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Foreword

This volume of conference proceedings contains a collection of research papers pre-
sented at the 3rd Annual International Conference on Computational Mathematics,
Computational Geometry & Statistics (CMCGS 2014) organized by Global Science
and Technology Forum, held in Singapore on 3–4 February 2014.

The CMCGS 2014 conference is an international event for the presentation,
interaction, and dissemination of new advances relevant to computational mathe-
matics, computational geometry, and statistics research. As member of the Board of
Governors, GSTF, I would like to express my sincere thanks to all those who have
contributed to the success of CMCGS 2014.

A special thanks to all our speakers, authors, and delegates for making CMCGS
2014 a successful platform for the industry, fostering growth, learning, networking,
and inspiration. We sincerely hope you find the conference proceedings enriching
and thought-provoking.
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Preface

We are pleased to welcome you to the 3rd Annual International Conference on
Computational Mathematics, Computational Geometry & Statistics (CMCGS 2014)
organized by Global Science and Technology Forum, held in Singapore on 3–4
February 2014.

The CMCGS 2014 conference continuously aims to foster the growth of research
in mathematics, geometry, statistics, and its benefits to the community at large. The
research papers published in the proceedings are comprehensive in that it contains
a wealth of information that is extremely useful to academics and professionals
working in this and related fields.

It is my pleasure to announce the participation of leading academics and
researchers in their respective areas of focus from various countries at this event. The
Conference Proceedings and the presentations made at CMCGS 2014 are the end
result of a tremendous amount of innovative work and a highly selective review pro-
cess. We have received research papers from distinguished participating academics
from various countries. There will be “BEST PAPER AWARDS” for authors and
students, to recognize outstanding contributions and research publications.

We thank all authors for their participation and we are happy that they have
chosen CMCGS 2014 as the platform to present their work. Credit also goes to the
Program Committee members and review panel members for their contribution in
reviewing and evaluating the submissions and for making CMCGS 2014 a success.

Anton Ravindran

vii

celestin.kokonendji@univ-fcomte.fr



celestin.kokonendji@univ-fcomte.fr



Program Committee

PROGRAM CHAIR

Dr. Jörg Fliege
Professor
School of Mathematics
The University of Southampton, UK

Co-EDITORs-IN-CHIEF

Prof. Ke Chen
Director of Centre for Mathematical Imaging Techniques
Department of Mathematical Sciences
The University of Liverpool, UK

Prof. C. Raju
Professor, Quantitative Methods & Operations Management
Chairman—Post Graduate Programme
Indian Institute of Management Kozikode, India

ix

celestin.kokonendji@univ-fcomte.fr



x Program Committee

PROGRAMCOMMITTEE MEMBERS

Prof. Marc Demange
Professor of Operations Research
ESSEC Business School, Paris

Prof. Luca Bonaventura
Research Assistant Professor of
Numerical Analysis
Laboratory for Modeling and
Scientific Computing MOX
Politecnico di Milano, Italy

Dr. Pamini Thangarajah
Associate Professor/Mathematics
Coordinator
Department of Mathematics, Physics
and Engineering
Mount Royal University, Calgary,
Alberta, Canada

Dr. Selin Damla Ahipasaoglu
Assistant Professor
Engineering Systems and Design
Singapore University of Technology
and Design

Prof. Jun Zou
Department of Mathematics
The Chinese University of Hong
Kong, Hong Kong

Prof. B. Bollobás
Honorary Professor
Department of Pure Mathematics &
Mathematical Statistics
University of Cambridge, UK

Prof. Hassan Ugail
Director, Centre for Visual
Computing
University of Bradford, UK

Dr. Ping Lin
Professor, Department of
Mathematics
University of Dundee, UK

Dr. Julius Kaplunov
Professor
Applied Mathematics
Brunel University, UK

Dr. R. Ponalagusamy
Professor
Department of Mathematics
National Institute of Technology
Tiruchirappalli, India

Dr. A. K. Singh
Professor
Department of Mathematics
Banaras Hindu University
Varanasi, India

Dr. Nandadulal Bairagi
Associate Professor & Coordinator
Centre for Mathematical
Biology and Ecology
Jadavpur University
Kolkata, India

celestin.kokonendji@univ-fcomte.fr



Program Committee xi

Dr. Kallol Paul
Associate Professor
Department of Mathematics
Jadavpur University
India

Dr. Khanindra Chandra Chowdhury
Department of Mathematics
Gauhati University
India

