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Enzymatic membrane reactors:
the determining factors in two separate
phase operations
Joni Agustian,a,b Azlina Harun Kamaruddina∗ and Subhash Bhatiaa

Abstract

A two separate phase-enzymatic membrane reactor is an attractive process since it has a large interfacial area and exchange
surfaces, simultaneous reaction and separation and other benefits. Many factors influence its successful operation, and these
include characteristics of the enzyme, membrane, circulating fluids and reactor operations. Although the operating conditions
are the main factor, other factors must be considered before, during or after its application. At the initial stage of reactor
development, the solubility of substrates and products, type of operation, membrane material and size, enzyme preparation and
loading procedure, and cleanliness of the recirculated fluids should be specified. The immobilization site, reactor arrangement,
dissolved or no-solvent operation, classic or emulsion operation and immobilized or suspended enzyme(s) are determined
later. Some factors still need further studies. Utilization of the technology is described for use from multigram- to plant-scale
capacity to process racemic and achiral compounds. The racemates were resolved primarily by kinetic resolution, but dynamic
kinetic resolution has been exploited. The technology focused on hydrolytic reactions, but esterification processes were also
exploited.
c© 2011 Society of Chemical Industry

Keywords: enzymatic membrane reactors; operational factors; immobilised and suspended enzymes; hydrolysis reactions; esterification;
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INTRODUCTION
Enantiomers of drugs often have different pharmacokinetic and
pharmacodynamic properties. As in β-blockers, the distomers give
no β-blocking effects, reduce the overall drug selectivity, produce
side-effects as the eutomers or possibly cause adverse effects.1 – 12

These facts emphasize they usually do not contribute to medica-
tions. Hence, enantiomers should be used individually.13 – 15 The
need for single enantiomeric synthetic drugs can be observed
from the world market, where consumption of single enantiomers
increased rapidly from US$ 74.4 billion in 199616 to US$ 225 billion
in 2005.17 Many methods have been applied to generate single
enantiomeric synthetic drugs.18 – 20

Enzymatic resolution of racemic compounds in membrane
reactors (enzymatic membrane reactors or EMR) give many
benefits. Conversion and separation of the enantiomers can
take place in a single operation,21,22 thus selective removal of
products from reaction sites increases conversion of product-
inhibited or thermodynamically unfavourable reactions.23,24 The
EMR overcomes disadvantages of batch stirred tank reactors,25 – 27

consumes low energy and is easy to scale-up.28,29 Compared
with other technologies, the EMR has high productivity and
stability, better control of single enantiomers production, enriched
and concentrated products and decreased reaction times.30 – 32

They could provide an efficient and cleaner route to single
enantiomers.33 Studies show that one of the best approaches
to improve economic and technical competitiveness is the
EMR.34 – 36 Therefore, it is an attractive alternative to the enzymatic
processes.37,38

Work on two separate phase-enzymatic membrane reactors
(TSP-EMR or biphasic EMR) were started many years after Rony39

published a pioneering report on enzymes immobilization in
hollow fibre membranes (HFM). Up to now, the TSP-EMR, which
still uses the HFM as the enzymes dock, has processed racemic
and achiral compounds such as drugs, acids, esters and oils.
Production of the single enantiomers from an achiral substrate
used this EMR type. The technology was encouraged in dynamic
kinetic resolution of the racemic compounds,20,40 – 42 and has been
employed in plant-scale capacities.43,44 This paper details various
determining factors of the TSP-EMR, which should be examined
in development of the technology. Different applications of the
technology with its different characteristics are described.

TSP-EMR: BASIC NEEDS
Immobilization of enzymes at organic–aqueous interfaces is
necessary for EMR implementation. Many enzymes are active
at these interfaces.45,46 When an enzyme is on the membrane,
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Figure 1. Materials transportation in an enzymatic membrane reactor.

in order for reaction to occur, substrate (S) has to be moved to
enzyme sites, and product (P) has to be transported from the
reaction sites to the other side of the membrane29,47 as illustrated
in Fig. 1. Catalytic activity of the enzyme on the interface makes it
applicable to the two separate phase membrane-based system.

The TSP-EMR is formed by two immiscible fluids, a continuous
organic phase and a continuous aqueous phase, separated by the
enzyme-membranes interfaces.48 This system is of interest when
products are insoluble in the organic phase since the reaction
and separation can be performed simultaneously, leading to a
simplified process, reduction in production cost,49,50 and reduction
of down-stream processes.51 – 53 Use of this biphasic EMR is highly
attractive when HFM are employed.54,55

The HFM modules have four separate openings, an inlet and
an outlet for each side of the membrane as shown in Fig. 1,
which allow continuous flows across the membrane surfaces.
Transport could be achieved using hydrophobic membranes and
positive pressure on the aqueous side or hydrophilic membranes
and positive pressure on the organic side.50,56 Use of HFM to
house the enzymes has advantages over conventional enzymes
immobilization methods. Large exchange surface per unit volume
is provided by these membranes.32,57 – 59 The modules have
high interfacial area, absence of emulsion, no flooding at high
flow rates, no unloading at low flow rates and do not require
density difference between phases.50,57,60 – 62 They also have high
volumetric productivity, simultaneous products separation, are
easily reutilized, cheap enzyme fixation, little loss of the enzyme
catalytic activity, high substrate concentration, and stable lipases
activity.62 – 66 However, they have several drawbacks, for instance
solutions must be free of particulate materials, use of specific type
of fibre,63 diffusion resistance64,67 and enzyme conformational
changes.68,69 Other membrane configurations having only one
connection to downstream/permeate-side such as the spiral-
wound are not suitable for the application.35,70

OPERATING CONSIDERATIONS:
THE DETERMINING FACTORS
Development of the TSP-EMR involves operational strategy,
enzyme loading procedure, membrane type and material, use

of gas phase, etc. (Fig. 2). Operating conditions are the main
issue, but other sensitive factors should also be considered before,
during and after application.

