In Vivo Study: Characterization of Mutants *Vanilla planifolia* Andrews Resistant To Fusarium Wilt Disease Based On Analysis of the Lignin and the Phenol Content

Endang Nurcahyani*¹, Yulianty¹, E. Suharyanto²
¹Dept. of Biology, Faculty of Mathematics and Natural of Science, University of Lampung, Bandar Lampung, Indonesia.
²Faculty of Biology, Gadjah Mada University, Yogyakarta, Indonesia
*Corresponding author: Endang Nurcahyani

Abstract: The most production constrain on *Vanilla planifolia* plantation recently has been caused by foot rot disease that later influence in decreasing the yield product. This disease is caused by *Fusarium oxysporum* f. sp. *vanillae* (Fov). So far, the disease has not been successfully prohibited although some experiments had been conducted. The use of foot rot resistant cultivar has been introduced, which has high yield expected as one alternative method for controlling this disease. A resistant vanilla plantlet to Fov has been initiated by in vitro selection on medium containing fusaric acid (FA) on different concentration (90, 100, 110, and 120 ppm). In vivo, inoculation of Fov fungal isolates in vanilla mutants has been performed previously. The long-term goal in the overall study was to obtain Fov-resistant mutant seedlings. Specific targets to be achieved were characterization of *V. planifolia* mutant by in vivo. The stages of this research include: resistance analysis, lignin thickness and the phenol content of mutant resistant to *Fusarium* wilt disease by in vivo. The results showed that in vivo condition using concentration of FA of 110 ppm was effective for suppressing the growing of Fov, by intensity up to 25%, compared to the concentration of 90 ppm and 100 ppm respectively. In other words by using 110 ppm fusaric acid could increased the category criteria to resistant. There was a significant increased in the total of lignin thickness, and the phenol content, overall in line with the rising FA concentration.

Keywords: *Vanilla planifolia* Mutant; lignin thickness; the phenol content; *Fusarium oxysporum* f.sp. *vanillae*, in vivo

Date of Submission: 24-02-2018
Date of acceptance: 12-03-2018

1. Introduction

Vanilla is an epiphytic plant and belongs to the familia Orchidaceae. The genus of vanilla consists of about 150 species, but the only economically valuable are only 3 species, namely *V. planifolia* Andrews, *V. tahitensis* J. Wi Moore and *V. pompona* Schieda (Besse et al., 2004; Minoo et al., 2008; Umamaheswari & Mohanan, 2011). The most widely cultivated species, especially in Indonesia are *V. planifolia* Andrews (Anandaraj et al., 2005; Rajeev P & Dinesh R, 2005; Palama et al., 2010).

One of the plantation commodities in Indonesia and in Lampung Province in particular, with a fairly high economic value and has a good name in the international market is vanilla. United Nations Development Program (UNDP), recommends that Indonesian vanilla is no different from "Bourbon vanilla" which has an excellent commodity image in the international community (Umamaheswari & Mohanan, 2011). Vanilla is widely used in the food, beverage and medicine industries; at this time vanilla is being developed its use as a raw material for making perfume in the form of tincture or absolute (Kalimuthu et al., 2006; Abebe et al., 2009; Mengesha, 2012).

The foot rot disease on vanilla is the most crucial disease caused by *Fusarium oxysporum* f. sp. *vanillae* (Fov), which is the most limitation and up to know days is not well managed yet. One an alternative way to control foot rot disease could be done by using a cultivar, which is resistant to this disease (Nurcahyani, 2014). Fusaric acid (FA) is a metabolite produced by several fungal species of the Fusarium genus. Chemically the FA is called 5-n-butylpicolinic acid. The use of FA as a selecting agent in in vitro selection may produce an insensitive mutant network of FA, so that once regenerated into the plant may produce strains resistant to pathogen infection (Arai dan Takeuchi, 1993). Identification of mutants or variants that are insensitive to AF with in vitro selection was performed on tomato plants (Toyoda et al., 1984), pisang (Morpurgo et al., 1994; Matsumoto et al., 1995), gladiol (Remotti et al., 1997), nanas (Borras et al., 2001), dan vanili (Nurcahyani et al., 2012; Nurcahyani et al., 2014; Nurcahyani, 2017), *Spathoglottis plicata* (Nurcahyani, 2016a, Nurcahyani, 2016b, 2017).
Characterization of Mutants Vanilla planifolia Andrews Resistant to Fusarium wilt Disease Based on Analysis

2016b). The results of these researchers showed that somaclonal from the regeneration of cell mass that is resistant to the toxin is also resistant to pathogens.

