk)>, the generating
σ-finite positive measure να,t is given by

να,t(dx) = ξα,t(dx1)
k∏

j=2

ξ2,x1(dx j), (4.1)

where X1 is a univariate (non-negative) stable Tweedie variable and all other
variables (X2, . . . , ,Xk)> =: Xc

1 given X1 are k − 1 real independent Gaussian
variables with variance X1.

By introducing "power variance" parameter p the generating σ-finite posi-
tive measure να,t on Rk of NST models is

να,t; j(dx) = ξα,t(dx j)
∏
`, j

ξ2,x j(dx`) (4.2)

with α = α(p) ∈ [−∞, 0).

Since (p − 1)(1 − α) = 1 then Equation (2.1) can be expressed in term of p
namely ξp,t with ξp,t = ξp(α),t, then equation (4.2) can be written as follows

νp,t: j(dx) = ξp,t(dx j)
∏
`, j

ξ0,x j(dx`). (4.3)

For suitable univariate NEF Fp,t = F(ξα(p),t) of stable Tweedie types, we can
interpret the multivariate NEFs Gp,t = G(να(p),t) as composed by the distribu-
tion (4.3) of the random vector X = (X1, . . . ,Xk)> where X1 is a univariate stable
Tweedie variable generated by xi0,x1 (with mean 0 and variance x − 1). So from
Table 1 in Appendix with Sp ⊆ [0,∞), we must retain α in [−∞, 1) and the asso-
ciated univariate model may be called the non-negative stable Tweedie, which
include normal Poisson models appearing as new multivariate distribution
having one discrete component.

By equation (4.3), one can obtain the cumulant function Kνp,t(θ) = log
∫
Rk exp
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(
θTx

)
νp,t(dx):

Kνp,t; j(θ) = log


∫
R

exp(θ jx j)

∏
`, j

∫
R

exp(θ`x`)ξ0,x j(dx`)

 ξp,t(dx j)


= log


∫
R

exp(θ jx j)

∏
`, j

exp
x jθ2

`

2

 ξp,t(dx j)


= log


∫
R

exp

θ jx j +
1
2

∑
`, j

x jθ
2
`

 ξp,t(dx j)


= log


∫
R

exp

x j

θ j +
1
2

∑
`, j

θ2
`


 ξp,t(dx j)


= tKξp,t

θ j +
1
2

∑
`, j

θ2
`


Here Kξp,t is the cumulant function of univariate stable Tweedie NEF Fξp,t gen-
erated by σ-finite positive measures ξp,t as follow:

Kξp,t = tKξp,1

with

Kξp,1(θ0) =


exp(θ0) for p = 1
− log(−θ0) for p = 2[
1/(2 − p)

] [
(1 − p)θ0

](p−2)/(p−1) for 1 , 1, 2
(4.4)

for all θ0 in their respective canonical domains

Θ(ξp,1) =


R for p = 0, 1
[0,∞) for p < 0 or 0 < p < 1
(−∞, 0) for 1 < p 6 2 or p = ∞
(−∞, 0] for 2 < p < ∞.

The function Kνp,t; j(θ) is finite for allθ = (θ1, . . . , θk)> in the canonical domain

Θ(νp,t; j) =

θ ∈ Rk;θ>θ̃c
j :=

θ j +
1
2

∑
`, j

θ2
`

 ∈ Θp

 (4.5)
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where θ̃c
j = (θ1, . . . , θ j−1, 1, θ j+1, . . . , θk) and

Θp =


R for p = 0, 1
[0,∞) for p < 0 or 0 < p < 1
(−∞, 0) for 1 < p 6 2 or p = ∞
(−∞, 0] for 2 < p < ∞.

For fixed p > 1 and t > 0, the multivariate NEF generated by νp,t; j is the set

Gp,t; j = P(θ; p, t);θ ∈ Θ(νp,t; j) (4.6)

of probability distributions

P(θ; p, t)(dx) = exp
{
θ>x −Kνp,t; j(θ)

}
νp,t; j(dx). (4.7)

The mean vector and the covariance matrix of Gp,t; j can be calculated using
the first and the second derivatives of the cumulant function, i.e.

µ = K′νp,t; j
(θ)

and
VGp,t; j(µ) = K′′νp,t; j

(θ(µ)).

The followings are four examples illustrate some of the issues that may be
encountered when applying equation (4.3).