Dr. D. Deivamoney Selvam
Professor, Department of Mathematics
National Institute of Technology
Tiruchirappalli, India

celestin.kokonendji@univ-fcomte.fr



celestin.kokonendji@univ-fcomte.fr



Contents

Part I Computational Mathematics

An Augmented Lagrangian Approach with Enhanced Local
Refinement to Simulating Yield Stress Fluid Flows Around
a Spherical Gas Bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Jianying Zhang

On Classical Solution in Finite Time of BGK-Poisson’s Equations . . . . . . . . 13
Slim Ben Rejeb

A Note on Lanczos Algorithm for Computing PageRank . . . . . . . . . . . . . . . . . . . 25
Kazuma Teramoto and Takashi Nodera

Superconvergence of Discontinuous Galerkin Method
to Nonlinear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Helmi Temimi

A Least Squares Approach for Exponential Rate of
Convergence of Eigenfunctions of Second-Order Elliptic
Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Lokendra K. Balyan

Multivariable Polynomials for the Construction of Binary
Sensing Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
R. Ramu Naidu, Phanindra Jampana, and Sastry S. Challa

An Ant Colony Algorithm to Solve the Container Storage Problem . . . . . . . 63
Ndèye Fatma Ndiaye, Adnan Yassine, and Ibrahima Diarrassouba

FEM Post-processing in Identifying Critical Points in an Image . . . . . . . . . . . 75
I.C. Cimpan

Global and Local Segmentation of Images by Geometry
Preserving Variational Models and Their Algorithms . . . . . . . . . . . . . . . . . . . . . . . 87
Jack Spencer and Ke Chen

xiii

celestin.kokonendji@univ-fcomte.fr



xiv Contents

Part II Pure Mathematics

Positive and Negative Interval Type-2 Generalized Fuzzy
Number as a Linguistic Variable in Interval Type-2 Fuzzy
Entropy Weight for MCDM Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Nurnadiah Zamri and Lazim Abdullah

The Number of Complex Roots of a Univariate Polynomial
Within a Rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Ganhewalage Jayantha Lanel and Charles Ching-An Cheng

Proof of Fermat’s Last Theorem for n D 3 Using Tschirnhaus
Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.B.U. Perera and R.A.D. Piyadasa

Part III Computational Geometry

Geometrical Problems Related to Crystals, Fullerenes,
and Nanoparticle Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Mikhail M. Bouniaev, Nikolai P. Dolbilin, Oleg R. Musin,
and Alexey S. Tarasov

Tomographic Inversion Using NURBS and MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 153
Zenith Purisha and Samuli Siltanen

Solving Fuzzy Differential Equation Using Fourth-Order
Four-Stage Improved Runge –Kutta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Faranak Rabiei, Fudziah Ismail, and Saeid Emadi

Effect of Bird Strike on Compressor Blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A. Ajin Kisho, G. Dinesh Kumar, John Mathai,
and Vickram Vickram

Part IV Statistics

Asymptotic Density Crossing Points of Self-Normalized Sums
and Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Thorsten Dickhaus and Helmut Finner

Exponential Ratio-Cum-Exponential Dual to Ratio Estimator
in Double Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Diganta Kalita, B.K. Singh, and Sanjib Choudhury

Analysis of Performance of Indices for Indian Mutual Funds . . . . . . . . . . . . . . 221
Rahul Ritesh

Counting Regular Expressions in Degenerated Sequences
Through Lazy Markov Chain Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
G. Nuel and V. Delos

celestin.kokonendji@univ-fcomte.fr



Contents xv

Generalized Variance Estimations of Normal-Poisson Models . . . . . . . . . . . . . 247
Célestin C. Kokonendji and Khoirin Nisa

Vehicle Routing Problem with Uncertain Costs via a Multiple
Ant Colony System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Nihat Engin Toklu, Luca Maria Gambardella,
and Roberto Montemanni

celestin.kokonendji@univ-fcomte.fr



Generalized Variance Estimations
of Normal-Poisson Models

Célestin C. Kokonendji and Khoirin Nisa

Abstract This chapter presents three estimations of generalized variance (i.e.,
determinant of covariance matrix) of normal-Poisson models: maximum likelihood
(ML) estimator, uniformly minimum variance unbiased (UMVU) estimator, and
Bayesian estimator. First, the definition and some properties of normal-Poisson
models are established. Then ML, UMVU, and Bayesian estimators for generalized
variance are derived. Finally, a simulation study is carried out to assess the
performance of the estimators based on their mean square error (MSE).

