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Abstract 

Let R be a ring, ( )≤,S  be a strictly ordered monoid and →ω S:  

( )REnd  be a monoid homomorphism. In this paper, we study the 

properties of monoid homomorphism ω and its impact on the structure 
of skew generalized power series ring [ ][ ]., ωSR  We show that: if 

( ) ( ),~ 21 ωω  then [[ ( )]] [[ ( )]],,~, 2
2

1
1 ω=ω SRSR  and [[ ,21 SRR ⊕  

( ) ( )]] [[ ( )]] [[ ( )]].,,~ 2
2

1
1

21 ω⊕ω=ω⊕ω SRSR  

1. Introduction 

In 2007, Mazurek and Ziembowski [1] constructed a new ring which is 
the generalization of generalized power series rings (GPSR) [ ][ ]SR  that was 
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constructed by Ribenboim [2] by using a monoid homomorphism →ω S:  
( )REnd  to change the convolution product on GPSR [ ][ ].SR  Furthermore, 

this new ring is known as skew generalized power series ring (SGPSR) 
denoted by [ ][ ]ω,SR  or [ ][ ].,, ≤ωSR  Now we will give the definition and 

some examples of SGPSR [ ][ ]., ωSR  

Regarding ordered sets, ordered monoids, artinian and narrow set, we 
will follow the terminology used in [2-6]. Now, we recall the construction of 
SGPSR [1]. Let ( )≤,S  be a strictly ordered monoid, R be a commutative 

ring with an identity element and ( )REndS →ω :  be a monoid 

homomorphism. For any Ss ∈  let sω  denote the image of s under ω, i.e., 

( ) .ss ω=ω  

Define { }RSffRS →|= :  and [ ][ ] { ( )fsuppRfSR S |∈=ω,  is 

artinian and },narrow  where ( ) ( ){ }.0≠|∈= sfSsfsupp  

Under pointwise addition and skew convolution, multiplication defined 
by 

( ) ( ) ( ) ( )( )
( ) ( )
∑
χ∈

ω=
gfyx

x
s

ygxfsfg
,,

,  (1) 

for all [ ][ ],,, ω∈ SRgf  where 

( ) ( ) ( ) ( ){ }sxygsuppfsuppyxgfs =|×∈=χ ,,  

is finite, [ ][ ]ω,SR  is a ring which is known as skew generalized power series 

ring (SGPSR). 

Some special cases of SGPSR [ ][ ]ω,SR  are given by the following 

example. 

Example 1.1. Let R be a ring, Rid  be an identity map in ( ) 0, NREnd  be 

a set of positive integers, Z  be a set of integers and ( )≤,S  be a strictly 

ordered monoid. 
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(1) If 0NS =  with usual addition, trivial order ≤  and ,Rs id=ω  for all 

,Ss ∈  then SGPSR [ ][ ]ω,SR  is polynomial ring [ ].XR  

(2) If Z=S  with usual addition, trivial order ≤  and ,Rs id=ω  for all 

,Ss ∈  then SGPSR [ ][ ]ω,SR  is Laurent polynomial ring [ ]., 1−XXR  

(3) If 0NS =  with usual addition, trivial order ≤  and ,0 σ=ω  for some 

endomorphism ring ( ),REnd∈σ  then SGPSR [ ][ ]ω,SR  is skew polynomial 

ring [ ].; σXR  

(4) If 0NS =  with usual addition, usual order ≤  and ,Rs id=ω  for all 

,Ss ∈  then SGPSR [ ][ ]ω,SR  is power series ring [ ][ ].XR  

(5) If Z=S  with usual addition, usual order ≤  and ,Rs id=ω  for all 

,Ss ∈  then SGPSR [ ][ ]ω,SR  is Laurent series ring [[ ]]., 1−XXR  

(6) If 0NS =  with usual addition, usual order ≤  and ,0 σ=ω  for some 

endomorphism ring ( ),REnd∈σ  then SGPSR [ ][ ]ω,SR  is skew power 

series ring [ ][ ].; σXR  

(7) If ,Rs id=ω  for all ,Ss ∈  then SGPSR [ ][ ]ω,SR  is generalized 

power series ring [[ ( )]] [ ][ ]., SRR S =≤  

2. Main Results 

In this section, we give the definition and some properties of monoid 
homomorphism ω and its impact on the structure of SGPSR [ ][ ]., ωSR  First, 

we give the definition of equivalency of two monoid homomorphism. 