Normal Poisson. For p = 1 = p(−∞) in (4.3) we represent the normal Poisson
generating measure by

ν1,t; j(dx) =
tx j(x j!)−1

(2πx j)(k−1)/2
exp

−t −
1

2x j

∑
`, j

x2
`

1x j∈N\{0}δx j(dx j)
∏
`, j

dx`,

where 1A is the indicator function of the set A. Since it is also possible to have
x j = 0, the corresponding normal Poisson distribution is degenerated as δ0.
Normal Poisson is the only NST model which has a discrete component and
correlated to the continuous components. The characterization and generalized
variance estimations of this model can be been in [20, 21, 22],

Normal gamma. For p = 2 = p(0) in (4.3) one has the generating measure of
the normal gamma as follow:

ν2,t; j(dx) =
xt−1

j

(2πx j)(k−1)/2Γ(t)
exp

−x j −
1

2x j

∑
`, j

x2
`

1x j>0dx1dx2 · · · xk
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Normal gamma was introduced by [23] as a member of simple quadratic NEFs;
she called it as "gamma-Gaussian". This model was characterized by [24]. The
bivariate case is used as prior distribution of Bayesian inference for normal
distribution [17].

Normal inverse Gaussian. Setting p = 3 = p(1/2) in (4.3) one has the so-called
normal invers Gaussian family generated by

ν3,t; j(dx) =
tx−(k+2)/2

j

(2π)k/2
exp

−1
2x j

t2 +
∑
`, j

x2
`


1x j>0dx1dx2 · · · xk

It already appeared as a variance-mean mixture of a multivariate Gaussian
with a univariate inverse Gaussian distribution [18]. It can be considered
as a distribution of the position of multivariate Brownian motion at a certain
stopping time. See [25, 26] and [27] for more details and interesting applications
in stochastic volatility modelling and heavy-tailed modelling, respectively.

Normal noncentral gamma. For p = 3/2 in (4.3) one has the generating
measure of normal noncentral gamma which can be expressed as follows:

ν3/2,t; j(dx) =
x−1

j

(2πx j)(k−1)/2

∑
`, j

(4tx j) j

`!Γ(`)

 exp

− 1
2x j

∑
`, j

x2
`

1x j>0dx1dx2 · · · xk

Since it is possible to have x j = 0 (as in normal-Poisson models) the correspond-
ing normal distributions are degenerated as δ0.

4.1 Generalized variance function and Lévy measures

Now let p > 1 and t > 0, denote (e)1=1,...,k an orthonormal basis of Rk, and
µ = (µ1, . . . , µk)> the mean vector of X. [19] showed the variance functions of
Gp,t; j = G(νp,t; j) generated by νp,t; j is given by

VGp,t; j(µ) = t1−pµp−2
j · µµ> + Diagk(µ j, . . . , µ j, 0 j, µ j, . . . , µ j), (4.8)

on its support

MFt; j =
{
µ ∈ Rk;µ j > 0 and µ` ∈ R for ` , j

}
. (4.9)

for all µ = (µ1, . . . , µk)> in MGp,t; j = (0,∞) ×Rk−1.
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For p = 1 (normal Poisson) and j = 1, the covariance matrix of X can be
expressed as below

VFt; j (µ) =



µ1 µ2 . . . µi . . . µk

µ2 µ−1
1 µ

2
2 + µ1 . . . µ−1

1 µ2µi . . . µ−1
1 µkµ2

...
...

. . .
...

...

µi µ−1
1 µiµ2 . . . µ−1

1 µ
2
i + µ1 . . . µ−1

1 µiµk

...
...

...
. . .

...

µk µ−1
1 µkµ2 . . . µ−1

1 µkµi . . . µ−1
1 µ

2
k + µ1



.

The generalized variance function of any multivariate NST model presents
a very simpler expression than its variance function in 4.8. More precisely,
it depends solely on the first component of the mean vector with the power
variance parameter p and the dimension k.

Let p = p(α) ≥ 1 and t > 0. Then the generalized variance function of a
normal stable Tweedie model in Gp,t; j = G(νp,t; j) generated by νp,t; j is given by

det VGp,t; j(µ) = t1−p
(
eT

j µ
)p+k−1

= t1−pµp+k−1
j (4.10)

for µ ∈MGp,t = (0,∞) ×Rk−1.

