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Abstract. Let G be a connected graph G. Let c be a k-coloring of V (G) which induces an ordered partition Π =
{S1,S2, . . . ,Sk} of V (G), where Si is the set of vertices receiving color i. The color code cΠ(v) of vertex v is the ordered
k-tuple (d(v,S1),d(v,S2), . . . ,d(v,Sk)), where d(v,Si) = min{d(v,x)|x ∈ Si}, for 1≤ i≤ k. If the color codes of all vertices are
different, then c is called a locating-coloring of G. The locating-chromatic number of G, denoted by χL(G) is the smallest k
such that G has a locating k-coloring. In this paper, we investigate graphs with locating-chromatic number 3. In particular, we
determine all maximal graphs having cycles (in terms of the number of edges) with locating-chromatic number 3. From this
result, we then characterize all graphs on n vertices containing cycles with locating-chromatic number 3.

Keywords: locating-chromatic number, graph
PACS: 02.10.Ox

INTRODUCTION

Chartrand, Salehi, and Zhang [10] introduced the con-
cept of graph partition dimension in 1998 and since then
many studies have been devoted to determine the par-
tition dimension of graphs. In general, determining the
partition dimension of a graph is an NP-hard problem.
Later, in [11] they characterized all graphs of order n
having partition dimension 2, n, or n−1. In 2002, Char-
trand et al. introduced the locating-chromatic number of
graphs. This notion is a combined concept between graph
partition dimension and graph coloring.

Let G be a finite, simple, and connected graph. Let c
be a proper k-coloring of a connected graph G, namely
c(u) �= c(v) for any adjacent vertices u and v in G.
Let Π = {S1,S2, · · · ,Sk} be a partition of V (G) induced
by c on V (G), where Si is the set of vertices receiv-
ing color i. The color code cΠ(v) of v is the ordered
k-tuple (d(v,S1),d(v,S2), . . . ,d(v,Sk)) where d(v,Si) =
min{d(v,x)|x ∈ Si} for any i. If all distinct vertices of
G have distinct color codes, then c is called a locating-
chromatic k-coloring of G (locating k-coloring, in short).
The locating-chromatic number, denoted by χL(G), is
the smallest k such that G has a locating k-coloring.

Chartrand et al. [8] determined the locating-chromatic
numbers for some well-known classes: paths, cycles,
complete multipartite graphs and double stars. The
locating-chromatic number of a path Pn is 3, for n ≥ 3.
The locating-chromatic number of a cycle Cn is 3 if n
is odd and 4 if n is even. Furthermore, Chartrand et al.
[9] considered the locating-chromatic number of trees

in general. As results, they showed that for any k ∈
{3,4, ...,n− 2,n}, there exists a tree on n vertices with
locating-chromatic number k. They also showed that no
tree on n vertices with locating-chromatic number n−1.
Recently, Asmiati et al. [1, 2], determined the locating-
chromatic number for an amalgamation of stars and fire-
cracker graphs. Behtoei et al. [5] derived the locating-
chromatic number for Kneser graphs.

Some authors also consider the locating chromatic
number for graphs produced by a graph operation. For
instances, Baskoro et al. [3] determined the locating-
chromatic number for the corona product of two graphs.
Behtoei et al. [6] studied for Cartesian product of graphs
and Behtoei et al. [7] for join product of graphs. More-
over, they [7] also determined the locating chromatic
number of the fans, wheels and friendship graphs.

Clearly, the only graph on n vertices with locating
chromatic number n is Kn. Furthermore, Chartrand et al.
[9] characterized all graphs on n vertices with locating-
chromatic number n− 1. In the same paper, they also
gave conditions under which n−2 is an upper bound for
χL(G), namely if G is a connected graph of order n ≥
5 containing an induced subgraph F ∈ {2K1 ∪K2,P2 ∪
P3,H1,H2,H3,P2∪K3,P2,C5,C5 + e}, then χL(G) ≤ n−
2. Recently, we characterized all trees with locating-
chromatic number 3 [4]. Motivated by these results, in
this paper, we study connected graphs on n vertices
whose locating-chromatic number is 3. In particular, we
will characterize all such graphs with a cycle inside.
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DOMINANT VERTICES

Let c be a locating k-coloring on graph G(V,E). Let
Π = {S1, S2, · · · ,Sk} be the ordered partition of V (G)
under c. A vertex v ∈ G is called a dominant vertex if
d(v,Si) = 0 if v ∈ Si and 1 otherwise. A path connecting
two dominant vertices in G is called a clear path if all
of its internal vertices are not dominant. Then, we have
the following lemma as a direct consequence from the
definition.

