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Abstract 

Let ( )EVG ,=  be a connected graph and c be a proper k-coloring of 

G. Let { }kCCC ...,,, 21=∏  be a partition of ( ) ,GV  where iC  is the 

set of vertices receiving color i. The color code ( )vc∏  of a vertex v in 
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G is the ordered k-tuple ( ) ( )( ),,...,,, 1 kCvdCvd  where ( )( )iCvd ,  is 

the distance of v to .iC  If for any two distinct vertices u, v in G, 

( ) ≠∏ uc  ( ),vc∏  then c is called a locating-chromatic coloring of G. 

The locating-chromatic number of graph G, denoted by ( ) ,GLχ  is the 

smallest k such that G admits a locating coloring with k colors. A 
firecracker graphs knF ,  is a graph obtained by the concatenation of n 

stars, each consists of k vertices, by linking one leaf from each star. In 
this paper, we determine the locating-chromatic number of firecracker 
graphs ., knF  

1. Introduction 

The locating-chromatic number of a graph was firstly studied by 
Chartrand et al. [2] in 2002. This concept is derived from the partition 
dimension and the graph coloring. The partition dimension of a graph was 
firstly studied by Chartrand et al. in [4]. They gave the partition dimension of 
some classes of trees, such as: paths, double stars, and caterpillars. Since 
then, many studies have been conducted to find the partition dimension of 
certain classes of graphs. For instances, Tomescu et al. [8] showed upper 
bound and lower bound on partition dimension of wheels. Next, Javaid and 
Shokat [6] gave the upper bounds on the number of vertices in some wheel 
related graphs, namely, gear graphs, helms, sunflowers, and friendships 
graph with partition dimension k. More recent results, Marinescu-Ghemeci 
and Tomescu [7] derived the star partition dimension of generalized gear 
graphs. 

Let ( )EVG ,=  be a connected graph. Let c be a proper k-coloring of G 

with colors ....,,2,1 k  Let { }kCCC ...,,, 21=∏  be a partition of ( ),GV  

where iC  is the set of vertices receiving color i. The color code ( )vc∏  of v is 

the ordered k-tuple ( ) ( ) ( )( ),,...,,,,, 21 kCvdCvdCvd  where ( ) =iCvd ,  

( ){ }iCxxvd ∈|,min  for any i. If all distinct vertices of G have distinct color 

codes, then c is called a locating-chromatic k-coloring of G (k-locating 
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coloring, in short). The locating-chromatic number, denoted by ( )GLχ  is the 

smallest k such that G has a locating coloring with k colors. 

Chartrand et al. [2] determined the locating-chromatic numbers of some 
well-known classes such as paths, cycles, complete multipartite graphs and 
double stars. Moreover, the locating-chromatic number of some particular 
trees is also considered by Chartrand et al. [3]. They determined the locating-
chromatic number of tree nT  order 5≥n  and showed that locating-chromatic 

number of tree nT  is t, where [ ]nt ,3∈  and .1−≠ nt  For each value in the 

interval, some trees are indicated. However, there are many classes of trees 
which locating-chromatic numbers are still not known. 

In 2011, Asmiati et al. [1] determined the locating-chromatic number of 
amalgamation mkS ,  of stars, namely, the graph obtained from k copies of 

star mK ,1  by identifying a leaf from each star. Motivated by this, in this 

paper, we determine the locating-chromatic number of firecracker graph 
,, knF  namely, the graph obtained by the concatenation of n stars kS  by 

linking one leaf from each star [5]. 

The following results were proved by Chartrand et al. in [2]. We denote 
the set of neighbors of a vertex v in G by ( ).vN  

Theorem 1. Let c be a locating coloring in a connected graph =G  

( )., EV  If u and v are distinct vertices of G such that ( ) ( )wvdwud ,, =  for 

all ( ) { },, vuGVw −∈  then ( ) ( ).vcuc ≠  In particular, if u and v are non- 

adjacent vertices of G such that ( ) ( ),vNuN =  then ( ) ( ).vcuc ≠  

Corollary 1. If G is a connected graph containing a vertex adjacent to m 
end-vertices of G, then ( ) .1+≥χ mGL  

Corollary 1 gives a lower bound of the locating-chromatic number of a 
general graph G. 



