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Bernoulli differential equation is one form of first 
order ordinary differential equation. Because 
Bernoulli differential equation is a non-linear 
equation with a fairly complex form, this study 
uses the Adomian Laplace decomposition method 
to find its solution. This method is a semi-
analytical method that combines the Laplace 
transform and the Adomian decomposition 
method. The steps for solving it include applying 
the Laplace transform to the Bernoulli differential 
equation, defining the solution as an infinite 
series, using the Adomian polynomial to solve the 
non-linear part, and applying the inverse Laplace 
transform. The simulation results and error 
analysis show that the Adomian Laplace 
decomposition method can provide an accurate 
approach to the exact solution for values 0 ≤ t ≤ 
0.2. Meanwhile, for values t ≥ 0.2 the resulting 
solution tends to move away from the exact 
solution. 
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INTRODUCTION 
 Differential equations are one of the important topics in mathematics and 
its applications in various fields such as physics, engineering, and economics. 
One type of differential equation that is often encountered is the Bernoulli 
differential equation. The Bernoulli differential equation is one form of a first-
order ordinary differential equation that has the general form: 

 

(1) 

 
Where n is a real number. (Brannan and Boyce, 2015) 
 
 Because the Bernoulli differential equation is a non-linear equation that 
is quite complex in form, a semi-analytical method with an alternative approach 
can be used to find the solution. The Adomian Laplace Decomposition Method 
is a semi-analytical method that combines the Laplace transform and the 
Adomian decomposition method (Abdy et al., 2018). This method has been 
widely used to solve various linear and non-linear differential equations. 

Based on previous research conducted by (Sari, 2017), namely solving the 
Riccati differential equation using the Adomian Laplace decomposition 
method, in his research stated that the calculation results of the Adomian 
Laplace decomposition method are quite effective in approaching exact 
solutions. This method allows the author to obtain solutions in the form of 
series that can be calculated numerically, thus providing flexibility in handling 
complex problems. 

Furthermore, research conducted by (Sanusi et al., 2019) namely finding 
a solution to the Transport equation using the Adomian-Laplace decomposition 
method which states that the results of the study have the same solution as the 
analytical method in general, namely a mathematical function in the form of u 
(x, t) with x and t are the concentration of pollutants in position x and time t. As 
well as other studies that also use the Adomian Laplace position decom method 
to find solutions to various equations, namely research by (Abdy et al., 2022) on 
the Advection-Diffusion equation and (Sari et al., 2023) on the Burgers 
equation. In addition to finding solutions to an equation, the Adomian Laplace 
decomposition method is also used in analyzing the fractional differential 
equation model of the spread of measles and its numerical solution carried out 
by (Gumelar et al., 2023).  

In this study, the author will discuss the application of the Adomian 
Laplace decomposition method in solving Bernoulli differential equations. This 
study begins by applying the Laplace transform to the Bernoulli differential 
equation, defining the solution as an infinite series, stating the nonlinear terms 
in the adomian polynomial, and applying the inverse Laplace transform to 
solve it. 
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LITERATURE REVIEW 
Ordinary Differential Equations 
 An ordinary differential equation is an equation that only involves 
ordinary derivatives of one or more dependent variables with respect to a 
single independent variable (Sugiyarto, 2015). Order is the highest derivative in 
a differential equation. Meanwhile, degree is the power of the highest 
derivative in a differential equation. 
Linear Ordinary Differential Equations 
 An ordinary differential equation is called linear if the equation is in the 
form: 

 

(2) 

Provided that all variables and derivatives of y are first degree and there 
is only one independent variable, namely x. (Sugiyarto, 2015) 
Bernoulli Differential Equation 
 The Bernoulli Differential Equation is named after Jacob Bernoulli (1654–
1705) and was first solved by Leibnitz in 1696. The Bernoulli differential 
equation is a first-order differential equation that has the following formula: 

 

(3) 

Where n is a real number. (Brannan and Boyce, 2015) 
Laplace Transform 
 Let F(t) be a function of t which is certain for t > 0. Then the Laplace 
transform of F(t), which is given by f(s) = L{F(t)} is defined as follows: 

 