Lemma 1. Let G be a graph with χL(G) = k. Then, there
are at most k dominant vertices in G and all of them must
receive different colors.

Asmiati et al. [2] showed that the length of any clear
path in a graph with locating-chromatic number 3 must
be odd. The proof is as follows.

Lemma 2. [2] Let G be a graph with χL(G) = 3. Then,
the length of any clear path in G is odd.

Proof. Let c be a locating 3-coloring on G. Let P be a
clear path connecting two dominant vertices x and y in G.
Assume c(x) = 1 and c(y) = 2. Since all internal vertices
of P are not dominant then the colors of these vertices
must be either 1 or 2, and together with x and y they
form an alternating sequence. Therefore, the number of
these internal vertices must be even, and it implies that
the length of P is odd.

Lemma 3. Let G be a graph containing a cycle with
χL(G) = 3. Let c be any locating 3-coloring of G. Then,
the following statements hold:

a. If G contains an odd cycle then G has exactly three
dominant vertices and three of them are in some odd
cycle.

b. If G contains only even cycles then G has at most
three dominant vertices in which two of them must
be two adjacent vertices in some of the cycles. Fur-
thermore, each of dominant vertices in such a cycle
has other neighbor which is not in the cycle.

Proof. By Lemma 1, G has at most three dominant ver-
tices. Since c is a locating 3-coloring of G, then there ex-
ists at least three vertices in G receiving different colors.
If G contains an odd cycle, say C, then C must contain
3 colors. Now, select three vertices receiving different
colors in C so that each of them has two adjacent ver-
tices with different colors. This selection can be done,
since C is an odd cycle in G. Therefore, we get exactly
three dominant vertices from this selection. So, part (a)
is proved.

Now if G contains only even cycles then by Lemmas
1 and 2 all vertices of any cycle C in G must receive only
two colors alternatingly. Therefore, there are at most two

dominant vertices in C. Assume that there is only one
dominant vertex in C, say x, then vertex x must have
at least the third neighbor (outside cycle C) receiving
the third color different than those in C. But, now the
two adjacent vertices of x in C will have the same color
code, a contradiction. Therefore, there are exactly two
dominant vertices x and y in C. If they are not adjacent
then the two neighbors of x in C will have the same
color code, a contradiction. Additionally, each of {x,y}
is required to have another neighbor not in C to make it
dominant. Therefore, part (b) is proved.

Corollary 1. If n is odd then χL(Cn) = 3. Otherwise,
χL(Cn) = 4.

Proof. Let V (Cn) = {v1,v2, · · · ,vn} and E(Cn) =
{v1v2,v2v3, · · · ,vnv1}. Since n ≥ 3 then χL(G) ≥ 3. For
odd n, define a locating-chromatic coloring c on Cn

such that: c(vn) = 1, c(vn−1) = 2, c(vn−2) = 3, and for
1 ≤ i ≤ n− 3, c(vi) = 3 if i is odd and 1 if i is even.
Therefore, χL(Cn) = 3 if n is odd.

For even n, define let c(vn)= 1, c(vn−1)= 2, c(vn−2)=
3, c(vn−3) = 4, and for 1 ≤ i ≤ n− 4, c(vi) = 4 if i is
odd and 1 if i is even. Therefore, χL(Cn) ≤ 4 if n is
even. However, by Lemma 3(b), the locating-chromatic
number of an even cycle cannot be 3.

MAXIMAL GRAPHS AND
CHARACTERIZATION

Let F be the set of all graphs containing cycles with
locating chromatic number 3. In this section, we will find
all maximal graphs in F . From these maximal graphs we
then characterize all graphs in F .