Operating conditions
Operating conditions is one of the most important factors, involved
in scale-up of a reaction process.71 For the TSP-EMR, temperature,
pH of the aqueous phase, concentration of the substrate(s) and
immobilized enzyme, transmembrane pressure and flow rate of
the organic and aqueous phase are conditioned during operation.
Most of the factors could be managed externally to achieve
the optimum performance; however, the immobilized enzyme
activity during the processes is not controlled; this is determined
by evaluating enzyme deactivation.36,37,50

Operating conditions of the TSP-EMR are described in Table 1.
The technology is mostly applied in hydrolytic reactions, and
run in batch recirculation mode. In general, operations are
performed at mild temperatures, relatively long reaction times,
low transmembrane pressures and medium flow rates in the shell-
and lumen-side to give low to high conversions and medium to
high selectivities. The organic and aqueous phases are fed through
both sides of the HFM modules. All parameters are measured
during experiments.

Fluids characteristics
Enzymes are stable and active in organic solvents,89 – 92 but
a certain amount of water bound on to enzyme surfaces is
needed to keep them in catalytically active conformation.93,94 Xin
et al.95 suggested an aqueous-organic biphasic system or a water
saturated organic solvent reaction in hydrolysis of the racemic
drugs. Lipases are found to be effective at the organic–water
interfaces.92,96 Although the reactor design for the biphasic
system has several complications, the system overcomes the
drug solubility problem and forms irreversible reactions.97 It is
undeniable that the solvent and water content may have effects
on enantioselectivity.98

In the biphasic system, characteristics of the organic solvent
are important since the enzymatic activity in the organic phase
varies significantly.99,100 Many lipases show high activity in hy-
drophobic solvents with low polarities.57,101 – 103 Although higher
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Figure 2. Factors in TSP-EMR operation.

enantioselectivity is found in hydrophilic solvents, hydrophobic
solvents provide higher reaction rates.103 Hydrophobic solvents
are not dissolved easily in the aqueous phase, so good interfaces
in the HFM modules can be formed. Thus, many TSP-EMRs are
based-on strongly hydrophobic solvents such as those shown in
Table 1. The moisture content plays a key role in enzyme-mediated
esterification in organic media since high water activity (aw) shifts
the chemical equilibrium towards the reverse reaction.104 Its re-
quirement may vary as the solvent is changed.105 Hydrophobic
solvents have lower capability to remove water from the enzymes,
so that in these solvents the enzymes have higher activity.106

As described in Table 1, a common aqueous phase is phosphate
buffer solution at pH values of 5.5–8.5. Kamaruddin et al.73

concluded that the pH of the aqueous phase during hydrolytic
processes greatly influenced the lipase enantioselectivity, and a
phosphate buffer at pH 8 resulted in the highest optical purity and
enantioselectivity. During esterification of racemic ketoprofen,
the conversion increased as pH was changed from 6.0 to 7.0,
but it dropped at pH 8.75 These results show that different
reactions require a different aqueous phase. Lopez et al.43 used
bisulphite solution pH 8.5, which produced a significant increase
in enantioselectivity, although pH 8.0 showed higher productivity.
Dodds et al.44 found similar results in which the aqueous phase
at pH 8 gave high enantiomeric excess, although the buffer at
pH 7 produced greater hydrolysis. Because of the importance
of the aqueous pH, sodium hydroxide solution was frequently
added to the aqueous phase during TSP-EMR runs to maintain
buffer condition.56,85,86 Albeit phosphate buffers were a good
aqueous phase, they occasionally could not be used to provide
a proper aqueous environment. As in hydrolysis of the racemic
methyl-methoxy phenylglycidate (MMPG), the phosphate buffer
led to base-catalysed hydrolysis of the substrate to form aldehyde
by-product, which inhibited enzyme activity; hence in MMPG
hydrolysis, researchers used a bisulphite solution to prevent
aldehyde contamination.44 This solution reduced the inhibitory
product, shortened reaction time, increased the rate of reaction
and improved the enantioselectivity.

Cleanliness of the liquid/air phase is also an important factor.
The solution must be free of particulate materials.63 This reduces
membranes fouling caused by unwanted materials thus increasing
the membrane service life. Installation of filters before the reactor
units and use of non-corrosive materials prevents particulate
matter. Breslau107 suggested using an extremely pure liquid to
avoid blockage or contamination of the membranes.

Dissolved- or no-solvent operation
Operating the TSP-EMR for drugs resolution uses the organic
solvents to dissolve the racemic drugs and to form the organic
phase (Table 1). Dissolved-solvent operations are applied when
the substrates are solid compounds or viscous liquids. Some
operations have been developed with no solvent added to the
organic phase. For example, ethyl butyrate was hydrolysed by
porcine liver esterase in several hours at the reaction rate of
9600 µ min−1.56 Hydrolysis of oils also proceeded in a no-solvent
system.76,77 The increase of olive oil concentrations led to the
increase of catalytic efficiency.48 Only a small conversion difference
was found when this biphasic EMR was operated in the presence
of an organic solvent (60%) or with the pure oil (50%).108

Multiphase or extractive TSP-EMR
In dissolved operation, substrates can be supplied either in the
organic or aqueous phase. Matson40 called the TSP-EMR with
key reactant(s) fed through a water-immiscible organic phase
a ‘multiphase EMR’; while the aqueous phase dissolving key
reactant(s) is referred to as the ‘extractive’ type. As described
in Table 1, most operations are based on the multiphase type.
Since TSP-EMR operations are based on simultaneous reaction
and separation, the reactant(s) must not mix with the product(s).
This means that in the multiphase TSP-EMR, the substrate(s) should
have high solubility in the organic solvent and not dissolve in the
aqueous phase. In contrast, the product(s) must dissolve easily
in the aqueous phase, so that they can be transported without
problems. Hence, the solubility behaviour of the substrate(s) and
product(s) must be considered, since many commercial organic
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compounds have low solubility in the aqueous phase.49,82,109 This
factor must be considered in the first stage of development.