Keywords Covariance matrix • Determinant • Normal stable Tweedie • Maxi-
mum likelihood • UMVU • Bayesian estimator

Introduction

In multivariate analysis, generalized variance (i.e., determinant of covari-
ance matrix) has important roles in the descriptive analysis and inferences. It is
the measure of dispersion within multivariate data which explains the variability
and the spread of observations. Its estimation usually based on the determinant
of the sample covariance matrix. Many studies related to the generalized variance
estimation have been done by some researchers; see, e.g., [1–3] under normality
and non-normality hypotheses.

A normal-Poisson model is composed by distributions of random vector X D (X1,
X2, : : : , Xk)T with k> 1, where Xj is a univariate Poisson variable, and (X1, : : : ,
Xj�1, XjC1, : : : , Xk) given Xj are k-1 real independent Gaussian variables with
variance Xj. It is a particular part of normal stable Tweedie (NST) models [4] with
p D 1 where p is the power variance parameter of distributions within the Tweedie
family. This model was introduced in [4] for the particular case of normal-Poisson
with j D 1. Also, normal-Poisson is the only NST model which has a discrete
component, and it is correlated to the continuous normal parts.

C.C. Kokonendji (�) • K. Nisa
Laboratoire de Mathématiques de Besançon, University of Franche-Comté, Besançon, France
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248 C.C. Kokonendji and K. Nisa

In literature, there is also a model known as Poisson-Gaussian [5–7] which is
completely different from normal-Poisson. For any value of j, a normal-Poissonj

model has only one Poisson component and k-1 normal (Gaussian) components,
while a Poisson-Gaussianj model has j Poisson components and k-j Gaussian
components. Poisson-Gaussian is also a particular case of simple quadratic natural
exponential family (NEF) [5] with variance function VF(m) D Diagk(m1, : : : , mj,
1, : : : , 1), where m D (m1, : : : , mk) is the mean vector and its generalized variance
function is detVF(m) D m1, : : : , mj. The estimations of generalized variance of
Poisson-Gaussian can be seen in [8, 9].

Motivated by generalized variance estimations of Poisson-Gaussian, we present
our study on multivariate normal-Poisson models and the estimations of their
generalized variance using ML, UMVU, and Bayesian estimators.

Normal-Poisson Models

In this section, we establish the definition of normal-Poissonj models as generaliza-
tion of normal-Poisson1 model which was introduced in [4], and then we give some
properties.

Definition 2.1 For a k-dimensional normal-Poisson random vector X D (X1, X2,
: : : , Xk)T with k> 1, it must hold that

1. Xj follows a univariate Poisson distribution.

2.
�
X1; : : : ; Xj�1; XjC1; : : : ; Xk

� DW Xc
j

ˇ̌
ˇXj are independent normal variables

with mean 0 and variance Xj, i.e., Xc
j

ˇ̌
ˇXj 
 i:i:d: N

�
0;Xj

�
.

In order to satisfy the second condition, we need Xj> 0, but in practice it is
possible to have xj D 0 in the Poisson sample. In this case, the corresponding normal
components are degenerated as •0 which makes their values become 0s.

The NEF Ft D F(�t) of a k-dimensional normal-Poisson random vector X is
generated by

�t .dx/ D txj
�
xj Š
��1

�
2�xj

�.k�1/=2 exp

0
@�t � 1

2xj

X
`¤j

x2`

1
A Ixj2Nnf0gıxj

�
dxj

�Y
`¤j

dx`;

for a fixed power of convolution t >0, where IA is the indicator function of the set A
and ıxj is the Dirac measure at xj.. Since t> 0, then �t:D�*t is an infinitely divisible
measure.

The cumulant function which is the log of the Laplace transform of �t, i.e.,

K�t .™/ D log

Z

Rk
exp

�
™T x

�
�t .dx/, is given by

celestin.kokonendji@univ-fcomte.fr
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K�t .™/ D texp

0
@�j C 1

2

X
`¤j

�2`

1
A : (1)

The function K�t .™/ in (1) is finite for all ™ in the canonical domain:

‚ .�t / D
8<
:™ 2 Rk I ™T Q™cj WD �j C

X
`¤j

�2` =2 < 0

9=
;

with

™ D .�1; � � � ; �k/T and Q™cj WD �
�1; : : : ; �j�1; �j D 1; �jC1; : : : ; �k

�T
: (2)

The probability distribution of normal-Poissonj is

P .™I t / .dx/ D exp
˚
™T x � K�t .™/

�
�t .dx/

which is a member of NEF F .�t / D fP .™I t / I ™ 2 ‚ .�t /g.
From (1), we can calculate the first derivative of the cumulant function that

produces a k-vector as the mean vector of F�t and also its second derivative which
is a k � k matrix that represents the covariance matrix. Using notations in (2), we
obtain

K0
�t
.™/ D K�t .™/ � Q™cj and K00

�t
.™/ D K�t .™/

j Q™cj Q™cTj C I
0j
k

k

with I
0j
k D Diagk

�
1; : : : ; 1; 0j ; 1; : : : ; 1

�
.