From now on, let F1 ∈ F and C is a smallest
odd cycle in F1. Let x,y,z be the dominant vertices
in F1. Assume that c(x) = 1, c(y) = 2 and c(z) =
3. By Lemma 2, there are three clear paths connect-
ing vertices x and y, y and z, and z and x using
all vertices of C in F . Let the three paths be xPy =
(x,u1,u2, · · · ,ur−1,ur = y), yPz = (y,v1,v2, · · · ,vs−1,vs =
z), and zPx = (z,w1,w2, · · · ,wt−1,wt = x), with r,s, t are
odd. Since xPy is a clear path, c(x) = 1, and c(y) = 2 then
c(ui) = 2 for odd i and 1 for even i (provided r > 1).
Similarly, all internal vertices of yPz have colors 3 and 2
alternatingly, and all internal vertices of zPx have colors
1 and 3 alternatingly.

Lemma 4. If r = s = t = 1 then d(x)≤ 4, d(y)≤ 4, and
d(z)≤ 4.

Proof. For a contradiction assume the degree of vertex
x in F1: d(x) ≥ 5. Since χL(F1) is 3, two neighbors of
x other than y and z will have the same color code, a
contradiction. Similarly it also holds for vertices y and
z.
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Lemma 5. If r = s = 1 and t > 1 then:

a. d(x) ≤ 3, d(y) ≤ 4, d(z) ≤ 3, d(w� t
2 	) ≤ 3,

d(w� t+1
2 	)≤ 3, and d(wi) = 2 for other i.

b. There is no path in F1 connecting a ∈ {x,y,z} to
b ∈ {w� t

2 	,w� t+1
2 	} without involving other vertices

in C.

c. There is no path in F1 connecting x to z without
involving other vertices in C.

Proof. To show d(y) ≤ 4 we use the same argument as
in Lemma 4. Now, if d(x) ≥ 4 then the color codes of
wt−1 and a will be the same, where a is a neighbor of x
other than y and wt−1, a contradiction. Therefore, d(x)≤
3. A similar argument can be applied to d(z), d(w� t

2 	)
and d(w� t+1

2 	). Now, we will show that d(wi) = 2 for
any other i. Assume d(wi) ≥ 3 for some i. Let b be
the neighbor of wi which is not in C. Then, c(b) = 1
or 3. This implies that the color codes of b and one
of {wi−1,wi+1} will be the same, a contradiction. So,
d(wi) = 2 for any other i.

To show (b), now assume there is a path in F1 connect-
ing x to b ∈ {w� t

2 	,w� t+1
2 	} without involving other ver-

tices in C. Let denote this path by L1 = (x, l1, · · · , lp,b)
with l1 �= wt−1. Therefore, the color of l1 is either 1
or 3. On the other hand, we have another path L2 con-
necting x and b involving only vertices in C (as a sub-
path of zPx). But now, two neighbors of x in these paths,
namely l1 and wt−1, will have the same color code, a
contradiction. Similarly, there is no path in F1 connect-
ing z to b ∈ {w� t

2 	,w� t+1
2 	} without involving other ver-

tices in C. Of course, there is no path F1 connecting y
to b ∈ {w� t

2 	,w� t+1
2 	} without involving other vertices in

C, since this path (if exists) will be a path with the in-
ternal vertices of colors 2 or (either 1 or 3 depending b).
This implies that b becoming an extra dominant vertex, a
contradiction.

To show (c), again assume there exists such a path.
Then, this path is a clear path. Therefore there are two
clear independent paths connecting x and z. This will
implies that two neighbors of x in these paths have the
same color code.

Lemma 6. If r = 1, s > 1, and t > 1 then:

a. d(x) ≤ 3, d(y) ≤ 3, d(z) = 2, d(v� s
2 	) ≤ 3,

d(v� s+1
2 	) ≤ 3, d(w� t

2 	) ≤ 3, d(w� t+1
2 	) ≤ 3 and

d(vi) = d(wi) = 2 for any other i.

b. There is no path in F1 connecting a ∈ {x,y} to b ∈
{v� s

2 	,v� s+1
2 	,w� t

2 	,w� t+1
2 	} without involving other

vertices in C.

c. There is no path in F1 connecting c ∈ {v� s
2 	,v� s+1

2 	}
to d ∈ {w� t

2 	,w� t+1
2 	} without involving vertices in

C.