(4) 

with parameter s is a real number. (Sugiyarto, 2015) 
Inverse Laplace Transform 
 If the Laplace transform of a function F(t) is f(s) or can be written as L{F 
(t)} = f(s), then F(t) is called the inverse Laplace transform of f(s) and can be 
written as follows: 

 

(5) 

with L^ (-1) called the inverse Laplace transform operator. (Sugiyarto, 2015) 
Adomian Decomposition Method 
 In the Adomian decomposition method, the equation given in the 
operator equation is as follows: 

 

(6) 

The functions y and Ny are the solutions and nonlinear terms solved 
using An. Thus, the n-term approximation φ_n= ∑_(i=0) ^(n-1) y_i approaches 
y=∑_(n=0) ^∞ y_n for n→∞. The solution can be written as: 
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(7) 

(Astreandini, 2016) 
Adomian Laplace Decomposition Method 
 Revisiting equation (6) and applying the Laplace transform to it, we 
obtain: 

 

(8) 

Therefore: 

 dan   (9) 

Substitute equation (9) into equation (8), resulting in: 

 

(10) 

(Wartono dan Muhaijir, 2013) 
Error 
 Error is the difference between the original value and the approximate 
value. Suppose a ̂ is the approximate value of the true value symbolized by a, 
then we get: 

 

(11) 

With ε called the error. 
If the sign of the error for positive or negative is ignored, then the 

absolute error can be defined as: 

 

(12) 

(Munir, 2010) 
 
METHODOLOGY 
 This study uses a literature study method that focuses on books found in 
the University of Lampung library, the reading room of the Mathematics 
Department, Faculty of Mathematics and Natural Sciences, University of 
Lampung, or public libraries and domestic or foreign journals that support the 
research being conducted. 
 
RESULT AND DISCUSSION 
Laplace Adomian Decomposition Method (LDAM) on Bernoulli Differential 
Equations 

In this section, the Adomian Laplace Decomposition method will be 
explained in solving Bernoulli differential equations. Bernoulli differential 
equations in general are as follows: 
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(13) 

With initial conditions: 

 

(14) 

The following are the steps for solving the Bernoulli differential equation 
using the Adomian Laplace decomposition method: 
Step 1 Apply the Laplace transform to equation (13) 

 

 

 

(15) 

Step 2 Substitute the given initial conditions 

 

 

 

(16) 

Step 3 Express y(t) in the form  

 

(17) 

Step 4 Express non-linear terms in the form  

 

(18) 

Substitute equations (17) and (18) into equation (16) so that the equation 
becomes: 

 

(19) 

For example,  and  of order λ and for 

example  dan  of order λ^n, obtained: 

 

 

(20
) 

Step 5 Determining the Tribe  

 

 
⋮ 
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(21) 

Step 6 Applying the Laplace inverse to the term  

 

 
⋮ 

  (22) 

 
 
 
Step 7 Adding up  as a solution  

 

(23) 

Example 1 Solving Bernoulli Differential Equations Using the Laplace 
Adomian Decomposition Method 

Determine the solution to the following Bernoulli differential equation. 

 

(24) 

 

 

After solving equation (24) using the solution steps with the Adomian 
Laplace decomposition method, the results of the solution y(t) are obtained, 
namely: 

 

(25) 

Example 2 Solving Bernoulli Differential Equations Using the Laplace 
Adomian Decomposition Method 

Determine the solution to the following Bernoulli differential equation. 

 

(26) 

 

 

After solving equation (26) using the solution steps with the Adomian 
Laplace decomposition method, the results of the solution y(t) are obtained, 
namely: 

 

 

(27) 
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Simulation and Error Analysis 
The solution used in this Simulation and Error Analysis is the solution 

y(t) obtained from the solution using the Adomian Laplace decomposition 
method in equations (24) and (26) for the order n = 5 and n = 10. This 
simulation and error analysis is carried out using the MATLAB program at 
intervals 0 ≤ t ≤ 1 and 0 ≤ t ≤ 10 to compare the exact solution with the LDAM 
solution. 
The LDAM solution to equation (24) for n = 5 is as follows. 

 

(28) 

The LDAM solution to equation (24) for n = 10 is as follows. 

 

(29) 

The LDAM solution to equation (26) for n = 5 is as follows. 