Reactor arrangement
Even though different specifications of HFM have been used,
the TSP-EMR was primarily developed as a horizontal counter-
flow or vertical co-current-flow arrangement (Table 1). In fact, the
horizontal type is preferred, as it was found to resolve racemates,
while the opponent modules were useful in oil hydrolysis. Counter-
current flow reactors showed higher productivity/effectivity than
the co-current TSP-EMR.31,110 It is considered that HFM modules
with vertical fibre orientation are better at controlling membrane
fouling,111 but this orientation requires a higher pressure input.112

Classic or emulsion TSP-EMR
Recently, the TSP-EMR integrated the use of emulsion in order
to improve performance of the immobilized enzyme. In this case,
an emulsion of oil-in-water (O/W) prepared by the emulsification
technique is mixed with an enzyme solution. The mixture is then
transferred to the HFM modules to form enzymatic reactors with
an emulsion environment on the membrane surfaces. The TSP-
EMR with emulsion optimized distribution of the immobilized
enzyme improved the mass transfer.21 Although the specific
activity of the enzyme with and without the emulsion was same,
the enantiomeric excess of the product increased from 74% (TSP-
EMR) to 97% (TSP-E-EMR) for (R, S)-naproxen methyl ester, and from
96% (TSP-EMR) to 100% (TSP-E-EMR) for racemic naproxen butyl
ester, and the overall mass transfer coefficient of the TSP-E-EMR was
larger by 58%.21 However, formation of the emulsion environment
on the membrane surfaces may complicate workup,113 whereas
the classic biphasic EMR offers simple operation.

Immobilisation site
Either the shell-side (spongy layers) or lumen-side of the HFM
can be used as asurface to dock the enzymes. The spongy layers
are usually employed as described in Table 1. Immobilization of
the enzymes on the shell-side gave higher protein attachment
and enantiomeric excess than the lumen-side.33,65 Besides, shell-
side immobilization allowed higher conversion,65 higher catalytic
activity and stability,114 and higher loading capacity.115 Although
immobilization of the enzymes on the lumen-side showed lower
specific activity, it led to higher enantioselectivity.52

Enzyme preparation
The TSP-EMR enzymes were generally prepared by a simple
method. First, the biocatalysts were dissolved in the phosphate
buffer pH 7–8 with gentle steering for 45–120 min. Then
the solution was centrifuged to remove the insoluble matter
(3000–5000 rotation per minute, 5–15 min). After separation, the
enzymes were immobilized.

The initial source of the enzymes could influence TSP-EMR
performance. Most enzymes were used directly (crude or native
enzymes). Sakaki et al.52 compared a TSP-EMR using purified
lipase with a TSP-EMR based on crude lipase, where both lipases
were prepared by the above method. They found the reactions
catalyzed by the crude lipase had lower enantioselectivity, and
concluded that the crude lipase contains some hydrolases with
low or no enantioselectivity, which act to reduce product purity.
Another observation was that surfactant-coated lipase gave higher
conversions (1.4 to 2 times) than the native type.109

Enzyme immobilization and loading procedure
The quantity of enzymes attached to the membrane surfaces
is important.33,115 For high enzyme attachment, a suitable
immobilization strategy is required. Thousands of procedures
have been reported.116 Membranes have high surface area for
enzyme loads and provide strong covalent attachment.117 In the
TSP-EMR, the preferred method to immobilize the enzymes is
adsorption through cross-flow filtration. This method recirculates
an enzyme solution from one side to the other side of the HFM
(shell- to lumen-side or the other way) causing the enzyme to
adsorb to the membrane layers. A diffusive mode of the enzyme
immobilisation method was also developed.74 In this method,
the enzyme flows diffusively to the HFM surfaces without cross-
flowing the enzyme solution. Immobilization of the enzymes onto
chemically modified membrane surfaces has also been conducted,
in which covalent bonds of the enzyme–chemical–membranes
are formed. Results of enzyme immobilization inside the TSP-
EMR are shown in Table 2. Relatively low enzyme concentrations
attached to the HFM surfaces occur after the immobilization
processes compared with the initial solution concentration.

The strongest immobilization method is obtained by the
covalent bond.118 However, for immobilization of Candida rugosa
lipase on different membrane materials, Hollownia66 found that
the adsorption method provided higher process efficiencies
than the chemical binding method, but the latter produced
higher enzyme catalytic activity. These results were the same
as the earlier observations.40,74 The physical entrapment of
the enzyme onto the HFM surfaces led to higher retention
of the enzyme activity, while the covalent bond required a
longer process, which led to a lower retention of the enzyme
activity.49

Several enzyme loading procedures as shown in Fig. 3 were
compared to evaluate protein distribution on the membrane
surfaces, i.e. the axial and radial distribution of the enzyme since
the enzyme activity depended on its distribution along the fibres.85

The procedures (3a) and (3b) gave higher axial and radial enzyme
distribution. However, enzyme immobilization could be done
by recirculating the enzyme solution through both sides of the
HFM.119,120

Membrane type
Since enzymes are more effective in an aqueous environment
than in organic solvents, hydrophilic membranes are preferred.40

Major differences between the hydrophobic and hydrophilic
membranes are the thickness of reaction layers, which is much
smaller in the hydrophobic membranes, and the capability
of hydrophilic membranes to increase the enzymes activity,
hence the immobilized enzymes could retain their full catalytic
activities.121 As described in Table 1, most TSP-EMR use hydrophilic
HFM. Sakaki and Itoh79 found that the biphasic reactor with
hydrophobic microfiltration membranes was not well suited to
optical resolution by lipase-catalyzed hydrolysis. However, in
palm and olive oil hydrolysis, adsorption of lipase was higher in
hydrophobic HFM than hydrophilic membranes.86 Combination
of hydrophilic–hydrophobic membranes was also tested.122

These membranes accommodate high enzyme load. Although
hydrophobic membranes are more physically and chemically
stable, create high affinity and open-state lipases,121,123 – 125 the
hydrophilic type provides a thick contact zone, water-wetted
interfaces, higher enzyme activity, lower enzyme desorption
and lower enzyme concentration.48,122,126 From the economic

wileyonlinelibrary.com/jctb c© 2011 Society of Chemical Industry J Chem Technol Biotechnol 2011; 86: 1032–1048



1
0

3
9

Two separate phase enzymatic membrane reactor www.soci.org

Table 2. The TSP-EMR enzymes immobilization characteristics

Method Membrane Solvent
Initial

[enzyme] Time (h)
Flow
rate

TMP
(kPa)

T
(◦C)

