

THE IMPACT OF THE MONOID HOMOMORPHISM ON THE STRUCTURE OF SKEW GENERALIZED POWER SERIES RINGS

Ahmad Faisol^{1,2}, Budi Surodjo¹ and Sri Wahyuni¹

¹Department of Mathematics Universitas Gadjah Mada Indonesia

²Department of Mathematics Universitas Lampung Indonesia

Abstract

Let *R* be a ring, (S, \leq) be a strictly ordered monoid and $\omega: S \rightarrow End(R)$ be a monoid homomorphism. In this paper, we study the properties of monoid homomorphism ω and its impact on the structure of skew generalized power series ring $R[[S, \omega]]$. We show that: if $\omega^{(1)} \sim \omega^{(2)}$, then $R_1[[S, \omega^{(1)}]] \cong R_2[[S, \omega^{(2)}]]$, and $R_1 \oplus R_2[[S, \omega^{(1)}]] \cong R_1[[S, \omega^{(1)}]] \oplus R_2[[S, \omega^{(2)}]]$.

1. Introduction

In 2007, Mazurek and Ziembowski [1] constructed a new ring which is the generalization of generalized power series rings (GPSR) R[[S]] that was

Received: October 4, 2017; Accepted: January 10, 2018

²⁰¹⁰ Mathematics Subject Classification: 16W55.

Keywords and phrases: monoid homomorphism, strictly ordered monoid, skew generalized power series ring.

constructed by Ribenboim [2] by using a monoid homomorphism $\omega: S \rightarrow End(R)$ to change the convolution product on GPSR R[[S]]. Furthermore, this new ring is known as *skew generalized power series ring* (SGPSR) denoted by $R[[S, \omega]]$ or $R[[S, \omega, \leq]]$. Now we will give the definition and some examples of SGPSR $R[[S, \omega]]$.

Regarding ordered sets, ordered monoids, artinian and narrow set, we will follow the terminology used in [2-6]. Now, we recall the construction of SGPSR [1]. Let (S, \leq) be a strictly ordered monoid, R be a commutative ring with an identity element and $\omega: S \rightarrow End(R)$ be a monoid homomorphism. For any $s \in S$ let ω_s denote the image of s under ω , i.e., $\omega(s) = \omega_s$.

Define $R^S = \{f \mid f : S \to R\}$ and $R[[S, \omega]] = \{f \in R^S \mid supp(f) \text{ is artinian and narrow}\}$, where $supp(f) = \{s \in S \mid f(s) \neq 0\}$.

Under pointwise addition and skew convolution, multiplication defined by

$$(fg)(s) = \sum_{(x, y) \in \chi_s(f, g)} f(x)\omega_x(g(y)), \tag{1}$$

for all $f, g \in R[[S, \omega]]$, where

$$\chi_s(f, g) = \{(x, y) \in supp(f) \times supp(g) | xy = s\}$$

is finite, $R[[S, \omega]]$ is a ring which is known as *skew generalized power series ring* (SGPSR).

Some special cases of SGPSR $R[[S, \omega]]$ are given by the following example.

Example 1.1. Let *R* be a ring, id_R be an identity map in End(R), N_0 be a set of positive integers, \mathbb{Z} be a set of integers and (S, \leq) be a strictly ordered monoid.

(1) If $S = N_0$ with usual addition, trivial order \leq and $\omega_s = id_R$, for all $s \in S$, then SGPSR $R[[S, \omega]]$ is polynomial ring R[X].

(2) If $S = \mathbb{Z}$ with usual addition, trivial order \leq and $\omega_s = id_R$, for all $s \in S$, then SGPSR $R[[S, \omega]]$ is Laurent polynomial ring $R[X, X^{-1}]$.

(3) If $S = N_0$ with usual addition, trivial order \leq and $\omega_0 = \sigma$, for some endomorphism ring $\sigma \in End(R)$, then SGPSR $R[[S, \omega]]$ is skew polynomial ring $R[X; \sigma]$.

(4) If $S = N_0$ with usual addition, usual order \leq and $\omega_s = id_R$, for all $s \in S$, then SGPSR $R[[S, \omega]]$ is power series ring R[[X]].

(5) If $S = \mathbb{Z}$ with usual addition, usual order \leq and $\omega_s = id_R$, for all $s \in S$, then SGPSR $R[[S, \omega]]$ is Laurent series ring $R[[X, X^{-1}]]$.

(6) If $S = N_0$ with usual addition, usual order \leq and $\omega_0 = \sigma$, for some endomorphism ring $\sigma \in End(R)$, then SGPSR $R[[S, \omega]]$ is skew power series ring $R[[X; \sigma]]$.

