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A B S T R A C T 

Climate change impacts global food productions, but its local effect on rice 

production, particularly on monsoon dominated regions remain less 

understood. Here, we assess climate change impact on rice production 

situated on Lampung Province, as one of the largest rice productions in 

Indonesia. The FAO AquaCrop model was used to predict rice productivity, 

incorporating climate projections from the CMIP5 model under medium (RCP 

4.5) and high (RCP 8.5) emission scenarios. We simulated the model for fifteen 

locations representing districts in Lampung Province. Our results show that 

by 2050, the decreased rainfall is projected during the dry season and early 

rainy season, but the average monthly temperatures and evapotranspiration 

rates are expected to increase across all districts. AquaCrop simulated an 

increased rice productivity by +0.25 and +0.74 tons/ha for both scenarios in 

April planting season, but it decreased by -0.41 and -0.75 tons/ha in 

November planting season due to water stress. This research is important to 

provide a deeper understanding of the impact of climate change on rice 

productivity in Lampung Province. These findings highlight the need for 

adaptive strategies to sustain rice production under future climate conditions. 
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1. INTRODUCTION 

Climate change significantly impacts agricultural 

yields, posing a risk of future food crises (Elsadek et al., 

2024). With the global population projected to reach 

9.6 billion by 2050, food demand may rise by 60% 

globally and 100% in developing countries (Yildiz, 

2019). Lampung Province, as the sixth largest rice 

producers in Indonesia has a strategic role as a national 

food barn. Rice farming contributes to national food 

security, and supports the local and regional economy. 

However, changes in temperature and rainfall patterns 

due to climate change can affect rice production, thus 

threatening food security in this region. 

In Lampung, climate change is marked by 

declining rainfall, and rising temperatures up to 0.7°C 

(Manik et al., 2014). Similar trend was reported based 

on historical and projection data (Kusumastuty et al., 

2021). Previous research has shown that increased 

temperature affects rice plants by accelerate aging, and 

shorten the grain-filling period, ultimately reducing 

biomass production and rice yields  (Saud et al., 2022; 

Tao et al., 2013). Additionally, decreased rainfall led to 

water scarcity, particularly in rainfed rice systems 

(Ansari et al., 2021).  

Higher CO₂ concentrations level enhances the 

photosynthesis rate, which positively impacts biomass 

production and crop yields (Liu et al., 2020). With 

appropriate management, elevated CO₂ levels may 

help mitigate the negative effects of climate change 
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(Houma et al., 2021). However, the combined effects of 

increased CO₂ and rising air temperatures are not 

always additive, complicating predictions of rice 

productivity under climate change scenarios (Jing et al., 

2016). 

The AquaCrop model, developed by the Food and 

Agriculture Organization (FAO), is used to predict the 

impact of climate change on agricultural yields, 

including rice, by integrating climate variables such as 

temperature and rainfall to understand crop responses 

to environmental stress conditions (Alvar‐Beltrán et al., 

2022; Kang et al., 2021). AquaCrop simulations have 

shown a decline in rice productivity by 17% in Iran 

(Roshani et al., 2022). A similar finding was reported 

from Ecuador (Portalanza et al., 2022). In contrast, 

under high-emission scenarios rice yields might 

increase in the future (Xie et al., 2023). 

To project future climate conditions, the 

Intergovernmental Panel on Climate Change (IPCC) 

introduced Representative Concentration Pathways 

(RCPs), as outlined in its Fifth Assessment Report (AR5) 

in 2014. These include four scenarios: RCP 2.6 (a strong 

mitigation pathway), RCP 4.5 and RCP 6.0 (intermediate 

stabilization pathways), and RCP 8.5 (a high-emission 

scenario) (Pachauri et al., 2015). This study investigates 

the potential impacts of climate change on 

evapotranspiration rates, water productivity, and rice 

yields in Lampung Province by the year 2050, using the 

RCP 4.5 and RCP 8.5 scenarios. The year 2050 was 

selected as it is a key reference point in many IPCC 

projections, reflecting the urgency of climate action 

and the anticipated consequences of emission 

trajectories (Parris et al., 2023). 