Definition 2.1. Let 1R  and 2R  be rings, ( )≤,S  be a strictly ordered 

monoid, and ( ) ( )1
1 : REndS →ω  and ( ) ( )2

2 : REndS →ω  be monoid 

homomorphisms. Then ( )1ω  and ( )2ω  are said to be equivalent if there exists 

an isomorphism 21: RR →ϕ  such that ( ) ( ) 112 −ϕϕω=ω ss  for all .Ss ∈  In 

this case, we write ( ) ( ).~ 21 ωω  
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Example 2.2. Let 2
10, QQQN =×== RS  and .2

2 ZZZ =×=R  

With operation 

( ) ( ) ( )nymxnmyx ++=+ ,,,  and ( ) ( ) ( ),,,, ynxmnmyx =  

1R  and 2R  become rings and S becomes a strictly ordered commutative 

monoid with pointwise addition and usual order. For any ( ) 1,, RqpSs ∈∈  

and ( ) ,, 2Ryx ∈  we define monoid homomorphism 

( ) ( ),: 1
1 REndS →ω  

where ( )( ) ( ),,0,1 qqps =ω  and 

( ) ( ),: 2
2 REndS →ω  

where ( )( ) ( ).0,,2 xyxs =ω  

Next, we define a map 

21: RR →ϕ  

with ( ) ( )pqqp ,, =ϕ  for all ( ) ., 1Rqp ∈  

Since for any ( ) ( ) ,,,, 1Rnmqp ∈  imply 

( ) ( )( ) ( )( )nqmpnmqp ++ϕ=+ϕ ,,,  

( )mpnq ++= ,  

( ) ( )mnpq ,, +=  

( )( ) ( )( )nmqp ,, ϕ+ϕ=  

and 

( ) ( )( ) ( )( )qnpmnmqp ,,, ϕ=ϕ  

( )pmqn,=  

( ) ( )mnpq ,,=  

( )( ) ( )( ),,, nmqp ϕϕ=  

ϕ is a ring homomorphism. 
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Furthermore, if ( )( ) ( )( ),,, nmqp ϕ=ϕ  then ( ) ( ),,, mnpq =  which is 

nq =  and .mp =  In other words, we have ( ) ( ).,, nmqp =  Hence, ϕ is an 

injective homomorphism. For any ( ) ,, 2Ryx ∈  there exists ( ) 1, Rqp ∈  with 

yp =  and xq =  such that ( )( ) ( ) ( ).,,, yxpqqp ==ϕ  Then, ϕ is a surjective 

homomorphism. In other words, 21: RR →ϕ  is a ring isomorphism. 

Moreover, since 

( ) ( )( ) ( ) ( )( )( )qpqp ss ,, 22 ϕω=ϕω  

( ) ( )( )pqs ,2ω=  

( )0,q=  

( )( )q,0ϕ=  

( ( ) ( )( ))qps ,1ωϕ=  

( ) ( )( ),,1 qpsϕω=  

( ) ( ).~ 21 ωω  

Based on Definition 2.1, the impact of equivalency of two monoid 
homomorphisms on the structure of SGPSR [ ][ ]ω,SR  is given by the 

following proposition. 