(7) If $\omega_s = id_R$, for all $s \in S$, then SGPSR $R[[S, \omega]]$ is generalized power series ring $[[R^{(S, \leq)}]] = R[[S]]$.

2. Main Results

In this section, we give the definition and some properties of monoid homomorphism ω and its impact on the structure of SGPSR $R[[S, \omega]]$. First, we give the definition of equivalency of two monoid homomorphism.

Definition 2.1. Let R_1 and R_2 be rings, (S, \leq) be a strictly ordered monoid, and $\omega^{(1)}: S \to End(R_1)$ and $\omega^{(2)}: S \to End(R_2)$ be monoid homomorphisms. Then $\omega^{(1)}$ and $\omega^{(2)}$ are said to be *equivalent* if there exists an isomorphism $\varphi: R_1 \to R_2$ such that $\omega_s^{(2)} = \varphi \omega_s^{(1)} \varphi^{-1}$ for all $s \in S$. In this case, we write $\omega^{(1)} \sim \omega^{(2)}$. **Example 2.2.** Let $S = \mathbb{N}_0$, $R_1 = \mathbb{Q} \times \mathbb{Q} = \mathbb{Q}^2$ and $R_2 = \mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2$. With operation

$$(x, y) + (m, n) = (x + m, y + n)$$
 and $(x, y)(m, n) = (xm, yn)$,

 R_1 and R_2 become rings and S becomes a strictly ordered commutative monoid with pointwise addition and usual order. For any $s \in S$, $(p, q) \in R_1$ and $(x, y) \in R_2$, we define monoid homomorphism

$$\omega^{(1)}: S \to End(R_1),$$

where $\omega_{s}^{(1)}(p, q) = (0, q)$, and

$$\omega^{(2)}: S \to End(R_2),$$

where $\omega_s^{(2)}(x, y) = (x, 0)$.

Next, we define a map

$$\varphi: R_1 \to R_2$$

with $\varphi(p, q) = (q, p)$ for all $(p, q) \in R_1$.

Since for any (p, q), $(m, n) \in R_1$, imply

$$\varphi((p, q) + (m, n)) = \varphi((p + m, q + n))$$

= $(q + n, p + m)$
= $(q, p) + (n, m)$
= $\varphi((p, q)) + \varphi((m, n))$

and

$$\varphi((p, q)(m, n)) = \varphi((pm, qn))$$
$$= (qn, pm)$$
$$= (q, p)(n, m)$$
$$= \varphi((p, q))\varphi((m, n)),$$

 φ is a ring homomorphism.

Furthermore, if $\varphi((p, q)) = \varphi((m, n))$, then (q, p) = (n, m), which is q = n and p = m. In other words, we have (p, q) = (m, n). Hence, φ is an injective homomorphism. For any $(x, y) \in R_2$, there exists $(p, q) \in R_1$ with p = y and q = x such that $\varphi((p, q)) = (q, p) = (x, y)$. Then, φ is a surjective homomorphism. In other words, $\varphi : R_1 \to R_2$ is a ring isomorphism.

Moreover, since

$$\begin{split} \omega_s^{(2)} \varphi((p, q)) &= \omega_s^{(2)}(\varphi((p, q))) \\ &= \omega_s^{(2)}((q, p)) \\ &= (q, 0) \\ &= \varphi((0, q)) \\ &= \varphi(\omega_s^{(1)}((p, q))) \\ &= \varphi \omega_s^{(1)}((p, q)), \end{split}$$

 $\omega^{(1)} \sim \omega^{(2)}$.

Based on Definition 2.1, the impact of equivalency of two monoid homomorphisms on the structure of SGPSR $R[[S, \omega]]$ is given by the following proposition.

Proposition 2.3. Let R_1 and R_2 be rings, (S, \leq) be a strictly ordered monoid, and $\omega^{(1)}: S \to End(R_1)$ and $\omega^{(2)}: S \to End(R_2)$ be monoid homomorphisms. If $\omega^{(1)} \sim \omega^{(2)}$, then $R_1[[S, \omega^{(1)}]] \cong R_2[[S, \omega^{(2)}]]$.

Proof. Suppose $\omega^{(1)} \sim \omega^{(2)}$. Then by Definition 2.1, there exists an isomorphism $\varphi : R_1 \to R_2$ such that $\omega_s^{(2)} = \varphi \omega_s^{(1)} \varphi^{-1}$ for all $s \in S$. Next, we define a map

$$\psi: R_1[[S, \omega^{(1)}]] \to R_2[[S, \omega^{(2)}]],$$

where $\psi(f) = \overline{f} = \varphi \circ f$ for all $f \in R_1[[S, \omega^{(1)}]]$.