Based on previous research outcomes obtained in the form of V. planifolia resistant mutant candidates Fov. Mutant of V. planifolia subsequently acclimatized in greenhouse, so that obtained mutants that have adapted to the environment outside (in vivo). The resistance analysis of V. planifolia and mutant macropopagation was subsequently carried out to obtain the resistance of the Fov resistant V. planifolia in vivo. Characterization of mutants in the form of lignin thickness and phenol content is carried out further to obtain the specific character of Fov resistant mutant.

II. Material and Methods

Materials research in the form of Vanilla planifolia Andrews obtained from previous research. For resistance analysis, lignin thickness and phenol content used 70% alcohol, Potato Dextrose Agar (PDA), gallic acid, Folin-Ciocalteau reagent, Na₂CO₃ sodium carbonate, 80% ethanol, phloroglucinol, FAA, 1% safranin, and balsam canada.

For the total phenol analysis using Singleton & Rossi (Aberouman & Deokule, 2008) method. For the preparation of standard calibration curve of phenol compound, gallic acid was used as standard solution, as control used aquades. After the absorption value is known then made standard curve, and seen the regression equation between the concentration of gallic acid and the value of absorption. The mutant vanilla extract is prepared according to Ozygi et al. (2007). Vanilla weighing 2 g was crushed using a glass mortar and dissolved in 25 mL of ethanol 80% (Sigma Chemical Co.). The solution was then centrifuged at 13,000 rpm for 15 minutes, then taken supernatant. After that, the supernatant was taken as much as 0.5 mL into a 100 mL flask, then added 250 μL of Folin-Ciocalteau reagent, after sterilizing for 5 min and then adding 1 mL of Na₂CO₃. After mixing, it was put into a cuvette with a volume of 5 mL and observed an absorption value at a wavelength of 765 nm using a spectrophotometer (Beckman DU-65), as a control used by aquades. Based on the value of uptake and then determined the content of phenol compounds based on the equation of gallic acid regression is the relationship between absorption value of vanilla extract and series of concentration of gallic acid.

Observation of lignification on cross-section of vanilla rod by means of safranin painting (Ruzin, 1999). Vanilla is removed then the stem is cleaned. The cleaned rods are first fixed by soaking in the FAA and stored for 24 hours. The stem is further clipped in the center of the cork, and sliced with a micromotom sliding transversely with a thickness of 5-10 μm. The cross sections were soaked in aqueous safranin (1% w / v) for 1.5 hours, then rinsed with distilled water. The rinsed stems were soaked in a 25% ethanol solution for 2-5 minutes then immersed in safranine and dried. After drying, the stem cut is placed on top of the preparatory glass and covered with a glass cover. Next glass preparations were observed under a microscope with magnification 400 times. The marked trunk network will appear pink.

Qualitative information as the result on this research was consisted as narratives descriptive and supported by photographs. After that, data’s were statistically analyzed by Completely Randomized Design. As quantitatively data’s from each parameter measured, were compiled and statistically analyzed by analysis of variance (ANOVAs). If the result showed a significantly different, then was continued analyzed by using Duncan Multiple Range Test (DMRT) analysis with accuracy 95%.

III. Results and Discussion

Prior to observation of the analysis of total phenol compounds in vanilla for each treatment, a standard curve measurement was firstly done using gallic acid. This curve measurement was performed to estimate the total phenol quantity by linear regression (Aberouman & Deokule, 2008). From this standard curve measurement, linear regression equation (y = 0.003x-0.006) has high positive correlation (R² = 0.997). This shows that the diversity is homogeneous between the concentration of gallic acid and absorbance. Based on the standard curve of the gallic acid then can be found the total phenol content of each treatment based on the equation of the regression line (Table 1).