Climate data were obtained from the MarkSim 

Weather Generator, which downscales outputs from 

General Circulation Models (GCMs). This study adopts 

an integrated modeling approach by incorporating 

RCP-based climate projections into the AquaCrop 

model, validated with observed local climate data. This 

method enables robust projections of future rice 

productivity in Lampung, contributing to the formu-

lation of evidence-based adaptation strategies in the 

agricultural sector. 

 

2. MATERIAL AND METHODS 

2.1 Study Area 

The study area was in 15 rice production areas in 

Lampung Province, which were selected based on the 

availability of completed rainfall data for 2011–2022. 

Lampung Province has a monsoonal rainfall pattern, 

characterized by a single peak rainy season and dry 

season, heavily influenced by the Asian and Australian 

monsoon wind circulations (Aldrian and Susanto, 2003). 

 
Figure 1. Map of Lampung Province 

 

2.2 Datasets 

The datasets used in this study include: (1) daily 

rainfall and air temperature (maximum and minimum) 

from 2011–2022 obtained from 15 rain gauge stations 

across Lampung Province, provided by the Lampung 

Climatology Station; (2) actual rice productivity data for 

the same period and locations from BPS Lampung; (3) 

modelled climate data (rainfall, temperature, and solar 

radiation) for the baseline and future scenarios (RCP 4.5 

and RCP 8.5, year 2050) from the MarkSim Weather 

Generator using the CSIRO-Mk3-6-0 model; and (4) soil 

texture and physical property data from paddy field 

samples analyzed at the Lampung State Polytechnic 

Soil Laboratory. 

 

2.3 Data Analysis 

This study used AquaCrop software, a model 

developed by the FAO to simulate crop yields with 

water as the primary limiting factor. AquaCrop can 

simulate the effects of increased air temperature, CO₂ 

concentration, and changes in rainfall on crop water 

balance and productivity under climate change 

condition (Steduto et al., 2012). The core of AquaCrop 

is Equation (1), which links crop yield to the amount of 

water used by the plants. 

 

(
𝑌𝑥−𝑌𝑎

𝑌𝑥
) = 𝐾𝑦 (

𝐸𝑇𝑥−𝐸𝑇𝑎

𝐸𝑇𝑥
) (1) 

 

Where Yx and Ya represent the maximum and 

actual crop yields, respectively, while ETx and ETa 

represent maximum and actual evapotranspiration. Ky 

is the proportionality factor that links relative yield loss 

to the relative reduction in evapotranspiration. This 

relationship is further extended in Equation (2), which 

encapsulates the crop growth mechanism concept in 

AquaCrop. 
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𝐵 = 𝑊𝑃 𝑥 ∑ 𝑇𝑟  (2) 

 

Where B is the biomass, WP is water productivity 

(biomass per unit of cumulative transpiration), and Tr is 

plant transpiration. These two equations represent 

expressions of the water dependent growth mechanism 

in the design of the crop growth model (Steduto et al., 

2009). 

The AquaCrop components, as shown in Figure 2, 

illustrate the key elements of the system that connects 

soil, plants, the atmosphere, and the factors influencing 

phenology, canopy cover, transpiration, biomass pro-

duction, and yield. Solid lines represent direct relation-

ships between variables and processes, while dashed 

lines indicate feedback loops (Steduto et al., 2012).  

The daily climate variables used in the AquaCrop 

simulation include rainfall, maximum and minimum air 

temperature, solar radiation, and CO₂ concentration. 

The rice planting schedule follows the main cropping 

season, starting on November 1, and the second 

cropping season (gadu) on April 1 (Andono, 2017). The 

selected rice variety is Ciherang, one of the most 

commonly grown varieties by farmers in Lampung 

Province. 

AquaCrop was calibrated by adjusting crop 

parameter values to match field conditions. 

Adjustments included a maximum canopy cover of 55 

days, senescence at 85 days, a yield of 8 tons/ha, and a 

growth duration of 120 days, based on the "Buku 

Deskripsi Varietas Unggul Tanaman Padi" (Thamrin et 

al., 2023). The soil type used was clay, with a 

composition of 18.2% sand, 45% clay, and 36.8% silt, 

based on soil sample analysis conducted in a soil 

laboratory. The irrigation system applied was rainfed, 

and land management involved the use of rice field 

bunds, a characteristic feature in fields that helps retain 

surface water (Steduto et al., 2009). 

