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AbstractThe goal of the Multiperiod Degree Constrained Minimum Spanning Tree (MPDCMST) problem is to determine the smallest weight-spanning tree that satisfies the vertex installation criterion for each period and maintains the degree requirement in each vertex. Thisissue emerges as a network connection problem. The degree requirement indicates the reliability of each vertex, and the vertexconnection/installation requirement denotes the priority vertices that must be inserted in the network within a specific time frame.The installation is split up into multiple phases/stages. This is because of various considerations such as severe weather, budgetarylimitations, etc. In this research, two algorithms for solving the MPDCMST using probability hybridized with Prim’s modification, andedge analysis are proposed. The algorithms are implemented on the undirected complete graph of orders 10 to 100. The solutionsare compared with some heuristics which are already in the literature. The results show that the proposed algorithms perform better.
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1. INTRODUCTION

Undoubtedly, graph theory has proven to be one of mathemat-
ical disciplines that has been embraced in numerous practical
applications. Graph theory is also distinguished by having
precise dates of origin (Vasudev, 2006) . A graph serves as a
means to depict discrete entities and the association linking
them. For a setV = {v1, v2, . . . , vn} of vertices, whereV is
not empty, and a set of edges E, represented as ei j , i , j ∈ V , a
graphG (V , E)E is a structure consisting of an ordered pair of
V and E. An object can be symbolized by a vertex, while the
connection between objects can be denoted by an edge. The
vertices can represent various entities like cities, stations, build-
ings, computers, people/organizations, and more. Meanwhile,
the edges can symbolize roads, train tracks, pipes, relationships
/connections, and similar elements. Moreover, the graph cre-
ation process allows for adaptability, enabling the depiction of
edges without strict adherence to specific rules; they can be
drawn in curved or straight lines.

There are a lot of uses of graph theory, for example, graph
colouring is used to model practical scheduling applications
(Thevenin et al., 2018; Thadani et al., 2022) , Kawakura and

Shibasaki (2018) and Kannimuthu et al. (2020) use that con-
cept in agriculture; a leaf-labelled tree is used to represent a
phylogenetic tree by Huson and Bryant (2006) and Brandes
and Cornelsen (2009) ; a combined tree is used to represent
DNA by Mathur and Adlakha (2016) ; Hamiltonian circuits
with relation in network design is explored by Hsu and Lin
(2009) ; cycle graph, complete graph, and minimum spanning
tree concepts are used in data security by Al Etaiwi (2014)
in creating complex cipher; expander and extremal graph are
used by Priyadarsini (2015) to create cipher for data security,
while bipartite and corona graph are used by Ni et al. (2021)
to do encryption in cryptography, and many more.

Given a connected weighted graph G (V , E), where the
weight is nonnegative, one of the classical problems is finding a
minimum spanning tree (MST) of that graph. One of the fun-
damental concepts in graph theory and optimization is MST.
This concept is commonly used to solve various real-world
problems. It is a valuable concept with a variety of applications
in diverse fields. It helps to optimize resource usage, connec-
tivity, and efficiency while maintaining a connected and acyclic
structure. There are numerous applications of the MST, such
as constructing power grids for communication networks. To
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determine the MST, three well-known techniques are available:
Boruvka’s algorithm which was introduced by Boruvka (1926) ,
Prim’s algorithm developed by Prim (1957) , and Kruskal’s al-
gorithm by Kruskal (1956) . The MST can identify clusters or
groups of data points close to each other in data mining; design
optimal electrical circuits with minimum total wire length, and
so on.

The Degree constrained Minimum Spanning Tree (DCMS
T) Problem is a variation of the classic MST problem, which
involves finding a tree that spans all the vertices in a given graph
while satisfying a certain degree restriction on each vertex. In
other words, it seeks to connect all vertices with the fewest
total edge weight, while ensuring that each vertex adheres to a
specific degree requirement. Because of the added constraints,
solving the DCMST issue may be more difficult than solving
the regular MST problem. The DCMST occurs during the
designing of networks, where the degree limitation symbolizes
the permissible quantity of connections for each vertex. In
essence, the operational capacity of each vertex imposes a con-
straint on the count of links (such as wires or roads) that can
link to a vertex. For instance, the use of the DCMST concept
is relevant in the design of road systems. In this context, a set
of roads needs to interconnect various suburbs or towns, while
adhering to a condition that no more than a specified number
of roads (e.g., four roads) are permissible to meet at a junction
(Wamiliana et al., 2020) .