The cumulant function presented in (1) and its derivatives are functions of
the canonical parameter ™. For practical calculation, we need to use the mean
parameterization:

P .mIFt / WD P .™ .m/ I�t/

with ™(m) is the solution in ™ of equation m D K0
�t
.™/ :

The variance function of a normal-Poissonj model which is the variance-
covariance matrix in term of mean parameterization is obtained through the second
derivative of the cumulant function, i.e., VFt .m/ D K00

�t
Œ™ .m/ : Then we have

VFt .m/ D 1

mj

mmT C Diagk
�
mj ; : : : ; mj ; 0j ;mj ; : : : ; mj

�
(3)

with mj> 0 and m` 2 R; ` ¤ j .
For j D 1, the covariance matrix of X can be expressed as below
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VFt .m/ D

2
6666666666664

m1

ˇ̌
ˇ m2 : : : mj : : : mk

� ��
ˇ̌
ˇ � � � � � � � � � � � � � � � � � � � � �

m2

ˇ̌
ˇ m�1

1 m22 Cm1 : : : m�1
1 m2mj : : : m�1

1 m2mk

:
:
:

ˇ̌
ˇ

:
:
:

: : :
:
:
:

:
:
:

mj

ˇ̌
ˇ m�1

1 mjm2 : : : m�1
1 m2j Cm1 : : : m�1

1 mjmk

:
:
:

ˇ̌
ˇ

:
:
:

:
:
:

: : :
:
:
:

mk

ˇ̌
ˇ m�1

1 mkm2 : : : m�1
1 mkmj : : : m�1

1 m2k Cm1

3
7777777777775

:

Indeed, for the covariance matrix above, one can use the following particular Schur
representation of the determinant

det

�
� aT

a A

�
D �det

�
A � ��1aaT

�
(4)

with the non-null scalar � D m1, the vector a D .m2; � � � ; mk/
T , and the .k � 1/ �

.k � 1/ matrix A D ��1aaT C m1Ik�1; where Ij D Diagj .1; � � � ; 1/ is the j � j
unit matrix.

Consequently, the determinant of the covariance matrix VFt .m/ for j D 1 is

detVFt .m/ D mk
1

Then, it is trivial to show that for j2f1, : : : ,kg, the generalized variance of
normal-Poissonj model is given by

detVFt .m/ D mk
j (5)

withmj > 0;m` 2 R; ` ¤ j: (5) expresses that the generalized variance of normal-
Poisson models depends mainly on the mean of the Poisson component (and the
dimension space k >1) .

Among NST models, normal-gamma which is also known as gamma-Gaussian
is the only model that has been characterized completely; see [5] or [10] for
characterization by variance function and [11] for characterization by generalized
variance function. For normal-Poisson models, here we give our result regarding to
characterization by variance function and generalized variance. We state the results
in the following theorems without proof.

Theorem 2.1 Let k 2f2, 3, : : : g and t> 0. If an NEF Ft satisfies (3), then, up to
affinity, Ft is of normal-Poisson model.

Theorem 2.2 Let Ft D F(�t) be an infinitely divisible NEF on Rk such that

1. The canonical domain ‚(�) D Rk

2. detK00
� .™/ D texp

�
k � ™T Q™cj

�
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for ™ and Q™cj given in (2). Then, up to affinity and power convolution, Ft is of
normal-Poisson model.

All the technical details of proofs will be given in our article which is in
preparation. In fact, the proof of Theorem 2.1 obtained by algebraic calculations
and by using some properties of NEF is described in Proposition 2.1 below. An
idea to proof Theorem 2.2 can be obtained using the infinite divisibility property
of normal-Poisson for which this proof is the solution to the particular Monge–

Ampère equation [12]: detK00
� .™/ D texp

�
k � ™T Q™cj

�
. Gikhman and Skorokhod

[13] showed that if � is an infinitely divisible measure, then there exist a symmetric
nonnegative definite d � d matrix † with rank k-1 and a positive measure � on Rk

such that

K00
� .™/ D † C

Z

Rk
xxT exp

�
™T x

�
� .dx/ :

The Lévy–Khintchine formula of infinite divisibility distribution is also applied.