Immobilized
enzyme Ref

Physical
adsorption

PA 50 50 mM PO4
buffer pH 7

3 g L−1 4 ND 40 ND 8.1–13 mg Giorno et al.21

Physical
adsorption

PAN 50 50 mM PO4
buffer

2 g L−1 ND 1.5×10−2 m/s 35 RT 0.10-0.17 g Kamaruddin
et al.32

Physical
adsorption

PAN 50 50 mM PO4
buffer pH 8

2 g L−1 ND 300 mL/min 35 RT 0.13-0.17 g Kamaruddin
et al.33

Physical
adsorption

CP 5 Distilled water 7.5 g L−1 0.5 30 mL/min ND ND 154.8 ±
5.2 mg/m2

Knezevic et al.35,38

Physical
adsorption

MPP 50 mM PO4
buffer pH 7

ND 2 ND ND 25 68.68–230.32
mg/m2

Xua et al.48

Physical
adsorption

PA 50 50 mM PO4
buffer pH 7

0.25, 1 g L−1 ∼120 mL
permeate
volume

ND 50 ND 8.1, 35 mg Giorno et al.52

Physical
adsorption

PA 50 PO4 buffer 2 g L−1 ND ND 50-70 RT 3.38 mg Giorno et al.60

Physical
adsorption

PAN 50 50 mM PO4
buffer

2 g L−1 ND 300 mL/min 35 ND 0.17 g Kamaruddin
et al.73

Physical
adsorption

PS 10 50 mM PO4
buffer

0.86-17.12 mL L−1 ∼80%
permeate
volume

40 25 RT 0.05 mL/mL Aboul-Enein
et al.75

Physical
adsorption

PAN 30, PS
30, PE -

50 mM PO4
buffer pH 7

1 g L−1 1 h & 50%
permeate

ND 50 ND ND Sakaki and Itoh78

Covalent
Bonding

PA 50 20 mM PO4
buffer, pH
7.2

0.03 &
0.05 mg cm−2

24 ND ND 30 ND Ceynowa and
Koter79

Physical
adsorption

PS 30 100 mM PO4
buffer pH 7

ND 1 ND 120 RT 1.28
units/cm2

Sousa et al.85

ND: No Data.

(a) (b) (c) (d)

Figure 3. Various procedures for the enzyme loading.

perspective, hydrophilic membranes are preferred since fewer
enzymes are required.48 There may be a significant advantage
in employing relatively thin membranes with high loads when
the membrane thickness is a critical factor for optimum enzyme
loads.127

A comparison between polyacrylonitrile (PAN) and polyether-
sulfone (PES) HFM showed that the PAN gave higher enan-
tioselectivity, but the PES developed higher reaction rates per
unit membrane area.53 Further observation proved that the PES
produced higher reaction rates than the PAN, but the enantiose-
lectivities were similar.79 Higher enantioselectivity was obtained
by polyamide than polysulfone HFM.65,115 The highest process
efficiency was found with polypropylene membrane during the
adsorption of enzyme, while the cellulose membrane produced

higher process efficiency than the polyamide for chemical binding
of the same lipase.66

Membrane and enzyme size
Membranes are classified into microfiltration membranes (pore
sizes 0.1–10 µm), ultrafiltration membranes (10–100 nm), nanofil-
tration (1–10 nm) and reverse osmosis membranes (<1 nm).70

Enzymes with molecular sizes 10–500 kDa are retained by ul-
tra filtration membranes, with a typical molecular weight cut-off
(MWCO) of 10 kDa. Since the sizes of many enzymes are 10–80 kDa,
ultrafiltration membranes with MWCO of 1–100 kDa are the most
frequently used.30 If the enzyme molecules are large compared
with the membrane pore sizes, they cannot diffuse through the
membrane layers,86 and will be immobilized easily and no leaks of
enzyme will occur from the HFM modules.
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Fouling control
Generally a major limitation of membrane operation is loss of
performance due to fouling.128,129 This occurs when membrane
flux decreases as a function of time due to increase in hydraulic
resistance.130 The fouling and polarization of concentration during
EMR operations could shorten membrane service life and reduce
economic benefits, but these limitations can be reduced by
improving flows at the membrane surfaces, (which disrupt the
boundary layers) by introducing Dean vortices or by surface
modifications.30,128,131 They could also be diminished by a new
module design and fluid-dynamic operation.70

APPLICATION OF TSP-EMR: IMMOBILIZED
ENZYMES
Resolution of racemic compounds
Resolution of racemic drugs, organic acids, amino acids and
ester molecules have taken place. Either short-chain racemic
esters or their long-chain compounds are resolved by hydrolytic
reactions, but esterification of the racemates has also been
developed. Performance of the hydrolysis in terms of activity and
enantioselectivity is increased with decrease of aliphatic chains of
the alcohol group.72,73 During these processes, the enzyme acts
as an enantioselective converting system and the HFM functions
as a barrier that separates the enantiomers,33,43 as illustrated
in Fig. 4. Commonly one isomer is transported to the aqueous
phase as product and the unreacted enantiomer remains in the
organic phase.78,132,133 Multiphase operation of the TSP-EMR has
considerable advantages for enzymatic optical resolution when
the substrates are poorly water-soluble and the products dissolve
in water.78

Drugs and Intermediates
Kinetic resolutions of non-steroidal anti-inflammatory drugs
(NSAIDs) give medium to high selectivities at mild temperatures
and long reaction times. Although these processes achieved
almost maximum resolution values, some conversions are low.

Hydrolysis of racemic trans-methylmethoxyphenylglycidate
(MMPG), a diltiazem intermediate, is one important application

of the TSP-EMR. MMPG has been resolved in an industrial facility.
Compound resolution was started at bench-scale where lipase
OF 360 was utilized.43 Using toluene and bisulphite solution
at pH 8.5, the process gave 42.6% conversion and product
enantiomeric excess of 84.4% under optimized conditions. In a
pilot-plant study (100-fold scale-up ratio, 10 pilot-scale modules
with 7.5 m2 membrane effective area), the TSP-EMR produced
enantioselectivity of 24.6, product yield of 42.9% and enantiomeric
excess of 82% (product) in 22 h at 16–19 ◦C. A commercial-scale
facility was then set-up using twelve 60 m2 modules, which gave
55 kg year−1 m−2 of 99% enantiomeric excess of the ester. Similar
results were obtained using Serratia marcescens lipase.134

Several patents on resolution of racemic ibuprofen esters
through hydrolysis and esterification reactions were granted to
Matson,40 Matson et al.41 and Lopez and Matson.74 The racemic
ibuprofen trifluoroethyl ester was resolved by Candida cylindracea
lipase (CCL) under no-solvent operation using potassium phos-
phate buffer at pH 7.8 and conditions as stated in Table 1. Low
yields were obtained after 76 h operating time. Esterification of
ibuprofen acid was then developed using the same lipase adsorbed
onto polyacrylonitrile multiphase TSP-EMR. Pentanol was used as
the organic phase and alcohol as donor. After 68 h, spectrophoto-
metric analysis indicated that the ester was formed. Resolution of
sulfomethyl ibuprofen ester using Prozyme 6 protease in an extrac-
tive TSP-EMR produced 1.76 g of resolved ibuprofen from 32.3 g of
the substrate after 17 h. Later, Seaprose enzyme was cross-linked
to an extractive polyacrylonitrile HFM to hydrolyse the racemic
ibuprofen sulfomethyl ester.74 This process was completed after
46 h.

