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Abstract—The Parametric Cox’s Proportional Hazard Model 

based on Expectation-Maximization (EM) algorithm for partly 

interval-censored data is studied. We mean by partly 

interval-censored data that the observed data include both the 

exact and interval-censored observations on the survival time of 

interest. Through the simulation data and real data, we 

demonstrate that the resulting estimate of regression coefficient 

and its associated standard error. Our proposal is easily 

implemented by using SAS software in the present of partly 

interval-censored data. 

 
Index Terms—About four key words or phrases in 

alphabetical order, separated by commas. cox model, weibull 

distribution, partly interval-censored data, HIV/AIDS data, 

EM algorithm 

 

I. INTRODUCTION 

This paper discusses a parametric comparison of survival 

functions based on incomplete survival data: partly interval 

censored failure data (Zhao. X, et al., 2008; Kim., J 2003;  

Peto and Peto, 1972; Huang, 1999). Partly interval censored 

data arise when the event of interest is observed directly for 

some subjects, but for the remaining subjects, the event of 

interest observed belong to the interval time. Also partly 

interval censored data is an important type of 

interval-censored, which arise in medical and health studies 

for example that entails periodic follows-up; see the  

Framingham Heart Disease Study (Odell et al., 1992) and the 

Danish Diabetes Study (Ramlau Hansen et al., 1987).  

Zhao. et al., (2008) presented a class of generalized 

log-rank test for partly interval censored failure time data. 

Kim (2003) used the proportional hazards model for 

regression analysis of partly interval censored data. Huang 

(1999) studied asymptotic properties of the nonparametric 

maximum likelihood estimator of a distribution function 

based on partly interval censored data. Peto and Peto, (1972) 

discussed partly interval censored data, treating an exact  
observation as an interval-censored observation with very 

short interval. 
A general model is adopted in this paper which 

incorporates most of the widely used life stresses, such as the 

proportional hazards model. The model can be used for 

single or multiple stresses. Under this formulation, the model 

can be either solved as a Proportional Hazards Weibull  

Model (PHWM). Several authors proposed methods for 
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analyzing multivariate failure time data on the basis of an 

assumed parametric model. Namely, Lawless (1983), Basu 

and Chosh (1980); Ansell and Phillips (1989); Larson and 

Dinse (1985); Elfaki (2007). 

In this paper we are dealing with partly interval censored 

data to use parametric Cox’s model that is; Cox’s model with 

Weibull distribution. The maximum likelihood estimator of 

the regression parameter and the cumulative hazard function 

are computed by using EM algorithm 

 

II.  PARAMETRIC ESTIMATION PROCEDURES 

The proportional hazards (PH) regression model is 

commonly used in the analysis of survival data and, recently, 

there has been an increasing interest in its application in 

reliability engineering. The hazard rates of the individuals 

with different explanatory variables are proportional to each 

other. Here, there is a baseline hazard, )(0 th , corresponding 

to the standard condition, and the explanatory variable, z , 

acting multiplicatively on the baseline hazard, that is, the 

effect of the covariates is to increase or decrease the hazard. 

Let T  be a continuous random variable representing an 

individual’s lifetime, and let ),...,( 1 pzzz 
 
be a known 

vector of regressor variable associated with the individual. 

Under the proportional hazards assumption, the hazard 

function of T ,
 

given z , is of the form 

),()()/( 0 zgthzth  , where 
 
is a vector of unknown 

parameters. Following Cox’s (1972), we will focus on a 

particular model that is
 

    
)exp()()/( 0 zthzth 

           
(1)

 

where ),...,( 1
 p  is a vector of regression coefficients. 

Model (1) is flexible enough for many purposes. Model (1) 

requires two model assumptions, namely, 

A baseline distribution where the standard condition holds; 

and 

A functional form for the dependency of the lifetime on the 

covariates, often in terms of parametric model. 

In this paper, we examine a fully parametric approach of 

model (1). The standard approach to inference for the a 

parametric regression models is the EM algorithm method. 

Here, if we observe a subject who failed at time t , then, the 

contribution to the likelihood is ),,;( ztf   the density 

function at t . The contribution from a subject censored at t  
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is ),,;( ztR   the probability of survival (reliability) beyond 

t . Thus, full likelihood based on the data ),,,( iii zt   

,,...,2,1 ni   is given by Lawless (1983) and Kalbfleisch 

and lawless (1988), as follows: 
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where si '  are the event indicator variables ( 1i  if the 

ith  subject fails; 0i  if the ith  subject is censored),   

is a parameter that indexes the density function; and iz  are 

the covariates for the ith  subject. 

Taking the natural logarithm of equation (2) simplifies the 

optimization. The log-likelihood function is given by 

Lawless (1983) and Kalbfleisch and lawless (1988) as 

follows: 
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where FT  is the exact time to failure and ST  is the censored 

time to failure. The model will be formulated in such a way 

that equation (3) will be a function of the parameters by 

expressing the probability density function (pdf) and survival 

(reliability) functions in terms of these parameters 

A. The PH Weibull Model 

The Weibull distribution is commonly used for analyzing 

lifetime data. Also, can be used as the underlying life 

distribution. In other words it is assumed that the baseline 

failure rate in equation (1) is parametric and is given by the 

Weibull distribution. In this case, the baseline failure rate is 

given by: 

])/(exp[)/()( 11

0

  ttth  
    (4) 

where   is the scale parameter depending on z  and   is 

the shape parameter. In fact,   does not depend on z  

implies proportional hazards for lifetimes and constant 

variance for log lifetimes of individuals. This assumption is 

reasonable in many situations, as discussed by Peto and Lee 

(1973) and Pike (1966). 