The proof of equation (4.10) for j = 1 has been described in [19] using the
Schur representation of determinant:

det
(
γ a>

a A

)−1

= γ det(A − γ−1aa>), (4.11)

where γ , 0 is a scalar, A is a k × k matrix, a and b are two vectors on Rk.
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Applying the Schur representation (4.11) for j = 1 with

γ = t1−p(e1
>µ)p,

a = b = t1−p(e1
>µ)p−1(µ2, . . . , µk)>,

A = t1−p(e1
>µ)p−2 (µ2, . . . , µk)(µ2, . . . , µk)> + (e1

>µ).Ik−1

= γ−1aa> + (e1
>µ).Ik−1,

we obtain

det VGp,t;1(µ) = γdet[(e1
>µ).Ik−1]

= t1−p
(
eT

1µ
)p+k−1

.

Then, it is trivial to show that for j ∈ {1, . . . , k} the generalized variance of
normal stable Tweedie model is given by

det VGp,t; j(µ) = t1−p
(
eT

j µ
)p+k−1

with µ ∈MFt, j . (4.12)

It is easy to deduce the generalized unit variance function det VGp(µ) =(
eT

j µ
)p+k−1

with t = 1. Table 3 summarizes all k-variate NST models with
support Sp of distributions, where p = p(α) ≥ 1 is thepower variance parameter,
the parameter η = 1 + k/(p − 1) = η(p, k) is the corresponding modified Lévy
measure ρ(νp,t; j) of NST models of the normal gamma type for p > 1 and
degenerated for p = 1 introduced by [19] as described in 4.1 below.

Proposition 4.1. Let νp,t; j be a generating measure of an NST family for given p = p(α)
and t > 1. Denote η = 1+k/(p−1) = η(p, k) > 1 the modified Lévy measure parameter.
Then

ρ(νp,t; j) =

{
tk(p − 1)−η(p,k).ν2,η(p,k) f or p > 1
tk.(δe1

∏
`, j ξ0,1)∗k f or p = 1 (4.13)

From the cumulant function (4.4) of univariate non-negative stable Tweedie
we obtain the first and the second derivatives as follow

K′ξp,1
(θ0) =

{
exp(θ0) for p = 1[
(θ)(1 − p)

]−1/(p−1) for p ≥ 1
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Table 3: Summary of k-variate NST models with power variance parameter
p = p(α) ≥ 1, modified Lévy measure parameter η := 1 + k/(p − 1) and support
of distributions Sp fixing j = 1.

Type(s) p = p(α) η = 1 + k/(p − 1) Sp

Normal Poisson p = 1 η = ∞ N ×Rk−1

Normal compound Poisson 1 < p < 2 η > k + 1 [0,∞) ×Rk−1

Normal noncentral gamma p = 3/2 η = 2k + 1 [0,∞) ×Rk−1

Normal gamma p = 2 η = k + 1 (0,∞) ×Rk−1

Normal positive stable p > 2 1 < η < k + 1 (0,∞) ×Rk−1

Normal inverse Gaussian p = 3 η = 1 + k/2 (0,∞) ×Rk−1

and also

K′′ξp,1
(θ0) =


exp(θ0) = K′ξp,1

(θ0) for p = 1[
(θ)(1 − p)

]−p/(p−1)
=

[
K′ξp,1

(θ0)
]p

for p ≥ 1

Lemma 4.1. Let f : R → R and g,h : Rk
→ R be three functions, each is twice

differentiable and such that h = f ◦ g. Then

h′(x) = f ′(g(x)) × g′(x) and h′′(x) = f ′′(g(x)) × g′(x)g′(x)> + f ′(g(x)) × g′′(x)

Then fixing j = 1 and using Lemma 4.1 with h = Kνp,t , f = tKξp,1 and g(θ) =

(θ1 +
∑k

j=2 θ
2
j/2) such that g′(θ) = (1, θ2, . . . , θk)> and g′′(θ) = Diag(0, 1, . . . , 1),

we can write

K′′νp,t
(θ) =

[
∂2

∂θi∂θ j
tKξp,1(g(θ))

]
i, j=1,...,k

= t.
(
γ a>

a A

)
(4.14)

with γ = Kξp,1(g(θ)), a = γ(θ2, . . . , θk)> and A = γ−1aa> + K′ξp,1
(g(θ))Ik−1. There-

fore, using (4.11) it follows that

det K′′νp,t
(θ) = tk = K′′ξp,1

(g(θ))
{
K′ξp,1

(g(θ))
}k−1

=


tk exp{kg(θ)} for p = 1[
g(θ)(1 − p)