Proposition 2.1 Let � and Q� be two ¢-finite positive measures on Rk such that
F D F(�), QF D F . Q�/, and m 2 MF:

1. If there exists (d,c)2RkxR such that Q� .dx/ D exp
n
dT x

E
C c

o
� .dx/ ; then

F D QF W ‚ . Q�/ D ‚ .�/� d andK Q� .™/ D K� .™ C d/C c; for m D m 2 MF;

V QF .m/ D VF .m/ ; and detV QF .m/ D detVF .m/ :
2. If Q� D ¥�� is the image measure of � by the affine transformation ¥ .x/ D AxC

b; where A is a k � k nondegenerate matrix and b2Rk, then ‚ . Q�/ D AT‚ .�/

and K Q� .™/ D K�

�
AT ™

� C bT ™I for m D Am C b 2 ¥ .MF/ ; V QF .m/ D
AVF

�
¥�1 .m/

�
AT ; and det V QF .m/ D .det A/2 det VF .m/ :

3. If Q� D ��t is the t-th convolution power of � for t> 0, then ‚ . Q�/ D ‚ .�/

and K Q� .™/ D tK� .™/ I for m D tm 2 tMF ; V QF .m/ D tVF

�
¥t�1 .m/ ; and

detV QF .m/ D tkdetVF(m).

Proposition 2.1 shows that the generalized variance function det VF(m) of F
is invariant for any element of its generating measure (Part 1) and for the affine
transformation ¥ .x/ D Ax C b such that det A D ˙1, particularly for a translation
x ! x C b (Part 2).

A reformulation of Theorem 2.2, by changing the canonical parameterization
into mean parameterization, is stated in the following theorem.

Theorem 2.3 Let Ft D F(�t) be an infinitely divisible NEF on Rk such that

1. mj> 0 and m` 2 R with ` ¤ j

2. detVF .m/ D mk
j :

Then Ft is of normal-Poisson type.
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Theorem 2.3 is equivalent to Theorem 2.2. The former is used for the estimation
of generalized variance, and the latter is used for characterization by generalized
variance.

Generalized Variance Estimations

Here we present three methods for generalized variance estimations of normal-
Poisson models P .mIF t/ 2 Ft D F .�t /, and then we report the result of our
simulation study.

Consider X1; � � � ;Xn be random vectors i.i.d. from P(m; Ft) of normal-Poisson
models, and we denote X D .X1 C � � � C Xn/ =n D �

X1; � � � ; Xk

�T
as the sample

mean with positive j-th component Xj : The followings are ML, UMVU, and
Bayesian generalized variance estimators.

Maximum Likelihood Estimator

Proposition 3.1 The ML estimator of detVFt .m/ D mk
j is given by

Tn;t D detVFt

�
X
�

D �
Xj

�k
: (6)

Proof The ML estimator above is easily obtained by replacing mj in (5) with its ML
estimator Xj . ut

Uniformly Minimum Variance Unbiased Estimator

Proposition 3.2 The UMVU estimator of detVFt .m/ D mk
j is given by

Un;t D n�kC1Xj

�
nXj � 1� : : : �nXj � k C 1

�
; if nXj � k: (7)

Proof This UMVU estimator is obtained using intrinsic moment formula of
univariate Poisson distribution as follows:

E ŒX .X � 1/ : : : .X � k C 1/ D mk
j :

Letting Y D nXj gives the result that (7) is the UMVU estimator of (5), because,
by the completeness of NEFs, the unbiased estimation is unique. So, we deduced
the desired result. �
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A deep discussion about ML and UMVU methods on generalized variance
estimations can be seen in [9] for NEF and [4] for NST models.

Bayesian Estimator

Proposition 3.3 Under assumption of prior gamma distribution of mj with param-
eter ’> 0 and “> 0, the Bayesian estimator of detVFt .m/ D mk

j is given by

Bn;t;˛;ˇ D
 
˛ C nXj

ˇ C n

!k
: (8)

Proof Let X1j ; � � � ; Xnj given mj are Poisson(mj) with probability mass function

P
�
Xij D xij

ˇ̌
ˇmj

�
D m

xij
j

xij Š
e�mj D p

�
xij

ˇ̌
ˇmj

�
:

Assuming that mj follows gamma(˛,ˇ), then the prior probability distribution
function of mj is given by

f
�
mj I˛; ˇ� D ˇ˛

� .˛/
m˛�1
j e�ˇmj for mj > 0 and ˛; ˇ > 0

where � (˛) is the gamma function: � .˛/ D
Z 1

0

x˛�1e�xdx: Using the Bayes

theorem, the posterior distribution of mj given an observation sequence can be
expressed as

f
�
mj

ˇ̌
ˇxij I˛; ˇ

�
D

p
�
xij

ˇ̌
ˇmj

�
f
�
mj I˛; ˇ�

Z

mj>0

p
�
xij

ˇ̌
ˇmj

�
f
�
mj I˛; ˇ� dmj

D .ˇ C 1/˛Cxij

�
�
˛ C xij

� m˛Cxij�1
j e�.ˇC1/mj

which is a gamma density with parameters ˛0 D xij C ˛ and ˇ0 D 1 C ˇ. Then
with random sample X1j, : : : , Xnj, the posterior will be gamma