 

(30) 

The LDAM solution to equation (26) for n = 10 is as follows. 

 

 

(31) 

Simulation and Error Analysis on Interval 0 ≤ t ≤ 1 
In this first simulation, the equations used are equations (28) and (29) 

along with their exact solutions in the interval 0 ≤ t ≤ 1. The following is a 
comparison graph of the approximate solution with the exact solution. 

 
Figure 1. Comparison graph of solution (28) LDAM and its exact solution in the 

interval 0 ≤ t ≤ 1 
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Figure 2. Comparison graph of solution (29) LDAM and its exact solution in the 

interval 0 ≤ t ≤ 1 
 

Figures (1) and (2) show that at intervals t ≥0.5, both LDAM solutions 
move away from the exact solution. The following table is provided to see the 
error value from the comparison of the LDAM solution and the exact solution. 

Table 1. First Simulation Error 

t n=5 n=10 

0 0 0 

0,1 0 0 

0,2 0,00007 0 

0,3 0,00080 0,00001 

0,4 0,00424 0,00003 

0,5 0,01516 0,00035 

0,6 0,04224 0,00251 

0,7 0,09904 0,01308 

0,8 0,20486 0,05418 

0,9 0,38533 0,18829 

1 0,67287 0,57004 

  
The calculation results in table (1) show the absolute maximum error 

value at t = 1 between the exact solution and the LDAM solution, for n = 5 it is 
0.67287 and for n = 10 it is 0.57004. Thus, it can be said that the error value for 
order n = 10 is smaller than the error for order n = 5. In addition, it can also be 
seen that when the t value approaches zero, the error value becomes smaller or 
approaches the original value. Furthermore, the second simulation is carried 
out on equations (30) and (31) along with their exact solutions in the interval 0 ≤ 
t ≤ 1. The following is a comparison graph of the approximate solution with its 
exact solution. 
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Figure 3. Comparison graph of solution (30) LDAM and its exact solution in the 

interval 0 ≤ t ≤ 1 

 
Figure 4. Comparison graph of solution (31) LDAM and its exact solution in the 

interval 0 ≤ t ≤ 1 
 

Figures (3) and (4) show that at intervals t ≥0.2, both LDAM solutions 
move away from the exact solution. The following table is provided to see the 
error value from the comparison of the LDAM solution and the exact solution. 

Table 2. Second Simulation Error 

t n=5 n=10 

0 0 0 

0,1 0,00006 0,00001 

0,2 0,00165 0,00235 

0,3 0,00207 0,08166 

0,4 0,05374 1,0385 

0,5 0,35758 7,5697 

0,6 1, 319 38,82 

0,7 3,6323 156,35 

0,8 8,3365 527,8 

0,9 16,874 1556,6 

1 31,152 4125 
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The calculation results in table (2) show the absolute maximum error 
value, namely at t = 1 between the exact solution and the LDAM solution, for n 
= 5 it is 31.152 and for n = 10 it is 4125. Thus, it can be said that the error value 
for order n = 10 is greater than the error for order n = 5. In addition, it can also 
be seen that when the t value approaches zero, the error value becomes smaller 
or approaches the original value. 
Simulation and Error Analysis on Interval 0 ≤ t ≤ 10 

For this third simulation, the equations used are equations (28) and (29) 
along with their exact solutions in the interval 0 ≤ t ≤ 10. The following is a 
comparison graph of the approximate solution with the exact solution. 

 
Figure 5. Comparison Graph of Solution (28) LDAM and its Exact Solution in 

the Interval 0 ≤ t ≤ 10 

 
Figure 6. Comparison Graph of Solution (29) LDAM and Its Exact Solution in 

the Interval 0 ≤ t ≤ 10 
 
Figures (5) and (6) show that in the interval t ≥ 1, both LDAM solutions 

move away from the exact solution. The following table is provided to see the 
error value from the comparison of the LDAM solution and the exact solution. 