]−1−k/(p−1) for p ≥ 1
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Taking η(p, k) = 1 + k/(p − 1) and Kρ(p,t)(θ) = log det K′′ν(p,t)
(θ) which is

Kρ(p,t)(θ) =


k(θ1 + 1

2

∑k
j=2) + log tk for p = 1

−η(p, k) log(θ1 −
1
2

∑k
j=2 θ

2
j + log cp,k,t for p > 1

for θ ∈ Θ(ρ(νp,t)) = Θ(νp,t) with cp,k,t = tk(p − 1)−η(p,k), this leads to (4.13).
Recall that the Monge-Ampère equation which is generally stated as detψ′′(θ) =

r(θ) where ψ is an unknown smooth function and r is a given positive function.
Then from the modified Lévy measure of νp,t; j, the Monge-Ampère equation
below is considered to be the problem of the characterization of multivariate
NST models through generalized variance function

det K′′(θ) = exp
{
Kρ(νp,t; j)(θ)

}
, p ≥ 1 (4.15)

where K is unknown cumulant function to be determined. See [24] for normal
gamma model and some references of particular cases.

4.2 Generalized Variance Estimations of some NST models

Generalized variance; i.e. the determinant of covariance matrix expressed in
term of mean vector; has important roles in statistical analysis of multivariate
data. It is a scalar measure of multivariate dispersion and used for overall
multivariate scatter.

The estimation of the generalized variance, mainly from a decision theoretic
point of view, attracted the interest of many researchers in the past four decades;
see for example [28, 29] for estimation under multivariate normality. In the
last two decades the generalized variance has been extended for non-normal
distributions in particular for natural exponential families (NEFs); see [30, 31,
32, 33] who worked in the context of NEFs.

Here we discuss the ML and UMVU estimators of generalized variance of
normal gamma, normal inverse Gaussian (NIG) and normal Poisson models.
Bayesian estimator of the generalized variance for normal Poisson is also dis-
cussed. Here we only present the analytical proof, the empirical proof through
simulation study can be seen in [34].
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4.2.1 Maximum Likelihood Estimator

Let X1, . . . ,Xn be random vectors i.i.d with distribution P(θ; p, t) ∈ G(νp,t; j) in
a given NST family, i.e. for fixed for fixed j ∈ {1, 2, . . . , k}, p ≥ 1 and t > 0.
Denoting X = (X1 + · · · + Xn)/n = (X1, . . . ,Xk)> the sample mean.

Theorem 4.1. The maximum likelihood estimator (MLE) of the generalized variance
det VGp,t; j(µ) is given by:

Tn;k;p,t; j = det VGp,t; j(X) = t1−p
(
X j

)p+k−1
(4.16)

Proof. The ML estimator (4.16) is directly obtained from (4.12) by substituting
µ j with its ML estimator X j. �

Then for each model one has:

Tn;k;t; j = det VGp,t; j(X) =


X

k
j , for normal Poisson

(1/t)X
k+1
j , for normal gamma

(1/t2)X
k+2
j , for normal inverse Gaussian

For all p ≥ 1, Tn;k,p,t; j is a biased estimator of det VGp,t; j(µ) = t1−p(µ j)p+k−1. For
example, for p = 1 we have det VGp,t; j(µ) = µk

j , to obtain an unbiased estimator
for this we need to use the intrinsic factorial moment formula

E
(
X j(X j−1)(X j−2) · · · (X j−k+1)

)
= µk

j ,

where X follows the univariate Poisson distribution with mean µ j.

4.2.2 Uniformly Minimum Variance Unbiased Estimator

In order to avoid the lack of good properties by estimating det VGp,t(µ) =

t1−pµk+p−1
j with Tn;k,p,t, we are able to obtain directly the uniformly minimum

variance and unbiased (UMVU) estimator Un;k,p,t of det VGp,t(µ).This is done
through the following techniques for all integers n > k [30, 33, 35] :

Un;k,p,t = Cn,k,p,t(nX) (4.17)

where Cn,k,p,t : Rk
→ [0,∞) satisfies

νn,k,p,t(dx) = Cn,k,p,t(x)νp,nt(dx) (4.18)
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and νn,k,p,t(dx) is the image measure of

1
(k + 1)!