Proof. To show d(x) ≤ 3, d(y) ≤ 3, d(v� s
2 	) ≤ 3,

d(v� s+1
2 	) ≤ 3, d(w� t

2 	) ≤ 3, d(w� t+1
2 	) ≤ 3 and

d(vi) = d(wi) = 2 for any other i, we use the same
argument as in Lemma 5. Now, assume d(z) ≥ 3. Let b
be the third neighbor of z. Then, c(b) = 2 or 1 and the
color codes of b and one of {vs−1,w1} will be the same,
a contradiction. To show (b) we use the same argument
as in Lemma 5.

To show (c), assume there is a path in F1 connect-
ing c ∈ {v� s

2 	,v� s+1
2 	} to d ∈ {w� t

2 	,w� t+1
2 	} without in-

volving vertices in C. Let denote this path by P1 =
(c, l1, · · · , lp,d). On the other hand, there is another path
connecting c to d by using only vertices in C. Thus, there
are two independent paths connecting c to d. Therefore,
two neighbors of c in these paths have the same color
code or there is an extra dominant vertex in this path, a
contradiction.

Lemma 7. If r > 1, s > 1, and t > 1 then:

a. d(x) = d(y) = d(z) = 2, d(u� r
2 	)≤ 3, d(u� r+1

2 	)≤ 3,

d(v� s
2 	) ≤ 3, d(v� s+1

2 	) ≤ 3, d(w� t
2 	) ≤ 3,

d(w� t+1
2 	) ≤ 3 and d(ui) = d(vi) = d(wi) = 2

for any other i.

b. There is no path in F1 connecting a ∈ {u� r
2 	,u� r+1

2 	}
to b ∈ {v� s

2 	,v� s+1
2 	,w� t

2 	,w� t+1
2 	} without involving

vertices in C.

c. There is no path in F1 connecting c ∈ {v� s
2 	,v� s+1

2 	}
to d ∈w� t

2 	,w� t+1
2 	} without involving vertices in C.

Proof. To show (a), (b), and (c) we use a similar argu-
ment as in Lemmas 5 and 6.

Lemma 8. Let F1 ∈F and C is a smallest odd cycle in
F1. If a ∈V (F1)\C then the degree d(a)≤ 3.

Proof. Let a ∈ V (F1)\C. Since F1 is connected, then
there exists a path P connecting a to a vertex of C. Let
b be the first vertex in C is traversed by path P. For a
contradiction assume d(a) ≥ 4. Let a1,a2,a3,a4 be the
neighbors of a. Assume c(a) = 1. Since F contains an
odd cycle then by Lemma 3 all dominant vertices will be
in C. Therefore the colors of all neighbors of a must be
the same, say 2. Now, let d(a,S3) = t. Then, d(ai,S3) is
t−1, t, or t +1, for i = 1,2,3,4. Therefore, there are two
vertices ai will have the same color code, a contradiction.
Thus, d(a)≤ 3.

Lemma 9. Let F1 ∈F and C is a smallest odd cycle in
F1. Let x and y be dominant vertices in C with the length
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of the clear path between them is 1. Then, all paths (if
any) in F1 connecting x to y without involving other ver-
tices in C must have different odd length. Furthermore,
all such paths induce a ladder in F1 maximally.

Proof. Let P in F1 be any path connecting x to y with-
out involving other vertices in C. Consequently, P is
a clear path. By Lemma 2, P has odd length. There-
fore, the length of any path connecting x to y without
involving other vertices in C is odd. Now, assume we
have two different such paths with the same length: P1 =
(x, l1, · · · , li, · · · , lp,y) and P2 = (x,m1, · · · ,mi, · · · ,mp,y).
But, then we have cΠ(li) = cΠ(mi) for any i. This means
that li = mi for any i, a contradiction.