The model was validated using historical climate 

data from 2011 to 2022. We simulated rice productivity 

to validate the AquaCrop model by comparing model 

outputs with actual productivity data. The Relative Root 

Mean Square Error (RRMSE) analysis was applied to 

validate the model (Chai and Draxler, 2014). 

Subsequently, the AquaCrop simulation was conducted 

using climate data from the MarkSim Weather 

Generator, including baseline data and projections for 

RCP 4.5 and RCP 8.5 scenarios for the year 2050. 

The limitations of the AquaCrop model lie in its 

dependence on the quality of input data. AquaCrop 

requires detailed information about climate, soil, and 

crop management practices, which may not always be 

available or accurate (Luciani et al., 2019). Additionally, 

this model may not fully account for other important 

factors affecting rice production under climate change, 

such as pest and disease dynamics, soil fertility changes, 

and socio-economic factors influencing agricultural 

practices (Yersaw et al., 2024). Another limitation is 

related to the climate change scenarios from the 

General Circulation Model (GCM), where GCMs often 

struggle to accurately simulate extreme events (Hidayat 

and Taufik, 2025), which are expected to become more 

frequent and intense due to climate change (Morley et 

al., 2018). 

 

 

Figure 1. AquaCrop Component Chart 

The limitations of the AquaCrop model lie in its 

dependence on the quality of input data. AquaCrop 

requires detailed information about climate, soil, and 

crop management practices, which may not always be 

available or accurate (Luciani et al., 2019). Additionally, 

this model may not fully account for other important 

factors affecting rice production under climate change, 

such as pest and disease dynamics, soil fertility changes, 

and socio-economic factors influencing agricultural 

practices (Yersaw et al., 2024).Another limitation is 

related to the climate change scenarios from the 

General Circulation Model (GCM), where GCMs often 

struggle to accurately simulate extreme events (Hidayat 

and Taufik, 2025), which are expected to become more 

frequent and intense due to climate change (Morley et 

al., 2018). 

 

3. Results and discussion 

3.1 Model Evaluation 

The AquaCrop model was run using climate and 

crop parameters from 2011 to 2022 to compare actual 

rice productivity with model predictions. The simulation 

results indicated that the productivity predicted by the 

AquaCrop model varied across the study sites. Table 1 

presents the RRMSE values, ranging from 6% to 26%. In 

general, the performance of model was good at 

northern Lampung regions, such as Mesuji, Tulang 

Bawang, and North Lampung, (RRMSE values 6% to 

11%), while the model performance in Southern 

Lampung regions, such as Pesawaran, South Lampung
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    Table 1. Metric evaluation of RMSE and R2 between actual data (BPS) and AquaCrop 

Regency 

Average actual 

productivity from BPS 

(ton/ha) 

Average Productivity of 

the model from AquaCrop 

(ton/ha) 

Relative RMSE 

Mesuji 4.70 4.68 6% 

Tulang Bawang 4.48 4.53 9% 

Lampung Utara 4.68 4.62 11% 

Way Kanan 4.70 4.81 12% 

Pesisir Barat 4.98 4.38 15% 

Lampung Timur 5.02 4.42 15% 

Tulang Bawang 

Barat 
4.77 4.69 17% 

Tanggamus 5.51 4.76 18% 

Metro 5.33 4.53 19% 

Lampung Tengah 5.19 4.44 20% 

Pringsewu 5.53 4.50 20% 

Bandar Lampung 5.52 4.43 21% 

Lampung Barat 4.81 5.94 25% 

Lampung Selatan 5.64 4.38 23% 

Pesawaran 5.39 4.16 26% 

and Bandar Lampung, was poor (RRMSE values 25% to 

26%). 

Previous studies showed the RRMSE value 

between 10%-12.4%, as reported from simulating grain 

yield of paddy rice under different irrigation regimes 

(Pirmoradian et al., 2020). The discrepancy between 

model and actual productivity is due to the AquaCrop 

model using a rainfed irrigation system, while the actual 

data used a mixed irrigation system combining both 

irrigation and rainfed methods. The model's product-

ivity output was also sensitive to short-term droughts 

occurring during the simulation. Overall, based on 

historical data, AquaCrop can be considered reliable for 

predicting rice productivity. 