(
det

[
1 1 · · · 1
x1 x2 · · · xk+1

])2

νp,t(dx1) · · · νp,t(dxn)

by the map (x1, · · · xn) 7→ x1 + · · · + xn. Boubacar Maïnassara and Kokonendji
(2013) presented the ways for getting expression of Cn,k,p,t(x) for computing the
UMVU estimator Un;k,p,tfor p = p(α) ∈ [1,∞) as stated in the following Theorem.

Theorem 4.2. Let X1, · · · ,Xn be random vectors i.i.d with distribution P(µ,Gp,t; j) ∈
G(νp,t; j) in a given NST family, i.e. for fixed p ≥ 1, t > 0, and having modified Lèvy
measure ρ(νp,t) satisfies (4.13) with parameter η(p, k) = p + k − 1. Then

Cn,k,p,t(x) =
νp,nt ∗ ρ(νp,t)(dx)

νp,nt(dx)

in particular, Cn,k,p,t(x) is

n−kx j(x j − 1)(x j − 2) · · · (x j − k + 1), x j ≥ k for normal Poisson

tkΓ(nt)[Γ(nt + k + 1)]−1xk+1
j for normal gamma

tk2−1−k/2[Γ(1 + k/2)]−1x3/2
j exp

{
(nt)2/(2x j)

}
×∫ x j

0
yk/2

j (x j − y j)−3/2 exp
{
−y j − (nt)2/[2(x j − y j)]

}
dy j for normal Inverse-Gaussian

Proof. From (4.18) we write:

Cn,k,p,t(x) =
νn;k;p,t(dx)
νp,nt(dx)

Following [33, Theorem 1] and using (4.13) we have:

Kνn;k;p,t(θ) = nKνp,t(θ) + log det K′′νp,t

= Kνp,nt(θ) + Kρ(νp,t)(θ)

for all θ ∈ Θ(νp,1). Then it immediately follows that νn;k;p,t = νp,nt ∗ ρ(νp,t) is the
convolution product of νp,nt by ρ(νp,t). The proof for Cn,k,p,t(x) is established by
considering each group of the NST models with respect to the different values
of p ≥ 1 and using (4.13).
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Indeed, for p = 1 and fixing j = 1 we have ρ(ν1,t) = tk.(δe1

∏k
j=2 ξ0,1)∗k and

Cn,k,1,t(x) = tk
ν1,nt ∗ (δe1

∏k
j=2 ξ0,1)∗k(dx)

ν1,nt(dx)

= tkξ1,nt(x1 − k)
ξ1,nt(x1)

 k∏
j=2

∫
R

ξ0,x1−k(x j − y j)ξ0,k(y j)
ξ0,x1(x j)

dy j


= tk x1!(nt)x1−k exp(−nt)

(x1 − k)!(nt)x1 exp(−nt)
× 1

=
(x1)(x1 − 1) . . . (x1 − k + 1)

nk
;

because for fixed j = 2, . . . , k the expression

W( j, x1, k) =

∫
R

ξ0,x1−k(x j − y j)ξ0,k(y j)
ξ0,x1(x j)

dy j (4.19)

is finally

W( j, x1, k) =

∫
R

1√
2π(x1−k)

exp
{
−(x j−y j)2

2(x1−y1)

}
1
√

2πk
exp

(
−y2

j

2k

)
1

√
2πx1

exp
(
−x2

j

2x1

) dy j

=

√
x1

√
2π

√
k(x1 − k)

exp

 x2
j

2x1

 ∫
R

exp

−y2
j + 2

kx j

x1
y j −

kx2
j

x1

2 k
x1

(x1 − k)

 dy j

= exp(0)
∫
R

ξ
0,

k(x1−k)
x1

(
y j −

kx j

x1

)
dy j

= 1
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Let p = 2, then ρ(ν2,t) = tkν2,η(2,k), one obtains

Cn,k,2,t(x) = tkν2,nt ∗ ν2,η(2,k)(dx)
ν2,nt(dx)

= tkν2,nt+η(2,k)(dx)
ν2,nt(dx)

= tk
ξ2,nt+η(2,k)(dx1)

∏k
j=2 ξ0,x1(dx j)

ξ2,nt(dx1)
∏k

j=2 ξ0,x1(dx j)