Now, consider all such paths connecting x to y without
involving other vertices in C. Thus, these paths are clear
paths, and all vertices in these paths have colors either
c(x) or c(y). So, the subgraph induced by these paths will
have locating-chromatic number 2. Thus, its chromatic
number will be also 2. By Lemma 8 the maximum degree
of every vertex in V (F1)\C is 3. As a result, These paths
maximally will form a ladder (bipartite subgraph) of
F1.

Lemma 10. Let F1 ∈F and C is a smallest odd cycle
in F1. Let x and y be dominant vertices in C with the
length of the clear path between them is r(> 1). Then,
all paths (if any) in F1 connecting u� r

2 	 to u� r+1
2 	 without

involving vertices in C must have different odd length.
Furthermore, all such paths induce a ladder in F1 maxi-
mally.

Proof. Let P in F1 be a path connecting u� r
2 	 to u� r+1

2 	
without involving vertices in C. Since all internal vertices
of P only can be colored by 1 and 2, alternatingly, then
P is clear path. By Lemma 2, P has odd length. To show
that all such paths have different length and they form
a ladder maximally, we use a similar argument as in
Lemma 9.

Theorem 1. Let C be a fixed odd cycle. Then, there
are exactly four types of maximal graphs as depicted in
Figure 1 with locating-chromatic number 3 containing C
as a smallest odd cycle.

Proof. Let F1 ∈ F and C is a smallest odd cycle
in F1. Then, by Lemma 3(a), C contains three dom-
inant vertices of F1. Let x,y,z be the three dominant
vertices of F1. Assume that c(x) = 1, c(y) = 2 and
c(z) = 3. By Lemma 2, there are three clear paths us-
ing only vertices in C with odd length, namely: xPy =
(x,u1,u2, · · · ,ur−1,ur = y), yPz = (y,v1,v2, · · · ,vs−1,vs =
z), and zPx = (z,w1,w2, · · · ,wt−1,wt = x), with r,s, t are
odd.

Now, consider if length of C is 3. In this case, r = s =
t = 1. By Lemma 4, we have that d(x) ≤ 4, d(y) ≤ 4,

d(z)≤ 4. Lemmas 8 and 9 implies that if there are other
clear paths connecting every two dominant vertices and
without involving other vertices in C then such paths (if
all exists) will induce three ladders maximally with the
common vertices x,y and z. Therefore, for this type we
obtain the graph depicted in Figure 1(i) as the maximal
graph with locating chromatic number 3 and having a
triangle as a smallest cycle.

Now, consider the length of C is greater than 3. Then,
we have the following three cases.

Case 1. r = s = 1 and t > 1.
By Lemmas 5, 9 and 10, F1 will be maximal if it has
three ladders with two ladders having one common
vertex as depicted in Figure 1(ii).

Case 2. r = 1, s > 1, and t > 1.
By Lemmas 6, 9 and 10, F1 will be maximal if it has
three independent ladders as depicted in Figure 1(iii).

Case 3. r > 1, s > 1, and t > 1 .
By Lemmas 7 and 10, F1 will be maximal if it has three
independent ladders as depicted in Figure 1(iv).

Theorem 2. Let F be any graph having a smallest odd
cycle C. F has locating-chromatic number 3 if and only
if F is a subgraph of one of the graphs in Figure 1 which
every vertex a �∈ C of degree 3 must be lie in a path
connecting two different vertices in C.

Proof. Let F be a graph having C as a smallest cycle.

(←) Let F be a subgraph of one of the graphs in Figure
1 in which every vertex a �∈ C of degree 3 must be lie
in a path connecting two different vertices in C. Then F
contains C and ’almost’ independent subgraphs of three
ladders (that may have one common vertex in dominant
vertex for each pair). Such subgraphs have the property
that every vertex of degree 3 in this induced subgraph
lie in a path connecting two different vertices in C. Such
path must be connecting either two dominant vertices or
two mid vertices in a clear path involving vertices only
in C.

Let x,y,z be the dominant vertices in C. Color
c(x) = 1,c(y) = 2,c(z) = 3, and color the internal ver-
tices of the clear paths involving vertices in C: xPy, yPz,
zPx by 1,2, or 2,3, or 3,1, alternatively and respectively.
Colors each subgraph of the ladder attaching to the
vertices a and b in C by two colors c(a) and c(b). By
this coloring, we have a locating 3-coloring in F . Since
F contains an odd cycle then χL(F) ≥ 3. Therefore, F
has locating-chromatic number 3.