Racemic ibuprofen ester resolution was also studied by
Kamaruddin et al.33,73 The ester dissolved in isooctane was
circulated continuously in the membrane shell-side, and the
products were transported to phosphate buffer at pH 8 flowing in
the lumen-side. The polyacrylonitrile reactor was operated for 10 h
at 40 ◦C and 40 K Pa transmembrane pressure to give conversion
up to 31% and product enantiomeric excess of 90%. The effect of
alkyl length of the ester compounds was also investigated. The
short-chain substrate, 2-ethoxy ethyl ibuprofen ester, had higher
enantiomeric ratio than 1-heptyl ester. Previously, hydrolysis
of the racemic cyanomethyl ibuprofen ester was obtained in
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Figure 4. Kinetic resolution of a racemate in the TSP-EMR.
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polyamide membranes, which housed CCL.31 Similar results to
those of Kamaruddin were found. The reactor showed no enzyme
deactivation up to 16 days. Further, observation of the hydrolysis of
racemic cyanomethyl-[2-(4-isobutylphenyl) propionate] indicated
that reduction of the immobilized enzyme activity compared with
the free-enzyme was mostly due to low mass transport of reagents
across the membranes.77

Production of (S)-naproxen acid obtained excellent product
enantiomeric excess (74–100%), but low conversion values
(<10%).21,52,60,65,72 Candida rugosa lipase (CRL) immobilized on
sponge layers of polyamide membranes was operated to hydrolyse
the substrate, (R, S)-naproxen ester, dissolved in isooctane at 30 ◦C.
Although the conversions were low, the effects of transmembrane
pressure and emulsion were revealed. Compared with the
batch stirred tank free-enzyme reaction, the enzymatic reactor
exhibited higher activity per mass of protein.65,72 Initially, a high
concentration of racemic naproxen methyl ester was resolved by
CCL in a polyacrylonitrile multiphase TSP-EMR at high flow rates on
both phases.40 For 36 hs, the hydrolytic rates were 9–14 µmol h−1.

Aboul-Enein et al.75 esterified racemic ketoprofen acid using an
alcohol to make (S)-ketoprofen acid. (R)-ketoprofen acid dissolved
in a dichloropropane-hexane mixture (20 : 80 v/v) was converted
to an ester by Candida antarctica lipase B immobilized on
sponge layers of polysulfone HFM. High conversion (73%) and
enantiomeric excess of product (87.8%) were obtained after 24 h
at 40 ◦C. The TSP-EMR also gave better performance than a batch
stirred tank free-enzyme system.

A cardiovascular drug intermediate, racemic glycidyl butyrate,
was treated with porcine pancreatic lipase.40,56 Subtractive
resolution of the racemate recovered 60% of the (R)-ester with
96.7% enantiomeric excess after 9.3 h operating at 28 ◦C using
polyacrylonitrile HFM. During the process, both enantiomers were
hydrolysed, but the (S)-ester reacted faster, and more than 98% of
the (S)-enantiomer was converted.

Organic acids
The enzymatic resolution of organic acid esters gave high
enantiomeric excess, but the technology has rarely been applied.
Racemic 2-hydroxy octanoic acid esters were hydrolysed by
Pseudomonas cepacia lipase immobilized on the spongy layers
of three different membranes.53,78 The process, conducted in
isooctane or hexane at 30 ◦C, gave enantioselectivity of 12–86%
and product recovery of 30–67% in which the hydrolysis of the
acid butyl ester led to higher enantioselectivity than the acid
methyl esters.

Amino acids
Various strategies have been developed to study resolution of
tyrosine compounds. These involve type of reaction, multiphase
or extractive operation, cross-flowing or cross-linking the enzyme
and the solvent type. (R, S)-N-benzoyl-L-tyrosine ethyl ester (BTEE)
was hydrolysed in an extractive TSP-EMR by α-Chymotrypsin
immobilized on the shell-side of polyacrylonitrile (PAN) HFM by
the diffusive method.40,74 200 mmol L−1 of substrate dissolved
in buffer solution at pH 7.8 was pumped through the lumen-
side at 1000 mL min−1, and silicone oil was maintained in the
shell-side at a constant pressure of 9 psi. The product, N-benzoyl-
L-tyrosine acid, recovered in the aqueous phase indicated that
the module activity was 80 µmole min−1. It was found that lower
substrate flow rate produced lower activity. A multiphase TSP-
EMR was also used to hydrolyse racemic BTEE using the same

enzyme (immobilized by the cross-flow filtration method) and
HFM module. In this case, 10 mmol L−1 BTEE in amyl acetate
was recirculated in the shell-side at 10 mL min−1 and a constant
pressure of 6.5 psi, and 200 mmol L−1 phosphate buffer at pH
7.8 flowed in the lumen side of the TSP-EMR. This process
gave a reaction rate of 45 µmole min−1. Later, the BTEE in n-
octanol (40 mmol L−1) run in the shell-side at 500 mL min−1 was
hydrolysed by the same enzyme attached to the shell-side of
the same TSP-EMR module by cross-linking it with bovine serum
albumin and glutaraldehyde. A high reaction rate was obtained
(700 µmole min−1). Finally, the same enzyme was cross-linked to
surfaces of the PAN HFM with a 2.5% glutaraldehyde solution in
50 mmol L−1 phosphate buffer at pH 7.40 A lower reaction rate
than the previous experiments was obtained. Hydrolysis of (R, S)-
N-acetyl-L-tyrosine ethyl ester (ATEE) was conducted using the
α-Chymotrypsin and polyacrylonitrile module.40 2.86 mmol L−1

ATEE dissolved in n-octanol was flowing at 400 mL min−1 on the
shell-side of the module, while 100 mmol L−1 K2PO4 was fed to
the lumen-side at the same flow rate. Cross-linking of the enzyme
with 2.5% glutaraldehyde in 50 mmol L−1 phosphate buffer at pH
7 produced a low reaction rate.