= tk
xnt+η(2,k)−1

1

Γ[nt + η(2, k)]
×

Γ(nt)
xnt−1

1

=
Γ(nt)

Γ[nt + η(2, k)]
xη(2,k)

1

with the modified Lévy measure parameter η(2, k) = k + 1.
For p = 3 we have ρ(νp,t) = tk2−η(3,k)ν2,η(3,k), then

Cn,k,3,t(x) = tk2−η(3,k)ν3,nt ∗ ν2,η(3,k)(dx)
ν3,nt(dx)

= tk2−1−k/2
∫
Rk

ν3,nt(x − y)ν2,η(3,k)(y)
ν3,nt(x)

dy

= tk2−1−k/2
∫ x1

0

ξ3,nt(x1 − y1)ξ2,η(3,k)(y1)
ξ3,nt(x1)

 k∏
j=2

∫
R

ξ0,x1−y1(x j − y j)ξ0,y1(y j)
ξ0,x1(x j)

 dy1

= tk2−1−k/2
∫ x1

0

ξ3,nt(x1 − y1)ξ2,η(3,k)(y1)
ξ3,nt(x1)

× 1dy1

= tk2−1−k/2
∫ x1

0

nt√
2π(x1−y1)3

exp
{
−(nt)2

2(x1−y1)

}
×

yη(3,k)−1
1

Γ[η(3,k)] exp(−y1)

nt√
2πx3

1

exp
(
−(nt)2

2x1

) dy1

= tk2−1−k/2
x3/2

1

Γ[η(3, k)]
exp

{
(nt)2

2x1

}∫ x1

0

yη(3,k)−1
1

(x1 − y1)3/2 exp
{
−y1 −

(nt)2

2(x1 − y1)

}
dy1

�



21

4.2.3 Bayesian Estimator

We introduce the Bayesian estimator of normal-Poisson generalized variance
using the conjugate prior of Poisson distribution namely gamma distribution.

Theorem 4.3. Let X1, · · · ,Xn be random vectors i.i.d with distribution P(µ,G1,t; j) ∈
G(ν1,t; j) a normal Poisson model. For t > 0 and j ∈ {1, 2, . . . , k} fixed, under assumption
of prior gamma distribution of µ j with parameter α > 0 and β > 0, the Bayesian
estimator of det VFt; j(µ) = µk

j is given by

Bn,t; j,α,β =

α + nX j

β + n

k

. (4.20)

Proof. Let X j1, . . . ,X jn given µ j be Poisson distribution with mean µ j, then the
probability mass function is given by

p(x ji|µ j) =
µ

x ji

j

x ji!
exp(−µ j) ∀x ji ∈N.

Assuming that µ j follows gamma(α, β), then the prior probability distribution
function of µ j is written as

f (µ j;α, β) =
βα

Γ(α)
µα−1

j exp(−βµ j), ∀µ j > 0,

with Γ(α) :=
∫
∞

0
xα−1e−xdx. Using the classical Bayes theorem, the posterior

distribution of µ j given an observation x ji can be expressed as

f (µ j|x ji;α, β) =
p(x ji|µ j) f (µ j;α, β)∫

µ j>0
p(x ji|µ j) f (µ j;α, β)dµ j

=
(β + 1)α+x ji

Γ(α + x ji)
µ
α+x ji−1
j exp{−(β + 1)µ j}

which is the gamma density with parameters α′ = α + x ji and β′ = β + 1. Then
with random sample X j1, . . . ,X jn the posterior will be gamma(α + nX j, β + n).
Since Bayesian estimator of µ j is given by the expected value of the posterior
distribution i.e. (α + nX j)/(β + n), this concludes the proof. �
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5 FINAL REMARKS

Study on Tweedie family as a special case of EDM and at the same time as
an extention of α-stable family distribution is an interesting topic and a chal-
lenging problem. The univariate Tweedie distributions which admit the power
variance function: Var(µ) = Vµp with p ∈ (−∞, 0] ∪ [1,∞) with domain µ ∈ R
for p = 0 and µ ∈ R+ for other values of p, have the cumulant function and
mean that can be found by equating κ′′(θ) = dµ/dθ = µp and solving for µ and
κ. This special characteristic is very helpful in the extensions of the family such
as the multivariate Tweedie model and NST model which we have discussed
in this paper.
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