Observation of Tunneling Effects in Lateral Nanowire pn Junctions

Sri Purwiyanti^{1,2*}, Arief Udhiarto^{1,2}, Daniel Moraru¹, Takeshi Mizuno¹, Djoko Hartanto², and Michiharu Tabe¹

Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan
Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia

*e-mail: yanti@rie.shizuoka.ac.jp

Abstract

As electronic device dimensions are continuously reduced, applied bias conditions significantly change and the transport mechanisms must be reconsidered. Tunneling devices are promising for scaled-down electronics because of expected high-speed operation and relatively low bias. In this work, we investigated the tunneling features in silicon-on-insulator lateral nanowire pn junction and pin junction devices. By controlling the substrate voltage, tunneling features can be observed in the electrical characteristics. We found that the minimum substrate voltage required for tunneling to occur in pn junctions is higher as compared with pin junctions. The main cause of these effects relies in the difference between the doping profiles, since the pn junctions contain a co-doped region, while the pin junctions contain an i-layer.

Abstrak

Pengamatan Efek Penyaluran dalam Persimpangan *pn* Pengantar Ukuran Nano Lateral. Sebagaimana dimensidimensi peralatan elektronik secara terus-menerus berkurang ukurannya, kondisi-kondisi bias yang diaplikasikan secara signifikan berubah dan mekanisme pengangkutan harus dipertimbangkan kembali. Peralatan penyaluran menjanjikan alat elektronik yang berukuran lebih kecil dan ringan karena diharapkannya pengoperasian dengan kecepatan tinggi dan bias yang secara relatif rendah. Dalam penelitian ini, kami menyelidiki fitur-fitur penyaluran dalam persimpangan *pn* pengantar ukuran nano lateral silikon pada insulator dan alat-alat persimpangan berukuran jarum. Dengan mengendalikan tegangan substrat, fitur-fitur penyaluran dapat diamati dalam karakteristik-karakteristik listrik. Kami menemukan bahwa tegangan substrat minimum yang diperlukan untuk penyaluran untuk terjadi dalam persimpangan *pn* lebih tinggi dibandingkan dengan persimpangan berukuran jarum. Penyebab utama efek-efek ini mengandalkan pada perbedaan-perbedaan antara profil-profil dengan doping, karena persimpangan *pn* berisi daerah yang di*co-doped*, sementara persimpangan seukuran jarum berisi lapisan *i*.

Keywords: nanowire, pn junction, silicon, tunneling

1. Introduction

Recent modern lithography capabilities allow the fabrication of semiconductor devices in nanometer scale. The advantages of nanoscale devices consist of high density, high operation speed and low applied voltage. Reduction in device dimensions, however, brings about several difficulties in conventional device operation, in particular related to the applied bias conditions [1]. In most semiconductor devices, the basic transport mechanism is thermal excitation of carriers over a potential barrier, but it is difficult to appropriately reduce the operating voltage while maintaining a good on/off current ratio. In order to reduce the operating voltage and take advantage of the quantum phenomena arising in nanostructures, the transport mechanism must

be drastically changed. In that sense, quantum tunneling is a promising candidate for improving the operation conditions. The first functional device operated based on the tunneling mechanism was the well-known Esaki diode, which is effectively a heavily-doped *pn* junction [2]. More recently, tunneling field-effect transistors (TFETs) [3,4] have been investigated, with their operation relying on band-to-band tunneling controlled by a gate voltage.

Tunneling is a quantum mechanical effect where particles have a finite probability of transmission through an energy barrier due to their wave nature [5], and this effect becomes most pronounced in nanometer-scale structures. So far, research about tunneling in nanometer-scale *pn* junctions has been reported mainly for vertical structures

[6-8]. Tunneling in lateral pn junctions has been reported by Aydin *et al.* [9], but not in nanowire structures. Here, we focus on identifying tunneling characteristics in lateral pn junctions with nanowire channels.

In this work, we investigate in particular the behavior of the current versus applied bias characteristics with substrate voltage as a control parameter. We comparatively study tunneling effects in lateral nanowire devices designed both as *pn* junctions and *pin* junctions.