The PH failure rate then becomes, 
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It is often more convenient to define an additional 

covariate 10 z , in order to allow the Weibull scale 

parameter raised to the beta (shape parameter) to be included 

in the vector of regression coefficients. The PH failure rate 

can then be written as: 
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The survival (reliability) function can be derived as, 
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where, ),( zt  is failure rate of the model (1). 

The pdf can be obtained by taking the partial derivative of 

the reliability function given by equation (7) with respect to 

time.  

The survival function and the Weibull pdf can then be 

substituted into equation (3). This yields the likelihood 

function for PHW model, as follows: 
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(8)

 

Solving the parameters that maximize equation (8) will 

yield the parameters for the PHW model, which are obtained 

by simultaneously solving the following partial derivatives 
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III. SIMULATION
 STUDIES

 

A small simulation study was conducted to evaluate the 

finite sample performance of our proposed method. Our 

simulation set-up is similar to that in Kim (2003).  We 

generated data from exponential distribution with 1)(0 th  

under our proposed model )exp()()/( 0 zthzth  . 

Examination times were generated to make the proportions of 

left, interval, and right-censored observations about equal. 

The sample size n
 
is the sum of the number of exact data 1n

 and the number of interval-censored data 2n . Following 

Kim (2003) we consider the range as; (25, 25) and (40, 10) 

for a sample of size 50, and (50, 100), (50, 150) and (50, 200) 

for the sample size 150, 200 and 250 respectively. We refer to

 ),( zt and ),( 11 zt

 

as the original data and exact data 

respectively. Table I

 

show our results compared with one 

obtained by Kim (2003). For each sample, we obtained the 

bias and the mean standard error (which is not addressed 

here). The estimation based on the exact data and original 

complete data. The results look similar to the one obtained by 

Kim (2003).

 
TABLE

 

I:

 

COMPARISON RESULTS OBTAINED BY OUR PROPOSED MODEL 

WITH KIM (2003)

 

FROM SIMULATION DATA FROM 1500

 

REPLICATION.

 

 Kim (2003) Proposed Model 

),( 21 nn
 

Biases Biases 

 

Eb̂  
Ob̂  OCb̂ E̂  O̂  OC̂
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(25, 25) 0.258 0.103 0.06

2 

0.242 0.112 0.073 

(40, 10) 0.081 0.061 0.05

8 

0.072 0.074 0.052 

(50, 

100) 

0.079 0.030 0.01

9 

0.088 0.042 0.022 

(50, 

150) 

0.075 0.023 0.01

1 

0.082 0.034 0.023 

(50, 

200) 

0.074 0.014 0.00

8 

0.085 0.017 0.012 

where E̂  estimated bias from exact data; O̂  estimated bias 

from observed data; OC̂  estimated bias from original 

complete data 

 

IV. ILLUSTRATIVE EXAMPLE 

The proposed method is illustrated HIV/AIDS of 

hemophiliacs who were treated in two hospitals in Sudan. 

They were 550 patients of the study who were at risk for HIV 

infection through the contaminated blood factor. At the end 

of the study, there were 550 patients found to be HIV infected, 

but the infection times were interval-censored. Among them 

120 progressed to AIDS (or related symptoms). The patients 

were classified into either the heavily treated group or lightly 

treated group according to the amount of blood received 

(when treated for hemophilia). The goal here is to investigate 

the possible association between the treatment and the AIDS 

incubation time. We code the covariate 0iz or 1iz if 

the ith patient was lightly or heavily treated. To see the effect 

of covariates on development of complications, we fitted our 

proposed model that is proportional hazards regression 

model with Weibull distribution. Appling the procedures 

described in section 2, we obtained the result as shown in 

Table II, or as )632.0,621.0()ˆ,ˆ( 21  , the Wald test 

statistic for testing )0,0()ˆ,ˆ( 21 
 
is 481.3 and P-value 

for testing )0,0()ˆ,ˆ( 21  is 0272.0 . We conclude that 

the covariates do not have a significant different. However, it 

is confirmed that the heavily treated group had a significantly 

higher

 

risk of the onset of AIDS after HIV infection. 

 

TABLE
 
II:

 
ESTIMATE OF PHWM

 
BASED ON EM

 
ALGORITHM FOR SUDAN 

HIV/ADIS
 
DATA

 

 

E̂  O̂  OC̂  

Heavily Treat Group 0.621 0.610 0.632 

Lightly Treat Group 0.632 0.620 0.644 

 

V. CONCLUSION 

The parametric Cox’s proportional hazards regression 

model with Weibull distribution based on EM algorithm has 

been used successfully to investigate the causes of failure for 

HIV infection. EM algorithm was used to estimate the 

parameters of the model. Through the simulation studies, we 

find that our approach show similar result as the one obtained 

by Kim (2003). The simulation studies strongly support the 

generalized missing information principle in a parametric 

context and use of the generalized profile information for 

non-identically distributed samples. From the real data set we 

find that the covariates do not have a significant different. 

Fixing the gender at diagnosis, a male has a lower hazard rate 

than female. Fixing age, very young patients have a lower 

hazard rate than relatively young patients. Even with many 

exact observations (550), the additional interval-censored 

observations (126) help to give a more accurate estimate of 

the regression parameter. However, it is confirmed that the 

heavily treated group had a significantly higher risk of the 

onset of AIDS after HIV infection 
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