(→) If F has locating-chromatic number 3 and having C
as a smallest odd cycle then by Lemmas 4-10 we know
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FIGURE 1. The four types of maximal graphs in F containing an odd cycle.

the restrictions of all the degrees of vertices of C in F .
We also know that the conditions of all vertices outside
C and how they are connected to vertices in C. If there
is a vertex a ∈ F\C of degree 3 and this vertex is not lie
in any path connecting two vertices in C then this vertex
must be connected to a cycle C by a path bPa with initial
vertex b in C (since F is connected). Let a1,a2,a3 be
the neighbors of a in F , where a1 is in such path bPa.
Of course c(a2) = c(a3), since otherwise a will be an
extra dominant vertex in F (recall that C has already 3
dominant vertices). Thus, we obtain the color codes of a2
and a3 will be the same, a contradiction. Therefore, if any
vertex of degree 3 in F\C will be lie in a path connecting
two (adjacent) vertices in C. Therefore, by these lemmas
and Theorem 1 we conclude that F must be a subgraph
of one the graphs in Figure 1 in which every vertex a �∈C
of degree 3 must be lie in a path connecting two different
vertices in C.

Next, we will characterize all graphs containing only
even cycles with locating-chromatic number 3. For this
purpose, from now on, let F2 ∈ F and having only
even cycles. By Lemma 3(b), F2 will have at most three
dominant vertices in which two of them are two adjacent

vertices in some cycle. Let C be the maximal even cycle
containing the two dominant vertices. Let x,y,z be the
dominant vertices (if there are three) in F2 and x,y lie in
C. Assume c(x) = 1 and c(y) = 2. Therefore, the color of
vertices in C must be 1 and 2, alternatingly. By Lemma
3(b), each dominant vertex in C must have a neighbor
not in C. Let ux,vy ∈ E(F2) where u,v �∈C. Since x,y are
dominant vertices, we must have c(u) = c(v) = 3. Then,
we have the following lemma.

Lemma 11. Let C be the maximal even cycle in F2 that
have two dominant vertices x and y. Let V (C) = {x =
a1,a2, . . . ,ah−1,ah = y}. Then:

a. d(x) = d(y) = 3, d(ai)≤ 3 for any other i. Further-
more for the third neighbor of ai, if aiw∈ E(F2) and
i �∈ { h

2 ,
h
2 +1} then w = ah+1−i.

b. There is no path in F2 connecting b∈ {u,v} to ai for
i �∈ {1,h} without involving other vertices in C.

c. If F2 has the third dominant vertex z then one of the
following statements is true:

• If z = v then d(u)≤ 2 and d(v)≤ 3.

• If z = u then d(u)≤ 3 and d(v)≤ 2.
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• If z �∈ {u,v} then d(z)≤ 2, d(u)≤ 2, d(v)≤ 2,
and there is a path connecting z to either u or
v.

d. If w∈V (F2)\C then there is a path connecting from
w to either u,v,a h

2
or a h

2+1, and all internal vertices

of this path have degree 2.

Proof. To show d(x) = d(y) = 3. Assume d(x) ≥ 4.
Then, there are two neighbors of x having the same color
code, a contradiction. A similar argument is needed to
show d(y) = 3. Now, assume d(ai) ≥ 4 for some i. If
c(ai) = 1 then each neighbor of ai will have color 2. If
d(ai,S3) = t then d(w,S3) = t − 1, t, or t + 1, where w
is any neighbor of ai. Then, there are two neighbors of
ai having the same color code, a contradiction. Now, if
d(ai) = 3 for i �∈ { h

2 ,
h
2 +1} then its third neighbor must

be ah+1−i, otherwise its two neighbors will have the same
color code, a contradiction.