To overcome this problem, many algorithms and tech-
niques have been investigated, and they often involve a com-
bination of graph theory, optimization, and heuristics to find
feasible solutions that meet the degree restrictions while mini-
mizing the total edge weights. Some of the algorithms that have
already been proposed include Iterative refinement (Deo and
Kumar, 1997) , Branch and cut (Caccetta and Hill, 2001) , Sim-
ulated Annealing (Krishnamoorthy et al., 2001) , Tabu search
(Caccetta and Wamiliana, 2001) , Genetic Algorithm (Zhou
and Gen, 1997) , Ant colony (Adasme and Firoozabadi, 2020) ,
Modified Branch and Bound and the idea of Lin Kernighan
algorithm (one of the TSP heuristic approach that is frequently
employed) (Thiessen et al., 2020) , and many more.

A Multi-Period Degree Constrained Minimum Spanning
Tree (MPDCMST) is a specialized variant of the Minimum
Spanning Tree (MST) problem that considers degree con-
straints and spans multiple periods or time intervals. This
problem arises in various applications, including network de-
sign, transportation planning, and resource allocation, where
the goal is to find a spanning tree that satisfies both edge weight
constraints and vertex degree constraints over multiple peri-
ods. In real situations, establishing connections between all ele-
ments within a network needs a specific duration and sequence
of steps for successful implementation. The time frame for
completion is subject to fluctuations based on the network’s
requirements and its relative importance. The MPDCMST
adds the dimension of time intervals or periods. This means
that the tree needs to satisfy degree constraints for each vertex
in each period while minimizing the sum of edge weights over

all periods. This problem is more complex than the classical
MST or the DCMST because of the added period constraint.
The period constraint is added due to some conditions such as
harsh weather, limitation of funds, and so on.

Solving the MPDCMST problem typically involves finding
a set of trees, for each period, that collectively satisfy the degree
constraints and minimize the sum of edge weights across all
periods. This problem can have applications in various do-
mains, such as designing communication networks that have
varying demands over time or optimizing transportation routes
considering varying traffic conditions. The problem might be
tackled using a combination of techniques from graph theory,
optimization, and algorithms for spanning trees, considering
both the spatial and temporal dimensions of the problem.

Kawatra (2002) introduced the MPDCMST problem and
implemented it on the directed graph and used a combination
of branch exchange and Lagrangean relaxation. The order
of the graphs ranges from 40 to 100 with a central vertex set
at vertex 1. The investigation spanned a 10-year planning
horizon. Junaidi et al. (2008) investigated the MPDCMST by
developing two algorithms by modifying Kruskal’s algorithm
and tested the method using a variety of problems sourced
from the TSPLIB. Wamiliana et al (2015a) developed four al-
gorithms by modifying Kruskal’s algorithms. The results show
that in every period, the priority vertex is treated similarly as
other vertices, and if at the end of the period that vertex is
still uninstalled/ not connected, forcing it to be connected is
better rather than connecting that vertex in the beginning of
the period; while Wamiliana et al. (2015b) show that adopting
Depth First Search Technique will improve the quality of the
solution. Wamiliana et al. (2018) proposed WAC1, WAC2,
and WAC3 algorithms. Those algorithms are based on Prim’s
modification algorithm, and implemented on undirected com-
plete graphs of orders ranging from 10 to 100 increasing in
increments of 10, where the weights of the edges are nonnega-
tive with values generated uniformly from 1 – 1000. Prim’s
algorithm was modified because Prim’s algorithm maintains
connectivity, moreover, those algorithms adopted a one-year
timeframe consisting of three periods. This modification of
the MPDCMST approach aimed to reflect the real-world sit-
uation in Indonesia, where project funding is often allocated
over three discrete terms. Wamiliana et al. (2020) use a simi-
lar reason when proposing WWM1 and WWM2 algorithms
using GNU Octave. Even though Prim’s algorithm is used
more because it maintains connectedness, the modification of
Kruskal’s algorithm has also been investigated among others
(Junaidi et al., 2008; Wamiliana et al., 2015a, 2018) .