2. Methods

Device specification and measurement setup. We fabricated nanowire silicon-on-insulator (SOI) pn junctions, with structure schematically shown in Figure 1(a). Nanowires were patterned on the SOI layer by an electron beam (EB) lithography technique. Then, a selective doping technique was used to create the *n*-type (phosphorus-doped) and *p*-type (boron-doped) regions. The nanowire length and thickness are designed as 1000 nm and 10 nm, respectively, while the nanowire width is set as a parameter, varying from 75 nm to 275 nm in this study. Aluminum contact pads were formed as electrodes.

Both *pn* and *pin* junctions were fabricated on the same sample. *pn* junctions contain a co-doped region, which was intentionally doped both with phosphorus (P) and boron (B) dopants. In the *pin* devices, an area in the middle part of the nanowire was kept un-doped, as an *i*-layer. Schematic views of the co-doped and *pin* devices are shown in Figure 1(b). B concentration was set higher than P concentration and, as a result, the co-doped region is effectively *p*-type, with a net concentration $N_A \approx 0.5 \times 10^{18}$ cm⁻³. For both devices, final P and B concentrations, derived from secondary ion mass spectrometry (SIMS), are estimated to be $N_D \approx 1 \times 10^{18}$ cm⁻³ and $N_A \approx 1.5 \times 10^{18}$ cm⁻³, respectively. The

Figure 1. (a) Device Structure and Bias Configuration for Electrical Characterization. (b) Co-doped (left) and *pin* (Right) Devices, based on SEM Images. Co-doped and Intrinsic Region are Located within the Thin and Narrow Nanowire

p-Si substrate was doped with boron ($N_A \approx 1.5 \times 10^{18}$ cm⁻³) and was used as a gate throughout the experiments. The thickness of the buried oxide layer between the nanowire and the substrate is 150 nm. The nanowire is covered with a 10-nm-thick SiO₂ layer, grown by thermal oxidation.

Devices were measured in a vacuum chamber of an electrical measurement system. Electrical characteristics were measured with the *p*-type region and substrate connected to variable voltage sources, while the *n*-type region was kept grounded.

3. Results and Discussion

In this section, we analyze the measured current (I) - substrate voltage (V_{sub})-applied bias (V_A) characteristics, focusing on the tunneling features.

I-Vsub characteristics. We measured I-V_{sub} characteristics at room temperature for various V_A values, while V_{sub} was gradually increased from -10 V to 15 V. The typical I-V_{sub} characteristics, with the vertical axis indicating the absolute value of the current I, for a *pin* device are shown in Figure 2.

For forward bias ($V_A > 0V$), it can be seen that current is enhanced in the range $V_{sub} = -10 \sim 3 \text{ V}$. When V_{sub} is at positive values, current is reduced and, finally, for V_{sub} above 12 V, current exhibits an abrupt increase. For reverse bias ($V_A = -0.5$ and -1 V), current is very small for negative V_{sub} . For $V_{sub} > 6$ V, however, current starts to slowly rise and, again, for $V_{SUB} > 12$ V, current abruptly increases. This common behavior observed for large V_{sub} values, i.e., above 12 V, for both forward and reverse biases, can be related to the onset of tunneling transport in our devices. The basic mechanism will be explained in the following.

We can analyze this behavior starting from the energy band diagrams of the devices, as shown in Figure 3. In equilibrium and for $V_{sub} = 0$ V, the Fermi levels in ptype -i-layer -n-type are aligned. When positive bias is applied to the *p*-type region, as in the forward-bias case illustrated in Figure 3(a), the Fermi level of the *p*-type will be shifted downwards and current starts to flow. If V_{sub} is increased from 0 V to more positive values, with V_A kept constant in this forward-bias condition, the Fermi level of the *i*-layer will be lowered, which means that the barrier height in the depletion region (at the boundary between the n- and i-layers) is also reduced. Therefore, electrons can flow more easily from the ntype region into the *i*-layer. At the same time, however, the concentration of holes in the *i*-layer is reduced, but it remains still sufficiently high to allow recombination with the additional electrons incoming from the *n*-type region and, as a result, current is enhanced. This corresponds to the V_{sub} range -10 ~ 3V in Figure 2.