Esterification of racemic N-benzoyl tyrosine (BT) was also
studied.40 The α-Chymotrypsin was immobilized by cross-linking
it with 2.5% glutaraldehyde in 50 mmol L−1 phosphate buffer at
pH 7 on the shell-side of the polyacrylonitrile HFM. 200 mL n-
octanol mixed with 87 mL ethanol was flowed in the shell-side at
400 mL min−1. The reaction was started by introducing a solution
of 4.85 g of BT in phosphate buffer at pH 6 in the lumen-side at the
same flow rate. The BTEE was produced at 10% conversion after
120 h.

Other racemic esters
Ceynowa and Koter79,80 applied the TSP-EMR to select particular
enantiomers of racemic alcohol. (R, S)-1-phenylethyl propionate
dissolved in n-heptane and phosphate solution at pH 8.0 were
circulated inside polyamide HFM as shown in Fig. 5. The substrate
was hydrolysed to (R)-1-phenyl ethanol by Pseudomonas sp. with
55% conversion and 99% enantiomeric excess of the substrate.79

An innovative step was performed in the process: the unreacted
compound ((S)-enantiomer) was transported across the HFM to
the aqueous phase. Later, racemic 1-phenylethyl acetate and
(R, S)-1-phenyl-1-propyl acetate were hydrolysed to their alcohols
in polyamide membranes at 30 ◦C. These multiphase operations
produced 40–60% conversion of their (R)-esters.

Hydrolysis of (R, S)-octyl 2-chloro propionate was done with-
out solvent.40,41 210 g of the racemate was recirculated at
400 mLmin−1 in the shell-side of the PAN HFM, which housed
Candida L1754 immobilised by the cross-flow filtration method.
50 mmol L−1 K2PO4 solution was flowed in the lumen-side at the
same flow rate. 41% of the ester was hydrolysed during 6.8 days op-
eration. A higher result was obtained when racemic butyl 2-chloro
propionate was hydrolysed using the same module, enzyme and
immobilization method.40

Reactions of non-chiral substrates
Esterification of decanoic acid
The gas phase was used instead of the aqueous phase during
the esterification process. Constant humidity air was flowed in
the shell-side of cellulose dialyzer HFM to control water activity
(aW ) as illustrated in Fig. 6.82 After immobilization of the enzyme
in the lumen-side, decanoic acid and dodecanol in hexane were
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50 mL Phosphate
Buffer
pH 8.0

Phosphate Buffer
(S)-1-Phenylethyl acetate

50 mL n-Heptane
0.05 mol/L (R,S)-Phenyl

Ethyl Acetate

n-Heptane
(R)-Phenyl Ethanol
(R)-Phenyl Ethyl Acetate

Figure 5. Hydrolysis of (R, S)-1-phenylethylacetate.

Air pump

Decanoic acid
Dodecanol
Hexane

Decanoic acid ester
Decanoic acid
Dodecanol
Hexane

Saturated salt tank

aW = 0.75

Figure 6. The TSP-EMR for esterification of decanoic acid.

reacted where the formed moisture was delivered to the gas phase
and freed into saturated salt solution. By controlling aW , the ester
product dissolved in the organic phase was obtained at 97% yield
in 120 h, while the experiments without aW control produced 84%
yield. Under continuous operation, the yield decreased to less than
50% at a constant aW of 0.75 caused by diffusion limitation at the
membranes. Increasing the enzyme load or varying aW did not
affect mass transfer coefficients significantly.83

Previously, a unique strategy was developed.84 The organic
phase (decanoic acid in hexadecane, lumen-side) and aqueous
phase (water containing D-sorbitol, shell-side) were flowed
continuously inside Cuprophane HFM where the enzyme was
immobilised in the lumen-side. The reaction occurred when
sorbitol contacted the lipase-decanoic acid complex. The sorbitol
was transported from the aqueous phase to the membrane
surfaces and the ester product was moved to the organic phase,
but the moisture dissolved in the aqueous phase. Activity of the
immobilized enzyme was stable after 570 h. The esterification took
place at higher reaction rates compared with the batch stirred tank
free-enzyme system.

Hydrolysis of oils
Hydrolysis of oils in the two-liquid phase membrane reactor was
considered a more cost effective tool.135 Olive oil, palm oil, corn
oil, butter oil and babassu oil were successfully converted to fatty
acids in the biphasic-EMR.

Recent olive oil hydrolysis produced 225 mol m−3 of oleic
acid and less than 50 mol m−3 of palmitic acid in 15 h using

Mucor miehei lipase adsorbed on the polysulfone HFM.76 Song
et al.108 obtained 7.1–23.45 mol m−3 h−1 of oleic acids when
the CRL on the polyacrylonitrile was used at 30 ◦C for 12 h.
Previously, 0.074 mol m−3 h−1 fatty acids were obtained using CRL
immobilized onto modified polypropylene surfaces, which was still
stable after 10 successive runs.48 When the oil was hydrolysed by
CRL on polyamide membranes,77,114 lower fatty acids resulted. It
was found that, using the same HFM module, the cross-flow CCL
produced higher conversion than the cross-link CCL.40

Hydrolysis of palm oil gave approximately 6 mol m−3 h−1 of
palmitic acid, but the quantity of oleic acid was almost negligible.76

Yields of 51.8–99% were obtained with 0.059–0.326 mol L−1 oil
concentrations by employing CRL attached to the Cuprophane
HFM at a reactor residence time of 0.067 h where the immobilised
lipase retained 85% of its original activity after 20 operating cycles
(137 h).38 Lower results (40–50% yields) were achieved using the
same HFM and lipase after 2 h reaction time, although the lipase
was stable for 120 h.35 Compared with the batch stirred tank
free-enzyme system, oil hydrolysis in the TSP-EMR showed higher
conversion and reduced back reaction, but faster equilibrium was
achieved in the batch system.38