Proposition 2.3. Let 1R  and 2R  be rings, ( )≤,S  be a strictly ordered 

monoid, and ( ) ( )1
1 : REndS →ω  and ( ) ( )2

2 : REndS →ω  be monoid 

homomorphisms. If ( ) ( ),~ 21 ωω  then [[ ( ) ]] [[ ( ) ]].,~, 2
2

1
1 ω=ω SRSR  

Proof. Suppose ( ) ( ).~ 21 ωω  Then by Definition 2.1, there exists an 

isomorphism 21: RR →ϕ  such that ( ) ( ) 112 −ϕϕω=ω ss  for all .Ss ∈  Next, 

we define a map 

[[ ( )]] [[ ( )]],,,: 2
2

1
1 ω→ωψ SRSR  

where ( ) fff ϕ==ψ  for all [[ ( )]]., 1
1 ω∈ SRf  
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For all Ss ∈  and [[ ( )]],,, 1
1 ω∈ SRgf  we have 

( ) ( ) ( ) ( )( )sgfsgf +ϕ=+ϕ  

( ) ( )( )sgsf +ϕ=  

( )( ) ( )( )sgsf ϕ+ϕ=  

( ) ( ) ( ) ( )sgsf ϕ+ϕ=  

and 

( )( ) ( ) ( ) ( )( )sfgsfg ϕ=ϕ  

( ) ( ) ( )( )⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ωϕ= ∑

= xys
x ygxf 1  

( ( ) ( ) ( )( ))∑
=

ωϕ=
xys

x ygxf 1  

( )( ) ( ( ) ( )( ))∑
=

ωϕϕ=
xys

x ygxf 1  

( ) ( ) ( ( ) ) ( )( )∑
=

ωϕϕ=
xys

x ygxf 1  

( ) ( ) ( ( ) ) ( )( )∑
=

ϕωϕ=
xys

x ygxf 2  

( ) ( ) ( ) ( )( )( )∑
=

ϕωϕ=
xys

x ygxf 2  

( ) ( ) ( ) ( ) ( )( )∑
=

ϕωϕ=
xys

x ygxf 2  

( ) ( )( ) ( ).sgf ϕϕ=  
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Since ( ) ( ) [[ ( )]].,, 2
2 ω∈⊆ SRffsuppfsupp  Then, we have 

( ) gfgf +=+ψ  

( )gf +ϕ=  

( ) ( )gf ϕ+ϕ=  

gf +=  

( ) ( )gf ψ+ψ=  

and 

( ) fgfg =ψ  

( )fgϕ=  

( ) ( )gf ϕϕ=  

gf=  

( ) ( ),gf ψψ=  

for all [[ ( )]].,, 1
1 ω∈ SRgf  In other words, the map [[ ( )]] →ωψ 1

1 ,: SR  

[[ ( )]]2
2 , ωSR  is a ring homomorphism. 

Now, we will show that ψ is injective. Let ( ).ψ∈ Kerf  Then 

( ) .0=ψ f  Then, for all ,Ss ∈  we have ( ) ( ) ( ).0 ssf =ϕ  In other words, 

( )( )sfϕ .0=  Since ϕ is a ring isomorphism, ( ) ,0=sf  for all .Ss ∈  Then 

( )ψKer ,0=  so ψ is injective. 

Furthermore, we will show that ψ is surjective. For all [[ ( )]],, 2
2 ω∈ SRg  

there exists [[ ( )]]1
1

1 , ω∈ϕ= − SRgh  such that ( ) ghhh 1−ϕϕ=ϕ==ψ  

.g=  Then ψ is surjective. So [[ ( )]] [[ ( )]].,~, 2
2

1
1 ω=ω SRSR   
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Now we will give the definition of direct sum of two monoid 
homomorphisms. 