 

3.2 Changes in Rainfall, Temperature, and 

Evapotranspiration 

Based on MarkSim Weather Generator projections 

(Figure 3), rainfall in Lampung Province is expected to 

decline from June to December by 2050 under both 

RCP 4.5 and RCP 8.5 scenarios, with no significant 

change observed from January to May. This indicates a 

drier dry season (April to October) and reduced rainfall 

during the early rainy season (September to December). 

These findings align with Achyadi et al. (2019), who 

reported that several GCM models (e.g., Access 1.0 and 

MRI.GCM3) project a similar dry season decline in the 

Barito Kuala region, South Kalimantan, for the 2041–

2060 period.  

Figure 3b shows that air temperature is projected 

to increase by 2050, with a rise of approximately +1.6°C 

under RCP 4.5 and +1.9°C under RCP 8.5, relative to the 

baseline. This 0.3°C difference highlights a stronger 

warming trend under the high-emission scenario. 

Global warming had already reached around +1°C 

above pre-industrial levels during 2006–2015 (IPCC, 

2015), and under both RCPs, Lampung is projected to 

exceed the 2°C threshold targeted by the Paris 

Agreement by 2050 (Pachauri et al., 2015). 

Increased temperatures are closely linked to 

higher evapotranspiration rates. Based on AquaCrop 

simulation results (Figure 3c), evapotranspiration is 

projected to rise from June to January under both RCPs, 

with maximum increases of +24 mm/month (RCP 4.5) 

and +26 mm/month (RCP 8.5). In contrast, evapo-

transpiration remains unchanged in March and May, 

and decreases in February by −24 mm/month (RCP 4.5) 

and −26 mm/month (RCP 8.5). The rise in evapo-

transpiration under RCP 8.5 is mainly driven by 

increased temperatures, which intensify atmospheric 

moisture demand (Hordofa et al., 2021). Climate 

variability, particularly temperature, plays a critical role 

in altering evapotranspiration, influencing water loss 

across different environments (Liu et al., 2020). 

 

3.3 Changes in Crop Water Productivity in 2050 

Climate change is projected to reduce rice crop 

water productivity, with average declines of −0.3 kg/m³ 

under RCP 4.5 and −0.4 kg/m³ under RCP 8.5 compared 

to the baseline (Figure 4a). This decline occurred across 

all districts except Pesisir Barat, where an increase was 

observed. Overall, the reduction was more pronounced 
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Figure 3. Mean climatological of (a) rainfall; (b) temperature; and (c) evapotranspiration relative to baseline  

      (2011-2022) 

 

under RCP 8.5, except in Tulang Bawang and Lampung 

Selatan, where RCP 4.5 showed a slightly greater 

decline. The decrease in water productivity is attributed 

to increased water use and reduced yield. Similarly, a 

decrease in rainfed rice water productivity in Thailand, 

with reductions of 32% under RCP 4.5 and 29% under 

RCP 8.5 (Boonwichai et al., 2018). 

However, future projections suggest that rice 

water productivity can improve with the implement-

ation of efficient and proper irrigation systems (Houma 

et al., 2021). In regions with limited water availability, 

optimized irrigation, such as precision water manag-

ement and deficit irrigation can increase water use 

efficiency and improve crop resilience (Adenan et al., 

2015; Kumar et al., 2023). 

 

3.4 Changes in Rice Productivity in 2050 

Climate change is projected to alter rice product-

ivity in Lampung Province during both the April and 

November planting seasons by 2050 under RCP 4.5 and 

RCP 8.5 scenarios (Figure 4b–c). In the April season, rice 

productivity generally increases compared to the 

baseline. Under RCP 4.5, productivity rises in districts 

such as Pesawaran, Lampung Timur, Pesisir Barat, 

Pringsewu, Lampung Selatan, Lampung Barat, and 

Lampung Tengah, while it declines in Tulang Bawang, 

Metro, Bandar Lampung, Mesuji, Way Kanan, Tulang 

Bawang Barat, and Lampung Utara. Tanggamus shows 

minimal change. Under RCP 8.5, nearly all regions 

exhibit increased productivity, except Tanggamus, 

Tulang Bawang, Way Kanan, and Bandar Lampung, 

which show slight declines. On average, the projected 

productivity increase in April is +0.25 tons/ha under 

RCP 4.5 and +0.74 tons/ha under RCP 8.5. 