�
˛ C nXj ; ˇ C n

�
:

The Bayesian estimator of mj is given by the mean of the posterior distribution, i.e.,

bmb D ˛CnXj
ˇCn , and then this concludes the proof. �

The choice of ’ and “ depends on the information of mj. Notice that for any
positive value c 2 .0;1/ ; if ˛ D cXj and ˇ D c, then the Bayesian estimator
is the same as ML estimator. In practice, the parameter of prior distribution of
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mj must be known or can be assumed confidently before the generalized variance
estimation. One can see, e.g., [14–16] for more details about Bayesian inference on
mj (univariate Poisson parameter).

Simulation Study

In order to look at the performances of ML, UMVU, and Bayesian estimators of
the generalized variance, we have done a Monte Carlo simulation using R software
[17]. We have generated k D 2, 4, 6, 8 dimensional data from multivariate normal-
Poisson distribution F(�t) with mj D 1. Fixing j D 1, we set several sample sizes n
varied from 5 until 300, and we generated 1,000 samples for each sample size. For
calculating the Bayesian estimator, in this simulation we assume that the parameters
of prior distribution depend on sample mean of Poisson component, Xj , and
the dimension k. Then we set three different prior distributions: gamma

�
Xj ; k

�
;

gamma
�
Xj ; k=2

�
; and gamma

�
Xj ; k=3

�
:

We report the results of the generalized variance estimations using the three
methods in Table 1. From these values, we calculated the mean square error (MSE)
of each method over 1,000 data sets using this following formula

MSE

� ^
GV

�
D 1

1; 000

1;000X
iD1

� ^
GVi �mk

j

�2

where
^
GV is the estimate of mk

j using each method.
From the values in Table 1, we can observe different performances of ML

estimator (Tn,t), UMVU estimator (Un,t), and Bayesian estimator (Bn,t,’,“) of the
generalized variance. The values of Tn,t and Bn,t,’,“ converge, while the values of Un,t

do not, but Un,t which is the unbiased estimator always approximate the parameter
(mk

1 D 1) and closer to the parameter than Tn,t and Bn,t,’,“ for small sample sizes n �
25. For all methods, the standard error of the estimates decreases when the sample
size increases. The Bayesian estimator with gamma

�
Xj ; k=2

�
prior distribution,

i.e., Bn;t;Xj ;k=2, is exactly the same as Tn,t for k D 2. This is because in this case, the
Bayesian and ML estimators of m1 are the same (i.e., c D 1).

The goodness of Bayesian estimator depends on the parameter of prior dis-
tribution, ’ and “. From our simulation, the result shows that smaller parameter
“ gives greater standard error to the estimations in small sample sizes, and the
accuracy of Bn,t,’,“ with respect to “ varies with dimensions k. However, they are
all asymptotically unbiased.

There are more important performance characterizations for an estimator than
just being unbiased. The MSE is perhaps the most important of them. It captures the
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Table 1 The expected values (with standard error) of Tn,t, Un,t, and Bn,t,˛,ˇ with m1 D 1 and
k 2 f2; 4; 6; 8g (target values mk

1 D 1)

k D 2n Tn,t Un,t Bn;t;Xj ;k Bn;t;Xj ;k=2 Bn;t;Xj ;k=3

k C 1 1.2790 (1.3826) 0.9533 (1.2050) 0.8186 (0.8849) 1.2790 (1.3826) 1.5221 (1.6454)
k C 5 1.1333 (0.8532) 0.9915 (0.8000) 0.8955 (0.6742) 1.1333 (0.8532) 1.2340 (0.9290)
k C 10 1.1121 (0.6295) 1.0276 (0.6056) 0.9589 (0.5428) 1.1121 (0.6295) 1.1714 (0.6631)
25 1.0357 (0.4256) 0.9959 (0.4175) 0.9604 (0.3946) 1.0357 (0.4256) 1.0628 (0.4367)
60 1.0090 (0.2526) 0.9924 (0.2505) 0.9767 (0.2445) 1.0090 (0.2526) 1.0201 (0.2553)
100 1.0086 (0.1988) 0.9986 (0.1979) 0.9890 (0.1950) 1.0086 (0.1988) 1.0153 (0.2002)
300 0.9995 (0.1141) 0.9962 (0.1140) 0.9929 (0.1134) 0.9995 (0.1141) 1.0017 (0.1144)
k D 4n Tn,t Un,t Bn;t;Xj ;k Bn;t;Xj ;k=2 Bn;t;Xj ;k=3