The hydrolysis of corn oil generated 50% yield of linoleic
acid after 4 h of reactor time, where the presence of the
oil in the shell-side of polypropylene membranes increased
fatty acids production.118 Complete conversion of substrate was
obtained when babassu oil was hydrolysed by Mucor miehei
lipase immobilized on the sponge layers of polyetherimide
membranes.136

Chiral product preparation
Hydrolysis of a stereoisomer molecule, cis-cycloxex-4-ene-1,2-
dicarboxylate, to an enantiomer, (1S, 2R)-cyclohex-4-ene-1,2-
dicarboxylate, was catalysed by an esterase immobilized on
polysulphone membranes.85,86 This multi-gram scale operation
using hexane yielded 100% conversion and more than 97%
enantiomeric excess. Activity of the enzyme was retained for
25 days. Higher reaction rates were obtained in the TSP-EMR than
the batch stirred tank free-enzyme reactor.

Hydrolysis of ethyl butyrate and amyl acetate
Conversion of ethyl butyrate to butyric acid used a no-added
solvent operation. The ethyl butyrate was circulated in the shell-
side of the TSP-EMR where porcine liver esterase was immobilized,
and 200 mmol L−1 PO4 buffer at pH 8 was pumped in the
lumen-side.40,56,74 The reactor productivity was approximately
450 kg year−1 m−2 membrane area.56 During operation, the
presence of butyric acid in the aqueous phase decreased pH; hence
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6.0 mol L−1 sodium hydroxide solution was added continuously.
Similar to this process, hydrolysis of amyl acetate was also a no-
solvent operation using the polyacrylonitrile membrane to dock
Candida L1754 enzyme.40,74

APPLICATION OF TSP-EMR: SUSPENDED
ENZYMES
Kinetic resolution of racemic ibuprofen ester
An extractive type of TSP-EMR was used to resolve the racemic
sulfomethyl ibuprofen.41 The racemate dissolved in sodium
phosphate buffer at pH 7 was fed to the shell-side of a cellulose HFM
module, while hexane flowed in the lumen-side. The hydrolytic
reaction took place at room temperature when 2 g of protease
(Prozyme 6) was dissolved in the aqueous phase. After 6.3 h, the
quantity of ibuprofen acid recovered in the organic phase related
to 50% conversion of the racemic ester. Another attempt used the
polyacrylonitrile module where a mixture of cyclohexane–toluene
(80 : 20, v/v) was pumped through the membrane shell-side and
its lumen-side was filled with sodium phosphate buffer consisting
of 48.3 g racemic sulfomethyl ibuprofen. The hydrolysis was run
for 6.75 h at 30 ◦C by adding 3 g Prozyme 6 to the aqueous phase.
The reaction gave 48.3% conversion of the racemic ester.

Preparation of aspartame precursor
N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester, a
precursor of aspartame, was formed from N-benzyloxycarbonyl-L-
aspartic acid and L-phenylalanine methyl ester in an extractive
TSP-EMR using a Sepracor MBR-500 model 10 HFM module
operated at 40 ◦C.87 The aqueous phase, 50 mmol L−1 acetic buffer
saturated with butyl acetate pH 5, was fed to the lumen side of
the module at 200 mL min−1. The organic phase was recirculated
in the shell-side at the same flow rate and a constant pressure of
0.2 kg cm−2. 3 g of thermolysin was added to the aqueous phase to
start the reaction. The process yielded more than 70% conversion
and the product purity of 91.7% after 24 h.

Dynamic kinetic resolution of racemic mandelic acid
Dynamic kinetic resolution (DKR) of racemic compounds in the
TSP-EMR is still a novel technology. However, the idea to use the
TSP-EMR to resolve racemic mixtures was proposed by Matson
and co-workers who described the DKR of racemic naproxen
ethyl ester40 and (R, S)-ibuprofen.41 Choi et al.42 used two enzymes
suspended in each phase to carry-out the DKR of racemic mandelic
acid as described in Fig. 7. The organic phase, ethylene dichloride,
was used to dissolve the CALB and circulated through the shell-side
of 1.05 m2 vertical Hemophan HFM at 60 mL min−1. 100 mmol L−1

phosphate buffer at pH 7.2 containing the mandelate racemase
and substrate was pumped at 30 mL min−1 through the lumen-
side. Both phases were flowed counter-currently. Esterification
of the (R)-mandelic acid with ethanol occurred in the organic
phase; therefore the racemate should cross the membranes to
the reaction sites. The unreacted enantiomers, (S)-mandelic acid,
was transported back to the aqueous phase and racemised by
the racemase to give the (R, S)-mandelic acid. The product, the
(R)-mandelic acid ester, was obtained in 65% isolated yield and
98% enantiomeric excess after 48 h.

FURTHER NEEDS
Aspects of the operating conditions, fluid characteristics, sub-
strates and product properties, enzyme and membrane charac-

CALB,
ETOH

Aqueous Phase

Organic Phase Organic Phase

(S)-Acid

(R,S)-Acid

CALB,
ETOH

(R,S)-Acid

(R)-Ester

+

(S)-Acid

R
acem

ase 

(S)-Acid

(R,S)-Acid

(R)-Ester

+

Figure 7. Schematic diagram of mandelic acid DKR.

teristics, type of reaction and type of operations are focused on
during the development of the TSP-EMR. Several innovative steps
have been introduced such as the use of emulsion and DKR.

Although the DKR has been introduced, the racemic compounds
are generally resolved by kinetic resolution (KR). The TSP-EMR
still concentrates its KR applications on the hydrolytic reactions.
The hydrolytic kinetic resolutions utilize the ester forms of the
racemates. Hence, preparation of the raw materials through
chemical esterification of the racemates should be conducted
before they are fed to the resolution reactions. Although
esterification-based TSP-EMR has been introduced, a comparison
between the hydrolysis and esterification results has not been
stated clearly.