To show (b), assume there is a path L1 in F2 connect-
ing b to ai for some i �∈ {1,h} without involving other
vertices in C. Then, this path together with the path L2
connecting b to ai using vertices in C will form an even
cycle. Since c(b) = 3 and the colors of internal vertices
of L2 are 1 and 2 alternatively, then they will give four
dominant vertices, a contradiction.

To show (c), let z be the third dominant vertex of F2.
If z = v then clearly d(v) ≤ 3. Assume d(u) ≥ 3. Since
u is not dominant, then three of its neighbors must have
the same color, then two of neighbors will have the same
color code, a contradiction. A similar argument can be
applied for the case of u ∈ F2 being a dominant vertex.

Now, if z �∈ {u,v}. By Lemma 11(a), we cannot have a
path connecting z to ai for i �∈ { h

2 ,
h
2 +1} without passing

either u or v. There is also no such path connecting z
to ai for i ∈ { h

2 ,
h
2 + 1}, since otherwise it will create an

extra dominant vertex. Therefore, there must be a path
connecting z to either u or v. To avoid the same color
code, all internal vertices in this path have degree 2 and
d(z)≤ 2.

The statement of (d) is a consequence of statements
(a) and (c).

Lemma 12. Let C be the maximal even cycle in F2 that
have two dominant vertices x and y. Then, all paths (if
any) in F2 connecting x to y with involving only vertices
in C have different odd length. Furthermore, all such
paths (if any) in F2 induce a ladder maximally.

Proof. Let P in F2 be a path connecting x to y with in-
volving only vertices in C. Consequently, P is a clear
path. By Lemma 2, P must have odd length. Now, as-
sume we have two different clear paths with the same
length P1 =(x= a1,a2, · · · ,ai, · · · ,ah−1,ah = y) and P2 =
(x= b1,b2, · · · ,bi, · · · ,bh−1,bh = y). Therefore, cΠ(ai) =
cΠ(bi) for any i. This means that ai = bi for any i, a con-
tradiction.

Now, consider all such paths connecting x to y in-
volving only vertices in C. Thus, these paths are clear
paths, and all vertices in these paths have colors either 1
or 2. So, the subgraph induced by these paths will have
locating-chromatic number 2. Thus, its chromatic num-
ber will be also 2. By Lemma 11(a) the maximum degree
of every vertex in C is 3. As a result, These paths maxi-
mally will form a ladder (bipartite subgraph) of F2.

Theorem 3. Let C be a fixed even cycle. Then, the graph
in Figure 2 is the maximal graph F2 ∈F containing only
even cycles and C as a largest even cycle.

Proof. Let C be a largest even cycle in F2 ∈ F , where
V (C) = {x = a1,a2, . . . ,ah−1,ah = y}. Then, by Lemma
3(b) C has two dominant vertices, x,y and let xu,yv ∈
E(F2), where u,v �∈ C. Let c(x) = 1,c(y) = 2. Then,
c(ai) = 1 and 2, alternatingly. By Lemma 12, all clear
paths (if any) connecting vertices x and y will induce a
ladder maximally. Considering the facts from Lemma 11,
we can conclude that the graph in Figure 2 is the maximal
graph F2 containing only even cycles and C is a largest
cycle in F2.

FIGURE 2. The maximal graph in F containing even cycles
only.

Theorem 4. Let F be a graph having only even cycles
and C as a largest even cycle. F has locating-chromatic
number 3 if and only if F is a subgraph of the graph in
Figure 2 with vertices u and v in F.

Proof. Let F be a graph having only even cycles and C
as a largest even cycle.

(←) If F is a subgraph of one of the graphs in Figure 2
with vertices u and v in F then F contains C and some
paths connecting to either u,v,a h

2
or a h

2+1. It is obvi-
ous that F can be colored 3 (the smallest). Therefore,
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χL(F) = 3.

(→) If F has locating-chromatic number 3 and all cycles
in F are even and C is the smallest even cycle then by
Lemmas 11 and 12, we know the restrictions of all the
degrees of vertices of C and vertices u and v in F . We also
know that the conditions of all other vertices in F and
how they are connected to vertices in C and/or u and v.
Therefore, by these lemmas and Theorem 3 we conclude
that F must be a subgraph of the graph in Figure 2 with
u and v in F .
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