Asmiati et al. 14 

2. Dominant Vertices 

Let c be a locating-chromatic coloring on graph ( )., EVG =  Let =∏  

{ }kCCC ...,,, 21  be the partition of ( )GV  under such a coloring c. Then a 

vertex ,iCv ∈  for some i, is dominant if ( ) 1, =jCvd  for .ij ≠  Note that 

iC  has at most one dominant vertex. A path connecting two dominant 

vertices is said to be clear if all of its internal vertices are not dominant. 
Now, we show, in the following lemma, that every clear path in a graph 
whose locating-chromatic number three must have odd length. 

Lemma 1. Let G be a graph of locating-chromatic number three. Then, 
any clear path has odd length. 

Proof. Let P be a clear path connecting two dominant vertices x and y in 
G. Assume ( ) 1=xc  and ( ) .2=yc  Since all internal vertices of P are not 

dominant, the colors of these vertices must be either 2 or 1 alternatingly, and 
together with x and y, they form an alternating sequence. Therefore, the 
number of these internal vertices must be even, and it implies that the length 

of P is odd.  

Lemma 2. Let G be a connected graph of locating-chromatic number 
three. Let G contain three dominant vertices. Then, these three dominant 
vertices must lie in one path. 

Proof. Let x, y, z be the three dominant vertices of G. Let P be a path 
connecting x and z. For a contradiction, assume y is not in a path P (as well 
as the extension of P). Since G is connected, there exists an internal vertex u 
such that u has a smallest distance (compared to other internal vertices) to y. 
Now consider the path 1L  connecting x to u and then to y. Such a path 

is  a  clear path. Therefore, it has odd length. Next, consider the path 2L  

connecting y to u and then to z. Then, 2L  is also a clear path. Therefore, its 

length is odd. These two facts imply that the length of the path connecting x 
to u plus the length of the path connecting u to z is even, a contradiction.  
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3. The Locating-chromatic Number of knF ,  

Let knF ,  be a firecracker, for .2, ≥kn  In this section, we shall determine 

the locating-chromatic number of ., knF  Since ( ) ,3, ≥knFV  it is clear that 

the locating-chromatic number ( ) .3, ≥χ knL F  

Theorem 2. For 2=k  or 3, we have that 

( )
⎩
⎨
⎧

≥
≤≤

=χ
.7,4

,72,3
, nif

nif
F knL  

Proof. First, consider the firecracker knF ,  for 2=k  or 3, and 

.72 <≤ n  To show that locating-chromatic number is 3, we only need to 
give the locating coloring of such a graph. Consider the coloring c of 3,6F  in 

Figure 1. It is easy to see that c is a locating coloring. By using the 
corresponding sub-coloring (from left side) of c, we can obtain the locating 
coloring of ,, knF  for 72 <≤ n  and 2=k  or 3, except for 2,3F  and ,3,3F  

replace color 2 for the rightmost vertices by 1, whereas for 2,5F  and ,3,5F  

replace color 3 for the rightmost vertex by 2. 

 
Figure 1. A minimum locating coloring of .3,6F  

Next, consider a graph knFG ,≅  for 7≥n  and 2=k  or 3. We shall 

show that ( ) .4≥χ GL  Suppose there exists a 3-locating coloring c on knF ,  
for ,7≥n  .3,2=k  First, we are going to show that there are exactly three 
dominant vertices in ,, knF  for 7≥n  and .3,2=k  Since knF ,  for 3,2=k  

is not a path, knF ,  for 3,2=k  has at least two dominant vertices. 
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Now, by a contradiction, suppose there are only two dominant vertices in 
,3,2,, =kF kn  say x and y. By Lemma 1, there is an odd clear path from x 

to y, say ( ),...,,, 21 ypppx r ==  with r is even. If all degrees of x and y 

are 2, then for ,2,nF  the two neighbors of 2p  (other than x) will have the 

same color code, a contradiction. For ,3,nF  if 6≤r  and let v be a vertex 

(other than )2−rp  of degree 3 adjacent to .1−rp  Then the two neighbors of v 

(other than )1−rp  will have the same color code, a contradiction. If ,6>r  

then the two neighbors of 3p  (other than )2p  will have the same color code, 

a contradiction. 