For all $s \in S$ and $f, g \in R_1[[S, \omega^{(1)}]]$, we have

$$\varphi \circ (f + g)(s) = \varphi((f + g)(s))$$
$$= \varphi(f(s) + g(s))$$
$$= \varphi(f(s)) + \varphi(g(s))$$
$$= (\varphi \circ f)(s) + (\varphi \circ g)(s)$$

and

(φ ∘

$$(fg))(s) = \varphi((fg)(s))$$

$$= \varphi\left(\sum_{s=xy} f(x)\omega_x^{(1)}(g(y))\right)$$

$$= \sum_{s=xy} \varphi(f(x)\omega_x^{(1)}(g(y)))$$

$$= \sum_{s=xy} \varphi(f(x))\varphi(\omega_x^{(1)}(g(y)))$$

$$= \sum_{s=xy} (\varphi \circ f)(x)(\varphi \circ \omega_x^{(1)})(g(y))$$

$$= \sum_{s=xy} (\varphi \circ f)(x)(\omega_x^{(2)} \circ \varphi)(g(y))$$

$$= \sum_{s=xy} (\varphi \circ f)(x)\omega_x^{(2)}(\varphi(g(y)))$$

$$= \sum_{s=xy} (\varphi \circ f)(x)\omega_x^{(2)}((\varphi \circ g)(y))$$

$$= ((\varphi \circ f)(\varphi \circ g))(s).$$

Since $supp(\bar{f}) \subseteq supp(f), \ \bar{f} \in R_2[[S, \omega^{(2)}]]$. Then, we have

$$\psi(f + g) = \overline{f + g}$$
$$= \phi \circ (f + g)$$
$$= (\phi \circ f) + (\phi \circ g)$$
$$= \overline{f} + \overline{g}$$
$$= \psi(f) + \psi(g)$$

and

$$\psi(fg) = fg$$
$$= \phi \circ (fg)$$
$$= (\phi \circ f)(\phi \circ g)$$
$$= \bar{f} \, \bar{g}$$
$$= \psi(f)\psi(g),$$

for all $f, g \in R_1[[S, \omega^{(1)}]]$. In other words, the map $\psi : R_1[[S, \omega^{(1)}]] \rightarrow R_2[[S, \omega^{(2)}]]$ is a ring homomorphism.

Now, we will show that ψ is injective. Let $f \in Ker(\psi)$. Then $\psi(f) = 0$. Then, for all $s \in S$, we have $(\phi \circ f)(s) = 0(s)$. In other words, $\phi(f(s)) = 0$. Since ϕ is a ring isomorphism, f(s) = 0, for all $s \in S$. Then $Ker(\psi) = 0$, so ψ is injective.

Furthermore, we will show that ψ is surjective. For all $g \in R_2[[S, \omega^{(2)}]]$, there exists $h = \varphi^{-1} \circ g \in R_1[[S, \omega^{(1)}]]$ such that $\psi(h) = \overline{h} = \varphi \circ h = \varphi \circ \varphi^{-1}g$ = g. Then ψ is surjective. So $R_1[[S, \omega^{(1)}]] \cong R_2[[S, \omega^{(2)}]]$. Now we will give the definition of direct sum of two monoid homomorphisms.

Definition 2.4. Let R_1 and R_2 be rings, (S, \leq) be a strictly ordered monoid, and $\omega^{(1)}: S \to End(R_1)$ and $\omega^{(2)}: S \to End(R_2)$ be monoid homomorphisms. Then the *direct sum of* $\omega^{(1)}$ and $\omega^{(2)}$ is defined by

$$\omega^{(1)} \oplus \omega^{(2)} : S \to End(R_1 \oplus R_2),$$

where

$$(\omega^{(1)} \oplus \omega^{(2)})_s(r_1, r_2) = (\omega^{(1)}_s(r_1), \omega^{(2)}_s(r_2)),$$

for all $s \in S$ and $(r_1, r_2) \in R_1 \oplus R_2$.

Example 2.5. Let monoid *S*, rings R_1 and R_2 , $\omega^{(1)}$ and $\omega^{(2)}$ be given as in Example 2.2. Then, we can define the *direct sum of* $\omega^{(1)}$ and $\omega^{(2)}$ by

$$\omega^{(1)} \oplus \omega^{(2)} : S \to End(R_1 \oplus R_2),$$

where

$$(\omega^{(1)} \oplus \omega^{(2)})_s((p, q), (x, y)) = (\omega^{(1)}_s((p, q)), \omega^{(2)}_s((x, y)))$$
$$= ((0, q), (x, 0)),$$

for all $s \in S$ and $((p, q), (x, y)) \in R_1 \oplus R_2$.