<table>
<thead>
<tr>
<th>Treatment (ppm)</th>
<th>Average total phenol content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ppm</td>
<td>5.30 ± 0.03**</td>
</tr>
<tr>
<td>90 ppm</td>
<td>6.45 ± 0.02*</td>
</tr>
<tr>
<td>100 ppm</td>
<td>6.63 ± 0.03*</td>
</tr>
<tr>
<td>110 ppm</td>
<td>6.98 ± 0.02*</td>
</tr>
</tbody>
</table>

Description: The numbers followed by unequal letters on one column are significantly different based on the Duncan test at 95% confidence degree, after being transformed to √x + 1

DOI: 10.9790/2380-1103011518 www.iosrjournals.org 16 | Page
Based on Table 1, it is clear that the increase in total phenol content from about 5.50% in control, increased to 6.45% at FA 90 ppm, followed by 6.63% at 100 ppm and 6.98% at 110 ppm. This proves that due to the higher concentration of FA stress, the more the total phenol content is produced.

The results of this study are similar to the results of research conducted by Khan et al. (2005) in Chickpea plants infected with *Fusarium oxysporum* f.sp. *ciceris*. From the research it is known that there is a total increase of phenol about 16-17%. Total phenol levels were also reported by Harni et al. (2012), on patchouli plants infected by endophytic bacteria and nematodes indicate that there is an indication of increased phenol content by *Achromobacter xylosoxidans*. According to Bouizgarne et al. (2006), FA at non-toxic concentrations (10⁻⁷) stimulates the formation of H₂O₂ which is strongly associated with peroxidase enzymes. Furthermore, this enzyme will oxidize phenol compounds.

Another parameter that can indicate the resilience of vanilla is the occurrence of lignification in the carrier file network. To detect the occurrence of lignification, cross sectional observation of vanilla rods using phloroglucinol reagent. According to Bouizgarne et al. (2006), the formation of lignin involves the role of peroxidase enzymes. Addition of FA at a non-toxic concentration (10⁻⁷), causing an increase in peroxide (H₂O₂). Peroxide is a peroxidase enzyme donor for the formation of lignin. The increased peroxide will also increase the activity of peroxidase enzymes that play a role in the formation of lignin.

The results showed that both the controlled vanilla and vanilla rods were treated with lignification. Thus, the effect of FA treatment can be detected by effect through measurement of lignin thickness on xylem wall (Table 2).

Table 2 shows an increase in lignin thickness in xylem cell wall at a treatment of 90 ppm 25.60 μm; 100 ppm 29.27 μm; and 110 ppm 20.40 μm compared to 11.39 μm control. The higher the FA concentration the lignin gets thicker. This suggests that the vanilla responds to resistance by adding thick lignin after being treated with the FA. The plant resistance system depends on the interaction of host, pathogen, and environment. Lignin is a plant-resistant system that functions to inhibit pathogens and is formed by response to penetration by pathogens or mechanical damage (Sticher et al., 1997).

Table 2. Mean of lignin thickness (µm) of control vanilla and fusaric acid treatment (90, 100, and 110 ppm)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean lignin thickness (µm), N: 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ppm</td>
<td>11.39 ± 0.04^a</td>
</tr>
<tr>
<td>90 ppm</td>
<td>25.60 ± 0.08^b</td>
</tr>
<tr>
<td>100 ppm</td>
<td>29.27 ± 0.05^c</td>
</tr>
<tr>
<td>110 ppm</td>
<td>20.40 ± 0.06^d</td>
</tr>
</tbody>
</table>

Description: The numbers followed by unequal letters on one column are significantly different based on the Duncan test at 95% confidence degree, after being transformed to √x + 1

IV. Conclusion

Based on the results and discussions that have been described in advance can be concluded as follows. The increased concentration of fusaric acid increases the total phenol content, peroxidase activity, lignin thickness, and total chlorophyll content, chlorophyll a, and chlorophyll b in resistant vanilla planlet *Fusarium oxysporum* f.sp. *vanillae*.

Acknowledgement

Thanks the authors to the Institute for Research and Community Service through the BLU fund of University of Lampung, based on the Letter of Assignment of “Penelitian Unggulan Unila” 2017 Number of Contract: 808 / UN26.21 / PP / 2017.

References

Characterization of Mutants Vanilla planifolia Andrews Resistant to Fusarium wilt Disease Based on Analysis

DOI: 10.9790/2380-1103011518 www.iosrjournals.org