Now, consider the case of the degree of x is 2 and the degree of y is 3. 
For knF ,  and ,3,2=k  if ,4≤r  then let z be a vertex (other than )1−rp  of 

degree 3 adjacent to y. Consider the two neighbors of z (other than y). Then, 
the color codes of these two vertices will be the same, a contradiction. For 

,2,nF  if ,4>r  then the color codes of the two neighbors of 2p  (other than 

x) will be the same, whereas for ,3,nF  the color codes of the two neighbors 

of 1−rp  (other than y) will be the same, a contradiction. 

Now, consider the degrees of x and y are 3. We may assume that y is 
adjacent to a vertex z with degree 3. For knF ,  and ,3,2=k  if ,2=r  then 

the two neighbors of z (other than y) will have the same color code, a 
contradiction. If ,2>r  then two neighbors of x will have the same color 

code, a contradiction. Therefore, if ( ) ,3, =χ knL F  7≥n  and ,3,2=k  then 

it has exactly 3 dominant vertices. 

Since knFG ,≅  has three dominant vertices, for 3,2=k  and ,7≥n  by 

Lemma 2, these three dominant vertices lie in one path P, say =:P  
( ),...,,...,,, 21 zpypppx rt ===  where x, y, z are the dominant vertices. 

Next, we consider the following three cases (by symmetry): 

Case 1. Distances: ( ) ( ) .1,, == zydyxd  
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This means that ,1px =  2py =  and .3pz =  Since ,7≥n  at least one 

of x, y or z has a neighbor w of degree 3 (which is not a dominant vertex) in 
G. Then, two neighbors of w will have the same color code. 

Case 2. Distances: ( ) 1, =yxd  and ( ) .3, ≥zyd  

If ( ) ,3, >zyd  then the two non-dominant vertices adjacent to w will 

have the same color code, where w is a neighbor of y which lies in the clear 
path from y to z, a contradiction. If ( ) 3, =zyd  and ( ) ,3=zd  then two  

neighbors of z will have the same color code. If ( ) 3, =zyd  and ( ) ,2=zd  

then since ,7≥n  there exists a vertex w not in P of degree 3 adjacent to 

either x, y or .1−rp  Then, the color codes of the two non-dominant neighbors 

of w are the same, a contradiction. 

Case 3. Distances: ( ) 3, ≥yxd  and ( ) .3, ≥zyd  

In this case, the degree of y must be 3 and two neighbors of y will have 
the same color code, a contradiction. 

Therefore, from these three cases, we conclude that ( ) ,4, ≥χ knL F  for 

7≥n  and .3,2=k  

Next, we show that ( ) ,4, ≤χ knL F  for ,7≥n  .3,2=k  Label all leaves 

of 2,nF  by nlll ...,,, 21  and a vertex adjacent to leave il  by .ix  Now, define 

a 4-coloring c on 2,nF  as follows: 

• ( ) 1=ixc  if i is odd and ( ) 2=ixc  if i is even; and 

• ( ) 41 =lc  and ( ) 3=ilc  for .2≥i  

It is clear that the color codes of all vertices are different (by the distance 
to the vertex of color 4), therefore c is a locating coloring on ,2,nF  .7≥n  
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Figure 2. A minimum locating coloring of ,3,nF for .7≥n  

Next, consider a graph 3,nF  for .7≥n  Let ( ) { =|= ilmxFV iiin ,,3,  

}n,,2,1 ⋅  and 

( ) { } { }....,,2,1,1...,,2,113, nilmmxnixxFE iiiiiin =|−=|= + ∪  

Define a 4-coloring c on 3,nF  as follows: 