k C 1 2.3823 (4.6248) 0.9460 (2.5689) 0.4706 (0.9135) 1.2859 (2.4964) 1.9190 (3.7254)
k C 5 1.6824 (2.4576) 0.9531 (1.6995) 0.5890 (0.8605) 1.1491 (1.6786) 1.4756 (2.1555)
k C 10 1.4664 (1.6345) 1.0027 (1.2456) 0.7072 (0.7882) 1.1328 (1.2626) 1.3430 (1.4969)
25 1.2711 (1.0895) 1.0169 (0.9327) 0.8212 (0.7039) 1.0930 (0.9368) 1.2079 (1.0353)
60 1.0978 (0.5682) 0.9961 (0.5288) 0.9060 (0.4689) 1.0287 (0.5324) 1.0741 (0.5559)
100 1.0589 (0.4209) 0.9983 (0.4028) 0.9419 (0.3744) 1.0180 (0.4046) 1.0451 (0.4154)
300 1.0273 (0.2305) 1.0071 (0.2271) 0.9874 (0.2215) 1.0138 (0.2275) 1.0228 (0.2295)
k D 6n Tn,t Un,t Bn;t;Xj ;k Bn;t;Xj ;k=2 Bn;t;Xj ;k=3

k C 1 4.7738 (13.9827) 0.9995 (4.7073) 0.2593 (0.7594) 1.2514 (3.6655) 2.3548 (6.8972)
k C 5 2.9818 (6.2595) 0.9958 (2.7565) 0.3689 (0.7743) 1.1825 (2.4823) 1.8446 (3.8723)
k C 10 2.2232 (4.0454) 1.0124 (2.2131) 0.4733 (0.8612) 1.1406 (2.0756) 1.5778 (2.8709)
25 1.6399 (2.2478) 0.9555 (1.4833) 0.5708 (0.7824) 1.0513 (1.4410) 1.3076 (1.7923)
60 1.2479 (0.9978) 0.9827 (0.8226) 0.7778 (0.6220) 1.0283 (0.8222) 1.1319 (0.9051)
100 1.1830 (0.7646) 1.0235 (0.6800) 0.8853 (0.5722) 1.0517 (0.6798) 1.1151 (0.7207)
300 1.0530 (0.3758) 1.0022 (0.3608) 0.9539 (0.3404) 1.0119 (0.3612) 1.0322 (0.3684)
k D 8n Tn,t Un,t Bn;t;Xj ;k Bn;t;Xj ;k=2 Bn;t;Xj ;k=3

k C 1 8.5935 (31.9230) 0.8677 (5.4574) 0.1232 (0.4576) 1.0535 (3.9134) 2.5038 (9.3010)
k C 5 4.7573 (12.5015) 0.8468 (3.0478) 0.1856 (0.4878) 1.0065 (2.6448) 1.9345 (5.0836)
k C 10 3.6816 (9.0892) 1.0394 (3.2258) 0.2994 (0.7392) 1.1394 (2.8130) 1.8789 (4.6387)
25 2.9055 (6.3150) 1.1341 (2.9623) 0.4314 (0.9377) 1.2129 (2.6362) 1.7675 (3.8416)
60 1.6201 (1.8804) 1.0511 (1.3062) 0.6794 (0.7885) 1.1035 (1.2807) 1.3059 (1.5156)
100 1.2890 (1.0907) 0.9850 (0.8667) 0.7541 (0.6381) 1.0199 (0.8630) 1.1308 (0.9569)
300 1.1056 (0.5378) 1.0086 (0.4968) 0.9199 (0.4474) 1.0213 (0.4967) 1.0578 (0.5145)

bias and the variance of the estimator. For this reason, we compare the quality of
the estimators using MSE in Table 2 which are presented graphically in Figs. 1, 2,
3, and 4. From these figures, we conclude that all estimators become more similar
when the sample size increases. For small sample sizes, Bn;t;Xj ;k always has the
smallest MSE, while Tn,t always has the greatest MSE (except for k D 2). For n
�25, Un,t is preferable than Tn,t. In this situation, the difference between Un,t and
Tn,t increases when the dimension increases and also the difference between Tn,t and
Bn,t,’,“.
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Table 2 The mean square error of Tn,t, Un,t, and Bn,t,˛,ˇ of Table 1