Table 3. Third Simulation Error 

t n=5 n=10 

0 0 0 

1 0,67287 0, 57004 
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2 22,204 715,78 

3 155,3 42334 

4 605,4 748.610 

5 1734 69,053 ×  

6 4100,6 423,37 ×  

7 8504,7 1960,4 ×  

8 16028 7394,8 ×  

9 28075 23854 ×  

10 46419 68022 ×  

The calculation results in table (3) show the absolute maximum error 
value at t = 10 between the exact solution and the LDAM solution, for n = 5 it is 
46419 and for n = 10 it is 68022 × 10^5. So, it can be said that the error obtained 
from both LDAM solutions is very large. 

Furthermore, the fourth simulation is carried out on equations (30) and 
(31) along with their exact solutions at the interval 0 ≤ t ≤ 10. The following is a 
comparison graph of the approximate solution with its exact solution. 

 
Figure 7. Comparison graph of solution (30) LDAM and its exact solution in the 

interval 0 ≤ t ≤ 10 

 
Figure 8. Comparison Graph of Solution (31) LDAM and its Exact Solution in 

the Interval 0 ≤ t ≤ 10 
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Figures (7) and (8) show that there is no LDAM solution from the 
interval t ≥ 0 that is close to the exact solution. The following table is provided 
to see the error value from the comparison of the LDAM solution and the exact 
solution. 

Table 4. Fourth Simulation Error 

t n=5 n=10 

0 0 0 

1 0,31152 ×  0,00004125 ×  

2 13,618 ×  0, 029446 ×  

3 111,48 ×  1, 5174 ×  

4 485,09 ×  25,564 ×  

5 1506,50 ×  231,01  ×  

6 3789,7 ×  1402,8 ×  

7 8252,1 ×  6464,9 ×  

8 16176 ×  24330 ×  

9 29268 ×  78405 ×  

10 49724 ×  223500 ×  

 
The calculation results in table (4) show the absolute maximum error 

value at t = 10 between the exact solution and the LDAM solution, for n = 5 it is 
49724 × 10^2 and for n = 10 it is 223500 × 10^8. Thus, it can be said that the 
error values obtained from both LDAM solutions are very large. 

Based on the solution above, the following conclusions can be drawn: 

1. Results of Completion of  with  in series form, namely:  

 
 

2. Results of Completion of with in series form, 

namely: 

 

 
3. In the first simulation, figures (1) and (2) show that when the interval t ≥0.5 

in both LDAM solutions move away from the exact solution. And the error 
value at t = 1 is the absolute maximum value for n = 5 of 0.67287 and for n = 
10 of 0.57004. 

4. In the second simulation, figures (3) and (4) show that when the interval t 
≥0.2 in both LDAM solutions move away from the exact solution. And the 
error value at the time of the absolute maximum value t = 1 for n = 5 is 31.152 
and for n = 10 is 4125. 

5. In the third simulation, figures (5) and (6) show that when the interval t ≥1 in 
both LDAM solutions is far from the exact solution. And the error value at 
the time of the absolute maximum value t = 10 for n = 5 is 46419 and for n = 
10 is 68022 × 105. 
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6. In the third simulation, figures (7) and (8) show that when the interval t ≥0 in 
both LDAM solutions move away from the exact solution. And the error 
value at the absolute maximum value of t = 10 for n = 5 is 49724 × 10^2 and 
for n = 10 is 223500 × 108. 

 
CONCLUSION AND RECOMMENDATIONS 
 Based on the results of the analysis that has been done previously, 
several conclusions were obtained from this study, including the results of 
solving the Bernoulli differential equation using the Adomian Laplace 
decomposition method, namely the solution y(t) in the form of a series. Also, 
the Bernoulli differential equation can be solved by the Adomian Laplace 
decomposition method at a value of 0 ≤ t ≤ 0.2. However, for a value of t ≥ 0.2, 
the LDAM solution moves away from its exact solution and the error value 
obtained is very large because when the t value moves away from zero, the 
error value obtained is getting bigger or moving away from its original value. 
 
FURTHER RESEARCH 
 In this study, the researcher has limitations, the limitations in this study 
are as follows, the software used only uses the MATLAB program. Suggestions 
for further research if using programming to solve the Bernoulli differential 
equation are not just one software but more than one to compare the results 
obtained such as phyton, mathematical, R, etc. And change the LDMAN 
method to other methods such as the Homotropy Perturbation (HPM) method, 
the Iterative Picard method, etc.  
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