Definition 2.4. Let 1R  and 2R  be rings, ( )≤,S  be a strictly ordered 

monoid, and ( ) ( )1
1 : REndS →ω  and ( ) ( )2

2 : REndS →ω  be monoid 

homomorphisms. Then the direct sum of ( )1ω  and ( )2ω  is defined by 

( ) ( ) ( ),: 21
21 RREndS ⊕→ω⊕ω  

where 

( ( ) ( ) ) ( ) ( ( )( ) ( )( )),,, 2
2

1
1

21
21 rrrr sss ωω=ω⊕ω  

for all Ss ∈  and ( ) ., 2121 RRrr ⊕∈  

Example 2.5. Let monoid S, rings 1R  and ( )1
2, ωR  and ( )2ω  be given 

as in Example 2.2. Then, we can define the direct sum of ( )1ω  and ( )2ω  by 

( ) ( ) ( ),: 21
21 RREndS ⊕→ω⊕ω  

where 

( ( ) ( ) ) ( ) ( )( ) ( ( ) ( )( ) ( ) ( )( ))yxqpyxqp sss ,,,,,, 2121 ωω=ω⊕ω  

( ) ( )( ),0,,,0 xq=  

for all Ss ∈  and ( ) ( )( ) .,,, 21 RRyxqp ⊕∈  

The following lemma shows that the direct sum ( ) ( )21 ω⊕ω  that defined 
in Definition 2.4 is a monoid homomorphism. 

Lemma 2.6. Let 1R  and 2R  be rings, ( )≤,S  be a strictly ordered 

monoid, and ( ) ( )1
1 : REndS →ω  and ( ) ( )2

2 : REndS →ω  be monoid 

homomorphisms. Then the direct sum 
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( ) ( ) ( )21
21 : RREndS ⊕→ω⊕ω  

is a monoid homomorphism. 

Proof. For any Sts ∈,  and ( ) ,, 2121 RRrr ⊕∈  we have 

( ( ) ( ) ) ( ) ( ( )( ) ( )( ))2
2

1
1

21
21 ,, rrrr ststst ωω=ω⊕ω  

(( ( ) ( ) ) ( ) ( ( ) ( ) ) ( ))2
22

1
11 , rr tsts ωωωω=  

( ( )( ( )( )) ( )( ( )( )))2
22

1
11 , rr tsts ωωωω=  

( ( ) ( ) ) ( ( )( ) ( )( ))2
2

1
121 , rr tts ωωω⊕ω=  

(( ( ) ( ) ) ( ( ) ( ) ) ) ( ).21
2121 rrts ω⊕ωω⊕ω=  

Hence, we obtain  

( ( ) ( ) ) ( ) ( ( ) ( ) ) ( ) ( ( ) ( ) ) ( ).212121 tsst ω⊕ωω⊕ω=ω⊕ω  

So the direct sum ( ) ( )21 ω⊕ω  is monoid homomorphism.  

Now, based on Definition 2.4 and Lemma 2.6 we get the following 
proposition. 

Proposition 2.7. Let 1R  and 2R  be rings, ( )≤,S  be a strictly ordered 

monoid, and ( ) ( )1
1 : REndS →ω  and ( ) ( )2

2 : REndS →ω  be monoid 

homomorphisms. Then 

( ) [[ ( ) ( )]] [[ ( )]] [[ ( )]].,,~, 2
2

1
1

21
21 ω⊕ω=ω⊕ω⊕ SRSRSRR  

Proof. Let 2111 : RRRi ⊕→  and 2122 : RRRi ⊕→  be natural 

injections, and let 1211 : RRRp →⊕  and 2212 : RRRp →⊕  be natural 

projections. Then we have 

( ) ( ( ) ( ) ) 1
21

1
1 ip ss ω⊕ω=ω  
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and 

( ) ( ( ) ( ) ) ,2
21

2
2 ip ss ω⊕ω=ω  

as seen in the following diagram: 

 