Figure 2. Typical I-V_{sub} Characteristics for a *pin* Device in Forward and Reverse Bias (as Indicated on the Curves) at Room Temperature. Vertical Axis Indicates the Absolute Value of Current I

Figure 3. Band Diagrams of *pin* Junction and I-V_{sub} Characteristics for: (a) Forward Bias and (b) Reverse Bias. V_A is Constant, While V_{sub} Gradually Increases from 0 V to Positive Voltages

more positive voltages, additional electrons injected into After reaching the maximum current, by further increasing V_{sub} , the concentration of holes in the *i*-layer is drastically decreased, leading to a significant reduction in the recombination current, observed in Figure 2 in the range V_{sub} = ~3 ~12 V. When V_{sub} is increased to much larger values, the conduction band edge of the *i*-region approaches that of the *n*-type region. The depletion region moves from the *n*-type edge to the *p*-type edge and, consequently, the location of the recombination processes shifts towards the *p*-type region. Eventually, the *i*-layer conduction band edge becomes slightly lower than the *n*-type band edge and, as a result, electrons can be accumulated in the conduction band of the *i*-region. From there, electrons can recombine easily with holes in the valence band of the *p*-type region, assisted by tunneling via states in the band gap. As a result, current is drastically increased, as seen in Figure 2 for $V_{sub} > 12$ V. This mechanism is effectively a recombination process enhanced by tunneling effects.

Under reverse bias conditions [Figure 3(b)], a small electron current can flow from the *p*-type region to the *n*-type region. When V_{sub} is increased from -10 V to the *i*-layer will quickly recombine with holes, giving rise to a small current which is practically independent of V_{sub} , in V_{sub} range of -10 V ~ 6V (as shown in Figure 2). When V_{sub} is further increased, the concentration of holes available for recombination in the *i*-layer is reduced and, therefore, additional electrons are flowing as drift current. As a consequence, reverse current is enhanced. By increasing V_{sub} even more, the conduction band edge of the *i*-region potential will be shifted below the band edge of the *n*-type region and electrons can tunnel from the valence band of the *p*-type region to the conduction band of the *i*-region. This band-to-band tunneling leads to the abrupt increase of the reverse current for $V_{sub} > 12$ V. This mechanism is basically similar to that of tunneling FETs.

I-V_A characteristics. We also measured the current versus applied bias (I - V_A) characteristic at room temperature for various V_{sub}, while V_A was gradually increased from -5 to 2 V. Typical I-V_{sub} characteristics for *pn* device are shown in Figure 4. It can be seen that in the forward bias (V_A > 0 V), the dependence of current on V_{sub} has a particular behavior. First, by increasing V_{sub} from 0 to 6 V, current level is gradually reduced. However, for V_{sub} > 6 V, current level is increased and the features of the I-V_A change significantly. For reverse bias (V_A < 0 V), the current exhibits a more systematic behavior, as current level gradually increases with V_{sub}. The origin of this behavior is related to the potential changes occurring in particular in the depletion region, as illustrated in Figure 5.

Figure 4. Typical $I-V_A$ Characteristics of pn Device for Various V_{sub} Values (Indicated on the Curves) at Room Temperature

Figure 5. Changes of the Depletion Region Location Due to Gradually Increasing V_{sub}, Illustrated from (a) to (c), for Constant Forward Bias

For low forward bias and $V_{sub} = 0$ V, the depletion region location is at the *n*-type edge and electrons flow from the *n*-type region to the *p*-type region as diffusion current (Figure 5(a)). It should be noted that, in our devices, the co-doped region is actually *p*-type with lower concentration, as we explained above.

By increasing V_{sub} , the number of ionized B acceptors in the co-doped region is enhanced. In order to reach the charge neutrality condition, the depletion region becomes wider, which leads to a decrease of the recombination current by increasing V_{sub} . For intermediate V_{sub} (most likely, for 6 V in our experimental results), the depletion region location is in the entire co-doped region (Figure 5(b)). In this condition, a minimum is observed in the measured current. For V_{sub} larger than this value, the depletion region width becomes smaller and gradually moves to the *p*-type region. The location of the key recombination events moves as well from the co-doped region to the *p*type region. Therefore, current is observed to enhance by increasing V_{sub} (Figure 5(c)).