The following lemma shows that the direct sum $\omega^{(1)} \oplus \omega^{(2)}$ that defined in Definition 2.4 is a monoid homomorphism.

Lemma 2.6. Let R_1 and R_2 be rings, (S, \leq) be a strictly ordered monoid, and $\omega^{(1)}: S \to End(R_1)$ and $\omega^{(2)}: S \to End(R_2)$ be monoid homomorphisms. Then the direct sum The Impact of the Monoid Homomorphism on the Structure ... 1223

$$\omega^{(1)} \oplus \omega^{(2)} : S \to End(R_1 \oplus R_2)$$

is a monoid homomorphism.

Proof. For any $s, t \in S$ and $(r_1, r_2) \in R_1 \oplus R_2$, we have

$$(\omega^{(1)} \oplus \omega^{(2)})_{st}(r_1, r_2) = (\omega^{(1)}_{st}(r_1), \omega^{(2)}_{st}(r_2))$$
$$= ((\omega^{(1)}_s \omega^{(1)}_t)(r_1), (\omega^{(2)}_s \omega^{(2)}_t)(r_2))$$
$$= (\omega^{(1)}_s (\omega^{(1)}_t(r_1)), \omega^{(2)}_s (\omega^{(2)}_t(r_2)))$$
$$= ((\omega^{(1)} \oplus \omega^{(2)})_s (\omega^{(1)}_t(r_1), \omega^{(2)}_t(r_2))$$
$$= ((\omega^{(1)} \oplus \omega^{(2)})_s (\omega^{(1)} \oplus \omega^{(2)})_t)(r_1r_2).$$

Hence, we obtain

$$(\omega^{(1)} \oplus \omega^{(2)})(st) = (\omega^{(1)} \oplus \omega^{(2)})(s)(\omega^{(1)} \oplus \omega^{(2)})(t).$$

So the direct sum $\omega^{(1)} \oplus \omega^{(2)}$ is monoid homomorphism.

Now, based on Definition 2.4 and Lemma 2.6 we get the following proposition.

Proposition 2.7. Let R_1 and R_2 be rings, (S, \leq) be a strictly ordered monoid, and $\omega^{(1)}: S \to End(R_1)$ and $\omega^{(2)}: S \to End(R_2)$ be monoid homomorphisms. Then

$$(R_1 \oplus R_2)[[S, \omega^{(1)} \oplus \omega^{(2)}]] \cong R_1[[S, \omega^{(1)}]] \oplus R_2[[S, \omega^{(2)}]]$$

Proof. Let $i_1 : R_1 \to R_1 \oplus R_2$ and $i_2 : R_2 \to R_1 \oplus R_2$ be natural injections, and let $p_1 : R_1 \oplus R_2 \to R_1$ and $p_2 : R_1 \oplus R_2 \to R_2$ be natural projections. Then we have

$$\omega_s^{(1)} = p_1(\omega^{(1)} \oplus \omega^{(2)})_s i_1$$

and

1224

$$\omega_s^{(2)} = p_2(\omega^{(1)} \oplus \omega^{(2)})_s i_2,$$

as seen in the following diagram:

Then we obtain

$$\omega_s^{(1)} p_1 = p_1(\omega^{(1)} \oplus \omega^{(2)})_s i_1 p_1$$
$$= p_1(\omega^{(1)} \oplus \omega^{(2)})_s id_{R_1}$$
$$= p_1(\omega^{(1)} \oplus \omega^{(2)})_s$$

and

$$\omega_s^{(2)} p_2 = p_2(\omega^{(1)} \oplus \omega^{(2)})_s i_2 p_2$$
$$= p_2(\omega^{(1)} \oplus \omega^{(2)})_s id_{R_2}$$
$$= p_2(\omega^{(1)} \oplus \omega^{(2)})_s.$$

Now, for any $f \in (R_1 \oplus R_2)[[S, \omega^{(1)} \oplus \omega^{(2)}]]$, we define a map

$$\psi: (R_1 \oplus R_2)[[S, \omega^{(1)} \oplus \omega^{(2)}]] \to R_1[[S, \omega^{(1)}]] \oplus R_2[[S, \omega^{(2)}]]$$

by $\psi(f) = (f_1, f_2)$, where $f_1 = p_1 \circ f$ and $f_2 = p_2 \circ f$.