Compared with batch stirred tank processes using free enzymes,
the TSP-EMR performs better. It has better operational stability,
overall lipase activity and product enantiomeric excess, longer
enzyme half-life and lower enzyme load.33,75 Catalytic activity of
the TSP-EMR immobilized enzymes is much more stable than
that of the free-enzymes50,52 and gives higher observed activity
per mass of protein.51 However, the free enzymes generally
have higher enantioselectivity than the TSP-EMR immobilized
enzymes.52,115 Higher free enzyme loading was required for the
esterification process to achieve performance comparable with
the TSP-EMR,75 but in chiral hydrolysis the free enzyme processes
use lower enzyme quantity to achieve 100% product enantiomeric
excess.24,51

One of the focuses of TSP-EMR operations is distribution of
materials. All the existing reactions take place at the organic
interfaces, thus the substrates are frequently circulated in the
organic phase. After the reaction, the substrates and products
are usually distributed in the reaction medium; however, when
racemic compounds are used, unreacted enantiomer exists in the
medium. Hence, racemic resolution in the TSP-EMR is more difficult
than with the non-racemic substrates. The final product(s) should
be either the reaction product or the unreacted enantiomer, i.e.
the output should be chosen in the beginning.

Many TSP-EMR processes recover the target molecule in the
aqueous phase. Since the product transport determines the
transmembrane pressure, controlling the materials flow is most
important. Some optional strategies can be observed in Table 3.
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Table 3. Optional strategies in the TSP-EMR operation

Solubility

Description
Organic
phase

Aqueous
phase

Transmembrane
pressure

Products
recovery Remark(s)

Substrates Solid: Cannot be used
directly. Use dissolved
operation

√ √
Organic → Aqueous

or Aqueous →
Organic

Aqueous phase or
organic phase

Preferable: high solubility in
organic solvent

√
X Organic → Aqueous Aqueous phase

X
√

Aqueous → Organic Organic phase Transport substrates to the
organic interfaces

Liquid: Dissolved or
no-solvent operation

√ √
Organic → Aqueous

or Aqueous →
Organic

Aqueous phase or
organic phase

With or without organic
solvent. High solubility in
organic solvent is
preferable.√

X Organic → Aqueous Aqueous phase

X
√

Aqueous → Organic Organic Phase

Distribution Both X Organic → Aqueous Aqueous phase

Main Reagent Aqueous → Organic Organic Phase Reagent is moved to the
organic interfaces

Reagent Main Aqueous → Organic Organic Phase Main substrate is moved to
the organic interfaces

Product(s)
√ √

Organic → Aqueous Aqueous phase High solubility in aqueous
phase, preferably not
dissolved in organic phase√

X Aqueous → Organic Organic Phase

X
√

Organic → Aqueous Aqueous phase

Membrane Hydrophilic Shell Lumen Organic → Aqueous
or Aqueous →
Organic

Aqueous phase or
Organic phase

Hydrophobic Shell Lumen Organic → Aqueous Aqueous phase

Immobilized enzyme (at the organic interfaces) Shell Lumen Organic → Aqueous
or Aqueous →
Organic

Aqueous phase or
Organic phase

The substrates, products and membrane characteristics affect
development of the flow direction.

It was proved that enzymes immobilized in the TSP-EMR could
be used for many cycles of TSP-EMR operation with the enzymes
still retaining high catalytic activity. This is, of course, a benefit for
the operation, which overcomes the problem of enzymes recycling
faced by the batch stirred tank free-lipase system.

It is likely that some factors need further study. Although the
TSP-EMR has used emulsion in its operation, which indeed showed
better performance than the classic type,29,113 this innovation still
requires more investigation.

Combinations of reactor orientation and fluid direction have
been investigated. Vertical orientation requires a high pressure
input.108 As can be observed in Table 1, vertical reactors required a
similar TMP to the horizontal type, but no TMP has been operated in
the vertical arrangement and further investigation of this should
be considered. A comparison of the fluid direction should also
be studied further: although counter-current flow gave higher
productivity, the co-current TSP-EMR was still favoured for achiral
compounds and upflow-type reactors.

Solvent-based operation is preferable as many products are
available in crystal and liquid form. However, no-solvent operation
could reduce the operational cost, although it can only be applied
to liquid non-viscous substrates. Although buffer solutions are
frequently used as the aqueous phase, the opportunity exists to
develop TSP-EMR based on ionic liquids since they have become
alternative media for enzymatic enantioselective reactions.137,138

These solvents have been associated with resolution in the EMR.
A supported liquid membrane containing an ionic liquid was
employed to resolve racemic ibuprofen.139 The ionic liquid allowed
enantioselective transport of the ibuprofen enantiomer across the
membrane reactor.132 Ionic liquids increased the selectivity and
activity of the enzymatic membrane process.140

The cross-flow filtration technique is commonly used to adsorb
enzymes onto the HFM surfaces. The technique circulates the
enzymes solution only in one direction: from the shell-side to the
lumen-side or vice versa as shown in Fig. 4. Efforts have been
made to immobilize enzymes on both HFM sides. No explanation
is given as to whether both sides immobilization would develop a
higher immobilized enzyme quantity.

CONCLUSIONS
Compared with batch stirred tank processes using free-enzymes,
the TSP-EMR gave better results. Many factors contributed to
a successful TSP-EMR including characteristics of the organic
solvents, moisture content and pH, and type of aqueous phase,
since they influence the activity of enzymes. The solubility of
substrates and product(s) should be taken into account since
many enzymatic reactions take place in the organic solvent while
the product(s) is generally recovered in the aqueous phase. Use
of no-added organic solvents, emulsion environment operation
and the gas phase instead of aqueous phase have all been
investigated. The preferred method to immobilize the enzyme
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is physical adsorption through cross-flow filtration where the
enzymes, which can be utilized for many cycles, should be
prepared well prior to immobilization because the initial source
of the enzymes influences the performance. Most TSP-EMR use
hydrophilic hollow fibre membranes, however, the combination
of hydrophilic–hydrophobic membranes has beeen developed,
to accommodate higher enzyme load. Relatively limited research
effort has been applied to date and further study of all relevant
factors is necessary.

TSP-EMR have processed racemic and achiral compounds, with
applications focused on hydrolytic reactions, but esterification-
based TSP-EMR has been introduced. Although a dynamic kinetic
resolution process has been used, hydrolytic kinetic resolutions are
often applied to racemic esters. Operating is at mild temperatures,
relatively long reaction times, low transmembrane pressures and
medium flow rates in the shell- and lumen-side to give low–high
conversions and medium–high selectivities.
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