• ( ) ( ) 1== ii lcxc  if i is odd and ( ) ( ) 2== ii lcxc  if i is even; and 

• ( ) 41 =mc  and ( ) 3=imc  for .2≥i  

The coloring c will create a partition ∏  on ( ).3,nFV  We show that the 

color codes for all vertices in 3,nF  are different. It is clear that ( ) =∏ 1mc  

( ),0,3,2,1  ( ) ( )1,0,1,2 +=∏ imc i  for even i and ( ) ( )1,0,2,1 +=∏ imc i  

for odd ,3≥i  whereas for ,ix  ( ) ( ),1,2,1,01 =∏ xc  ( ) ( )ixc i ,1,0,1=∏  for 

even i and ( ) ( )ixc i ,1,1,0=∏  for odd .3≥i  For leaves, ( ) =∏ 1lc  

( ),1,4,30  ( ) ( )2,1,0,3 +=∏ ilc i  for even i and ( ) ( )2,1,3,0 +=∏ ilc i  

for odd .3≥i  All these color codes are different, thus c is a locating- 
coloring. 

So ( ) ,43, ≤χ nL F  .7≥n   

Next, we determine the locating-chromatic number of firecracker graphs 

knF ,  for 2≥n  and .4≥k  

Theorem 3. Let knF ,  be a firecracker graph. Then, 

 (i) ( ) ,44, =χ nL F  for .2≥n  
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(ii) For ,5≥k  

( )
⎩
⎨
⎧ −≤≤−

=χ
.,

,12,1
, otherwisek

knifk
F knL  

Proof. Let ( ) { },2...,,2,1;...,,2,1,,, −==|= kjnilmxFV ijiikn  and 

( ) { }1...,,2,11, −=|= + nixxFE iikn  

{ }.2...,,2,1;...,,2,1, −==| kjnilmmx ijiii∪  

First, we determine the lower bound of ,4,nF  for .2≥n  By Corollary 1,           

we have that ( ) .34, ≥χ nL F  However, we will show that ( ) .44, ≥χ nL F       

For a contradiction, assume that there exists a 3-locating coloring c on   
,4,nF  .2≥n  If the colors are 1, 2 and 3, then ( ) ( ) ( ){ } =12111 ,, lclcmc  

( ) ( ) ( ){ } { }.3,2,1,, 22212 =lclcmc  Obviously, ( ) ( ),21 mcmc ≠  since otherwise,         

the color codes of il1  and jl2  are the same, for some { },2,1, ∈ji  a 

contradiction. Now consider ( ),ixc  for .2,1=i  Since we have only 3 colors, 

( ) ( )jlcxc 11 =  for some { }.2,1=j  Regardless the color of ,2x  we have that 

the color code of 1x  is the same as the color code of either jl1  or ,2m  a 

contradiction. Therefore, ( ) .44, ≥χ nL F  

Next, we determine the upper bound of 4,nF  for .2≥n  To show that 

( ) 44, ≤χ nL F  for ,2≥n  consider the 4-coloring c on 4,nF  as follows: 

• ( ) 1=ixc  if i is odd and ( ) 3=ixc  if i is even; 

• ( ) 2=imc  for every i; 

• for all vertices ,ijl  define 

( )
⎪⎩

⎪
⎨
⎧

=
=≥
==

=
.2if,3

,1,2if1,
,1,1if,4

j
ji
ji

lc ij  
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The coloring c will create a partition ∏  on ( ).4,nFV  We shall show that              

the color codes of all vertices in 4,nF  are different. For odd i, we have 

( ) ( )1,1,1,0 +=∏ ixc i  and for even i, ( ) ( ).1,0,1,1 +=∏ ixc i  For ,im  

( ) ( )1,1,0,11 =∏ mc  and ( ) ( )2,1,0,1 +=∏ imc i  for .2≥i  For vertices 

,, jil  we have ( ) ( )0,2,1,211 =∏ lc  and ( ) ( ).2,0,1,212 =∏ lc  For ,2≥i  

( ) ( )3,2,1,01 +=∏ ilc i  and ( ) ( ).3,0,1,22 +=∏ ilc i  Since the color codes 

of all vertices in 4,nF  are different, thus c is a locating-chromatic coloring. 

So ( ) .44, ≤χ nL F  It completes the proof for the first part of the theorem. 