For i = 1, 2, we will show $p_i \circ (f + g) = (p_i \circ f) + (p_i \circ g)$ and $p_i \circ (fg)$ = $(p_i \circ f)(p_i \circ g)$. For any $s \in S$, $f, g \in (R_1 \oplus R_2)[[S, \omega^{(1)} \oplus \omega^{(2)}]]$ and i = 1, 2, we have

The Impact of the Monoid Homomorphism on the Structure ... 1225

$$(p_i \circ (f + g))(s) = p_i((f + g)(s))$$

= $p_i(f(s) + g(s))$
= $p_i(f(s)) + p_i(g(s))$
= $(p_i \circ f)(s) + (p_i \circ g)(s)$

and

$$(p_i \circ (fg))(s) = p_i((fg)(s))$$

$$= p_i \left(\sum_{s=xy} f(x) (\omega^{(1)} \oplus \omega^{(2)})_s(g(y)) \right)$$

$$= \sum_{s=xy} p_i f(x) p_i(\omega^{(1)} \oplus \omega^{(2)})_s(g(y))$$

$$= \sum_{s=xy} p_i f(x) \omega_s^{(1)} p_i(g(y))$$

$$= \sum_{s=xy} (p_i \circ f)(x) \omega_s^{(1)}((p_i \circ g)(y))$$

$$= ((p_i \circ f)(p_i \circ g))(s).$$

Since for any $f, g \in (R_1 \oplus R_2)[[S, \omega^{(1)} \oplus \omega^{(2)}]]$, we have

$$\begin{split} \psi(f+g) &= ((f+g)_1, (f+g)_2) \\ &= (p_1 \circ (f+g), p_2 \circ (f+g)) \\ &= ((p_1 \circ f) + (p_1 \circ g), (p_2 \circ f) + (p_2 \circ g)) \\ &= (f_1 + g_1, f_2 + g_2) \\ &= (f_1, f_2) + (g_1, g_2) \\ &= \psi(f) + \psi(g) \end{split}$$

and

$$\begin{split} \psi(fg) &= ((fg)_1, (fg)_2) \\ &= (p_1 \circ (fg), \ p_2 \circ (fg)) \\ &= ((p_1 \circ f) (p_1 \circ g), \ (p_2 \circ f) (p_2 \circ g)) \\ &= (f_1g_1, \ f_2g_2) \\ &= (f_1, \ f_2) (g_1, \ g_2) \\ &= \psi(f) \psi(g), \end{split}$$

 ψ is a ring homomorphism.

Now, we will show ψ is injective. Let $f \in Ker(\psi)$. Then we will show f = 0. Since $f \in Ker(\psi)$, $\psi(f) = (0, 0)$. So, for any $s \in S$ and i = 1, 2, we have $(p_i \circ f)(s) = 0(s)$. In other words, $p_i(f(s)) = 0$. Since p_i is a natural projection, f(s) = 0 for all $s \in S$. So $Ker(\psi) = 0$ or ψ is injective. Furthermore, we will show ψ is surjective. For all $(f_1, f_2) \in R_1[[S, \omega^{(1)}]] \oplus R_2[[S, \omega^{(2)}]]$, there exists

$$f = \sum_{k=1}^{2} i_k \circ f_k \in R_1 \oplus R_2[[S, \omega^{(1)} \oplus \omega^{(2)}]]$$

such that $\psi(f) = (f_1, f_2)$. So, ψ is surjective. Then, ψ is a ring isomorphism. So $R_1 \oplus R_2[[S, \omega^{(1)} \oplus \omega^{(2)}]] \cong R_1[[S, \omega^{(1)}]] \oplus R_2[[S, \omega^{(2)}]]$.

References

- R. Mazurek and M. Ziembowski, Uniserial rings of skew generalized power series, J. Algebra 318 (2007), 737-764.
- [2] P. Ribenboim, Generalized power series rings, Lattice, Semigroups and Universal Algebra, Plenum Press, New York, 1990, pp. 271-277.
- [3] G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math. 54 (1990), 365-371.

The Impact of the Monoid Homomorphism on the Structure ... 1227

- [4] P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra 79 (1992), 293-312.
- [5] P. Ribenboim, Rings of generalized power series II: Units and zero-Divisors, J. Algebra 168 (1994), 71-89.
- [6] P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), 327-338.

Ahmad Faisol: ahmadfaisol@mail.ugm.ac.id; ahmadfaisol@fmipa.unila.ac.id

Budi Surodjo: surodjo_b@ugm.ac.id

Sri Wahyuni: s_wahyuni@ugm.ac.id