Then we obtain 

( ) ( ( ) ( ) ) 11
21

11
1 pipp ss ω⊕ω=ω  

( ( ) ( ) ) 1
21

1 Rs idp ω⊕ω=  

( ( ) ( ) )sp 21
1 ω⊕ω=  

and 

( ) ( ( ) ( ) ) 22
21

22
2 pipp ss ω⊕ω=ω  

( ( ) ( ) ) 2
21

2 Rs idp ω⊕ω=  

( ( ) ( ) ) .21
2 sp ω⊕ω=  

Now, for any ( ) [[ ( ) ( )]],, 21
21 ω⊕ω⊕∈ SRRf  we define a map 

( ) [[ ( ) ( )]] [[ ( )]] [[ ( )]]2
2

1
1

21
21 ,,,: ω⊕ω→ω⊕ω⊕ψ SRSRSRR  

by ( ) ( ),, 21 fff =ψ  where fpf 11 =  and .22 fpf =  

For ,2,1=i  we will show ( ) ( ) ( )gpfpgfp iii +=+  and ( )fgpi  

( ) ( ).gpfp ii=  For any ( ) [[ ( ) ( )]]21
21 ,,, ω⊕ω⊕∈∈ SRRgfSs  and 

,2,1=i  we have 
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( )( ) ( ) ( ) ( )( )sgfpsgfp ii +=+  

( ) ( )( )sgsfpi +=  

( )( ) ( )( )sgpsfp ii +=  

( ) ( ) ( ) ( )sgpsfp ii +=  

and 

( )( ) ( ) ( ) ( )( )sfgpsfgp ii =  

( ) ( ( ) ( ) ) ( )( )⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ω⊕ω= ∑

= xys
si ygxfp 21  

( ) ( ( ) ( ) ) ( )( )∑
=

ω⊕ω=
xys

sii ygpxfp 21  

( ) ( ) ( )( )∑
=

ω=
xys

isi ygpxfp 1  

( ) ( ) ( ) ( ) ( )( )∑
=

ω=
xys

isi ygpxfp 1  

( ) ( )( ) ( ).sgpfp ii=  

Since for any ( ) [[ ( ) ( )]],,, 21
21 ω⊕ω⊕∈ SRRgf  we have 

( ) (( ) ( ) )21, gfgfgf ++=+ψ  

( ) ( )( )gfpgfp ++= 21 ,  

( ) ( ) ( ) ( )( )gpfpgpfp 2211 , ++=  

( )2211 , gfgf ++=  

( ) ( )2121 ,, ggff +=  

( ) ( )gf ψ+ψ=  
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and 

( ) (( ) ( ) )21, fgfgfg =ψ  

( ) ( )( )fgpfgp 21 ,=  

( ) ( ) ( ) ( )( )gpfpgpfp 2211 ,=  

( )2211 , gfgf=  

( ) ( )2121 ,, ggff=  

( ) ( ),gf ψψ=  

ψ is a ring homomorphism. 

Now, we will show ψ is injective. Let ( ).ψ∈ Kerf  Then we will show 

.0=f  Since ( ) ( ) ( ).0,0, =ψψ∈ fKerf  So, for any Ss ∈  and ,2,1=i  

we have ( ) ( ) ( ).0 ssfpi =  In other words, ( )( ) .0=sfpi  Since ip  is a 

natural projection, ( ) 0=sf  for all .Ss ∈  So ( ) 0=ψKer  or ψ is injective. 

Furthermore, we will show ψ is surjective. For all ( ) [[ ( )]]1
121 ,, ω∈ SRff  

[[ ( )]],, 2
2 ω⊕ SR  there exists 

[[ ( ) ( )]]∑ =
ω⊕ω⊕∈=

2
1

21
21 ,

k kk SRRfif  

such that ( ) ( )., 21 fff =ψ  So, ψ is surjective. Then, ψ is a ring isomorphism. 

So [[ ( ) ( )]] [[ ( )]] [[ ( )]].,,~, 2
2

1
1

21
21 ω⊕ω=ω⊕ω⊕ SRSRSRR   
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