When V_{sub} is further increased, the conduction band edge of the co-doped region falls below the conduction band edge of *n*-type region. In this condition, the Fermi level of co-doped region is close to the Fermi level of the *p*-type region. As a result, electrons can tunnel from the valence band of the *p*-type region to the conduction band of the *n*-type region. Thus, tunneling mechanism plays an essential role in the electrical characteristics of nanowire lateral *pn* and *pin* junctions.

The $I-V_A-V_{SUB}$ characteristics. In order to visualize a more complete picture of the device behavior, we have plotted $I-V_{sub}-V_A$ graphs for *pin* and *pn* junctions, as shown in Figure 6. The nanowire dimensions are comparable for both types of devices, i.e., 1000 nm in length and 275 nm in width.

In the *pn* junction characteristics (Figure 6(a)), for reverse bias (for instance, for $V_A = -1.5$ V), current slightly increases when V_{sub} is increased gradually from -5 to 5 V. Current, however, increases more drastically for V_{sub} above 5 V. It shows that a minimum substrate

Figure 6. Typical $I-V_{SUB}-V_A$ Characteristics for: (a) pn Device and (b) pin Device Measured at Room Temperature

voltage required for tunneling effects to occur is 5 V. In forward bias (for instance, for $V_A = 1.5$ V), when V_{sub} is gradually increased from -5 to 10 V, current first increases, then decreases and, finally, increases again at most positive V_{sub} values. This indicates that the condition of tunneling in forward bias is more complicated compared to that in the reverse bias. This situation may be related to the changes occurring in the depletion region location, as described above, in Figure 5.

The behavior for *pin* junction (Figure 6(b)) is almost similar to that of the *pn* junction, except the required minimum V_{sub} for tunneling effects. In similar reverse bias ($V_A = -1.5$ V), tunneling events start to occur for $V_{sub} = 5$ V for *pn* junction, but approximately 4 V for *pin* junction. It means that the *pn* junction requires higher V_{sub} for tunneling compared to the *pin* junction. These differences are most likely due to the different doping concentrations between *i*-region of *pin* junction and co-doped region of *pn* junction. The higher concentration of B acceptor dopants in the co-doped region leads to higher V_{sub} required for *pn* junctions to adjust the energy band conditions. The effects of the effective doping concentration in the region between the *n*- and *p*-type pads require, however, further investigation before being fully clarified.

4. Conclusions

We observed tunneling effects in lateral nanowires, designed as *pin* and *pn* junctions. We found that tunneling events occur in both reverse and forward bias, under appropriate biasing conditions. The minimum substrate voltage required for tunneling depends on the doping concentration in the junction. Further measurements will reveal the effects of different doping concentrations and doping profile on the tunneling characteristics, providing useful information for understanding the behavior of nanoscale *pn* junctions operated in tunneling mode.

References

[1] The Semiconductor Industry Association, The International Technology Roadmap for Semiconductors (ITRS), 2011 Edition, *http://www.itrs.net/*, 2011.

- [2] L. Esaki, Phys. Rev. 109 (1958) 603.
- [3] A.M. Ionescu, H. Riel, Nature 479 (2011) 329.
- [4] D. Leonelli, A. Vandooreen, R. Rooyackers, S.D. Gendt, M.M. Heyns, G. Groeseneken, Solid-State Electron. 65-66 (2011) 28.
- [5] S.M. Sze, Physics of Semiconductor Devices, 2nd ed., John Wiley & Sons, New York, 1981, p.880.
- [6] S. Sedlmeier, J. Schulze, T. Sulima, C. Fink, C. Tolksdorf, A. Bayerstadler, I. Eisele, P.F. Wang, K. Hildensenbeck, W. Hansch, Mater. Sci. Eng. B 89 (2002) 116.
- [7] H. Schmid, C. Bessire, M.T. Bjork, A. Schenk, H. Riel, Nano Lett. 12 (2012) 699.
- [8] C.D. Bessire, M.T. Bjork, H. Schmid, A. Schenk, K.B. Reuter, H. Riel, Nano Lett. 11 (2011) 4195.
- [9] C. Aydin, A. Zaslavsky, S. Luryi, S. Cristoloveanu, D. Mariolle, D. Fraboulet, S. Deleonibus, Appl. Phys. Lett. 84 (2004) 1780.