k D 2n MSE(Tn,t) MSE(Un,t) MSE.Bn;t;Xj ;k/ MSE.Bn;t;Xj ;k=2/ MSE.Bn;t;Xj ;k=3/

k C 1 1.9894 1.4542 0.8159 1.9894 2.9800
k C 5 0.7458 0.6401 0.4654 0.7458 0.9179
k C 10 0.4088 0.3675 0.2963 0.4088 0.4690
25 0.1824 0.1743 0.1573 0.1824 0.1947
60 0.0639 0.0628 0.0603 0.0639 0.0656
100 0.0396 0.0391 0.0381 0.0396 0.0403
300 0.0130 0.0130 0.0129 0.0130 0.0131
k D 4n MSE(Tn,t) MSE(Un,t) MSE.Bn;t;Xj ;k/ MSE.Bn;t;Xj ;k=2/ MSE.Bn;t;Xj ;k=3/

k C 1 23.2999 6.6019 1.1149 6.3136 14.7231
k C 5 6.5055 2.8904 0.9093 2.8398 4.8724
k C 10 2.8891 1.5514 0.7071 1.6118 2.3585
25 1.2604 0.8702 0.5274 0.8862 1.1151
60 0.3324 0.2797 0.2287 0.2843 0.3146
100 0.1806 0.1622 0.1435 0.1640 0.1746
300 0.0539 0.0516 0.0492 0.0519 0.0532
k D 6n MSE(Tn,t) MSE(Un,t) MSE.Bn;t;Xj ;k/ MSE.Bn;t;Xj ;k=2/ MSE.Bn;t;Xj ;k=3/

k C 1 209.7568 22.1589 1.1254 13.4989 49.4073
k C 5 43.1085 7.5980 0.9979 6.1952 15.7078
k C 10 17.8618 4.8981 1.0191 4.3278 8.5761
25 5.4622 2.2020 0.7964 2.0790 3.3071
60 1.0571 0.6769 0.4362 0.6769 0.8366
100 0.6181 0.4629 0.3406 0.4647 0.5327
300 0.1440 0.1302 0.1180 0.1306 0.1368
k D 8n MSE(Tn,t) MSE(Un,t) MSE.Bn;t;Xj ;k/ MSE.Bn;t;Xj ;k=2/ MSE.Bn;t;Xj ;k=3/

k C 1 1,076.7380 29.8009 0.9782 15.3177 88.7698
k C 5 170.4059 9.3124 0.9012 6.9951 26.7168
k C 10 89.8046 10.4076 1.0373 7.9326 22.2895
25 43.5105 8.7931 1.2025 6.9949 15.3466
60 3.9204 1.7088 0.7246 1.6509 2.3907
100 1.2732 0.7515 0.4676 0.7452 0.9327
300 0.3003 0.2469 0.2066 0.2472 0.2681

In this simulation, Bn;t;Xj ;k is the best estimator because of its smallest MSE,
but in general we cannot say that Bayesian estimator is much better than ML and
UMVU estimators since it depends on the prior distribution parameters. In fact,
one would prefer Un,t as it is the unbiased estimator with the minimum variance.
However, if in practice we know the information about prior distribution of mj, we
can get a better estimate (in the sense of having a lower MSE) than Un,t by using
Bn,t,’,“.
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Fig. 1 MSE plot of Tn,t, Un,t, Bn;t;xj ;k ;Bn;t;xj ;k=2; and Bn;t;xj ;k=3 for k D 2

Conclusion

In this chapter, we have established the definition and properties of normal-
Poissonj models as a generalization of normal-Poisson1 and showed that the
generalized variance of normal-Poisson models depends mainly on the mean of the
Poisson component. The estimations of generalized variance using ML, UMVU,
and Bayesian estimators show that UMVU produces a better estimation than ML
estimator, while compared to Bayesian estimator, UMVU is worse for some choice
of prior distribution parameters, but it can be much better for other cases. However,
all methods are consistent estimators, and they become more similar when the
sample size increases.
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Fig. 2 MSE plot of Tn,t, Un,t, Bn;t;xj ;k ;Bn;t;xj ;k=2; and Bn;t;xj ;k=3 for k D 4
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Fig. 3 MSE plot of Tn,t, Un,t, Bn;t;xj ;k ;Bn;t;xj ;k=2; and Bn;t;xj ;k for k D 6
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Fig. 4 MSE plot of Tn,t, Un,t, Bn;t;xj ;k ;Bn;t;xj ;k=2; and Bn;t;xj ;k=3 for k D 8
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