This improvement is linked to relatively stable 

rainfall conditions during the April planting through 

June harvest period, despite higher evapotranspiration 

and slight rainfall decreases in June. Moreover, the CO₂ 

concentration rise from 369 ppm (baseline) to 474 ppm 

under RCP 4.5 and 541 ppm under RCP 8.5, enhances 

photosynthesis and crop growth. However, fertilization 

can improve yields under certain conditions and could 

rise by 15% at 550 ppm (Pingale et al., 2017), although 

it may not fully offset climate risk (Wang et al., 2017). 

In contrast, during the November planting season, 

most districts experience a decline in productivity. 

Areas affected include Lampung Selatan, Pesawaran, 

Bandar Lampung, Metro, Tanggamus, Lampung 

Tengah, Lampung Timur, Lampung Barat, and Way 

Kanan. Only Tulang Bawang, Tulang Bawang Barat, and 

Pesisir Barat show increased productivity. On average, 

productivity is projected to decline by −0.41 tons/ha 

under RCP 4.5 and −0.75 tons/ha under RCP 8.5. This 

reduction linked to the increased evapotranspiration 

and reduced rainfall during the late-year growing 

period, which diminishes water availability for crop 

development. 

The decline in rainfall during November, combined 

with rising temperatures and increased evapotranspira-

tion, contributes to water deficits for rice crops. This 

leads to water stress during the early growth stages. 

particularly the first month after planting, hindering 

canopy development and ultimately reducing yields. 
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Figure 4. Changes in (a) water productivity and (b) rice productivity per district relative to baseline level under  

       RCP 4.5 and RCP 8.5 

 

Water stress at this stage significantly limits plant 

height and leaf area expansion, both critical for photo-

synthesis and biomass accumulation (Rajasivaranjan et 

al., 2022). Moreover, stress during the vegetative phase 

negatively affects root development, essential for 

nutrient uptake and plant stability, and often results in 

greater yield losses than stress during the reproductive 

phase. 

This is consistent with previous studies, which 

project significant reductions in rainfed rice yields 

under future climate scenarios, ranging from 14.7% to 

as high as 40% due to increased temperature, water 

stress, and shifting rainfall patterns (Khan et al., 2020; 

Sonko et al., 2019). Despite these risks, effective 

adaptation strategies, particularly improved irrigation 

practices are critical to reducing the vulnerability of rice  

systems to climate-induced water stress. 

While this study offers important insights into the 

potential impacts of climate change on rice productivity 

in Lampung Province, several limitations must be 

acknowledged. First, the AquaCrop simulations were 

conducted under rainfed conditions, whereas actual 

field conditions often involve a mix of irrigation pract-

ices, possibly leading to discrepancies between model-

ed and observed productivity.  

Additionally, the model may be sensitive to short-

term droughts and may not fully capture the influence 

of extreme weather events, which are increasingly 

common and impactful under climate change. The 

simulations also do not account for socioeconomic 

factors, pest and disease pressures, or technological 

advancements, all of which could significantly alter 
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future rice productivity. Lastly, model calibration was 

limited by the availability of site-specific field 

parameters, which may affect the accuracy of projected 

crop responses. 

  

4. CONCLUSION 

The climate projection data based on RCP 4.5 and 

8.5 scenarios generated by the MarkSim Weather 

Generator and simulated using AquaCrop provides 

crucial insights into the future condition of rice 

productivity in Lampung Province by 2050. Threats to 

rice productivity become more apparent with incre-

asing evapotranspiration rates, decreasing rainfall, and 

delayed rainy seasons, despite rising CO₂ concen-

trations. AquaCrop simulations utilizing data from the 

MarkSim Weather Generator serve as an effective and 

user-friendly tool for understanding the impact of 

climate change on future rice productivity.  

For future studies, it is recommended to use the 

latest scenarios, such as the Shared Socioeconomic 

Pathways (SSPs) which provides a comprehensive and 

integrated framework for understanding the intera-

ctions between climate change and socio-economic 

factors. Additionally, AquaCrop calibration should be 

carried out using more field based parameters to 

improve the accuracy of crop simulations and ensure 

results that closely align with actual data. 
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