Next, we will show that for ,5≥k  ( ) kF knL =χ ,  if ,kn ≥  and 

( ) 1, −=χ kF knL  if .12 −≤≤ kn  To show this, let us consider the 

following two cases: 

Case 1. For 5≥k  and .12 −≤≤ kn  

First, we determine the lower bound of ,, knF  for 5≥k  and ≤≤ n2  

.1−k  Since each vertex il  is adjacent to ( )2−k  leaves, by Corollary 1, 

( ) .1, −≥χ kF knL  

Next, we will show that ( ) 1, −≤χ kF knL  for 5≥k  and .1−≤ kn  

Define a ( )1−k -coloring c of ,, knF  as follows. Assign ( ) ,imc i =  for =i  

n...,,2,1  and all the leaves: { }2...,,2,1 −=| kjlij  by { } { },\1...,,2,1 ik −  

for any i. Next, define ( ),ixc  for ,...,,2,1 ni =  equal to ,3,2,...,,5,4,3 n  

respectively. Note that if ,2=n  then ( ) 21 =xc  and ( ) .32 =xc  As a result, 

coloring c will create a partition { }121 ...,,, −=∏ kUUU  on ( ),, knFV  where 

iU  is the set of all vertices with color i. 

We show that the color codes for all vertices in knF ,  for ,5≥k  

,1−≤ kn  are different. Let ( )knFVvu ,, ∈  and ( ) ( ).vcuc =  Then, consider 

the following cases: 
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• If ,ihlu =  ,jllv =  for some i, j, h, l and ,ji ≠  then ( ) ( )vcuc ∏∏ ≠  

since ( ) ( ).,, ii UvdUud ≠  

• If ,ihlu =  ,jmv =  for some i, j, h and ,ji ≠  then v must be a 

dominant vertex but u is not. Thus, ( ) ( ).vcuc ∏∏ ≠  

• If ,ihlu =  ,jxv =  for some i, j, h, then there exactly one set in ∏  

which has the distance 1 from u and there is at least two sets in ∏  which 
have the distance 1 from v. Thus, ( ) ( ).vcuc ∏∏ ≠  

• If ,imu =  ,jxv =  for some i, j, then u must be a dominant vertex but 

v is not. Thus, ( ) ( ).vcuc ∏∏ ≠  

• If ixu =  and ,jxx =  then 1=i  and .nj =  So, ( ) ( ).vcuc ∏∏ ≠  

From all the above cases, we see that the color codes of all vertices in 

knF ,  for ,5≥k  1−≤ kn  are different, thus ( ) .1, −≤χ kF knL  

For an illustration, we give the locating-chromatic coloring of 5,4F  in 

Figure 3: 

 

Figure 3. A locating-chromatic coloring of .5,4F  

Case 2. For 5≥k  and .kn ≥  

We first determine the lower bound for 5≥k  and .kn ≥  By Corollary 
1, we have that ( ) .1, −≥χ kF knL  However, we will show that 1−k  colors 

are not enough. For a contradiction, assume that there exists a ( )1−k -
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locating coloring c on knF ,  for 5≥k  and .kn ≥  Since ,kn ≥  there are two 

i, j, ji ≠  such that { ( ) } { ( ) }.2...,,2,12...,,2,1 −=|=−=| kllckhlc jlih  

Therefore, the color codes of im  and jm  are the same, a contradiction. 

Next, we determine the upper bound of knF ,  for ,5≥k  .kn ≥  To show 

that kF kn ≤,  for 5≥k  and ,kn ≥  consider the locating coloring c on knF ,  

as follows: 

• ( ) 1=ixc  if i is odd and ( ) 3=ixc  if i is even; 

• ( ) 2=imc  for every i; 

• If { },...,,2,1 kA =  define: 

{ ( ) }
{ }
{ }⎩

⎨
⎧ =

=−=|
otherwise.,,2\

,1if,2,1\
2...,,2,1

kA
iA

kjlc ij  

It is easy to verify that the color codes of all vertices are different. Therefore, 
c is a locating-chromatic coloring on ,, knF  and so ( ) ,, kF knL ≤χ  for .kn ≥  

This completes the proof.  

Figure 4 gives the locating-chromatic coloring of :5,6F  

 

Figure 4. A minimum locating coloring of .5,6F  
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