This paper is organized as follows: In Section 1 the back-
ground, problem statement, and literature review are given.
Section 2 is Methodology. In this section, the proposed algo-
rithm for solving the MPDCMST is discussed. Section 3 is the
Result, where the implementation of the proposed algorithm
is given, followed by a conclusion in Section 4.
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Table 1. The Vertices in HVTs , s = 1, 2, 3

Vertex Order
10 20 30 40 50 60 70 80 90 100

HVT1 2 2 2,3 2,3,4
2,3,4,5 2,3,4,5 2,3,4,5 2,3,4,5 2,3,4,5 2,3,4,5

6 6,7 6,7,8 6,7,8 6,7,8 6,7,8,9

HVT2 3 3 4,5 5,6,7
6,7,8,9 7,8,9,10 8,9,10,11 9,10,11,12 9,10,11,12 9,10,11,12,13

11 12,13 13,14,15 13,14,15 13,14,15 14,15,16,17

HVT3 4 4 6,7 8,9,10
10,11,12 12,13,14 14,15,16,17 16,17,18,19 16,17,18,19 18,19,20,21

13 15 18,19 20,21,22 20,21,22 22,23,24,25

Table 2. The Results for Order 10 to Order 40

Orde 10 Orde 20 Orde 30 Orde 40
Problem WAC WAC WAC WGA WGA WAC WAC WAC WGA WGA WAC WAC WAC WGA WGA WAC WAC WAC WGA WGA

1 2 3 T1 T2 1 2 3 T1 T2 1 2 3 T1 T2 1 2 3 T1 T2

1.dat 900 900 900 900 900 1925 1103 1925 1103 1103 1448 1348 1448 1348 1348 1528 1337 1595 1337 1295
2.dat 1076 1076 1076 1076 1076 1222 1250 1222 1250 1222 1727 1418 1727 1418 1320 1739 1363 1739 1411 1367
3.dat 1302 929 1302 929 929 1135 874 1135 874 874 2397 1677 2513 1677 1626 1658 1257 1690 1257 1152
4.dat 1173 893 1173 898 893 1791 1393 1791 1393 1393 2257 1041 2257 1041 1041 1719 1250 1870 1263 1141
5.dat 1810 1576 1831 1576 1576 1606 1388 1606 1388 1388 1766 1388 1766 1388 1388 1721 1293 1810 1308 1286
6.dat 1401 1401 1401 1401 1401 1374 1321 1374 1321 1321 2351 2221 2351 2221 2066 2311 1427 2699 1427 1427
7.dat 2588 2477 2588 2552 2478 2201 2037 2201 2037 2037 2288 1202 2695 1202 1174 2302 1508 2305 1472 1472
8.dat 731 466 731 466 466 2274 1772 2274 1772 1772 1665 1638 1665 1638 1638 2355 1448 2815 1448 1370
9.dat 1511 1511 1511 1511 1511 1785 1454 1785 1454 1454 1849 1566 1849 1566 1566 2129 1300 2203 1300 1252
10.dat 2194 2226 2194 2194 2194 1608 1106 1608 1106 1082 1917 1292 2061 1292 1292 1671 1115 1984 1137 1119
11.dat 1271 1453 1271 1352 1271 2106 2044 2299 2088 2026 2639 1814 2729 1814 1814 2495 1664 3146 1664 1559
12.dat 2121 1978 2121 1978 1978 1738 1321 1738 1321 1253 1454 1553 1454 1553 1518 1621 1138 1560 1138 1138
13.dat 1415 1119 1682 1119 1119 1619 1348 1619 1348 1340 3108 1871 3417 1906 1906 2801 1971 3285 1971 1834
14.dat 1803 1803 1803 1803 1749 1773 1737 1839 1839 1562 1506 1517 1506 1545 1403 2432 1595 2432 1595 1521
15.dat 1429 1228 1429 1228 1228 1471 1162 1475 1162 1162 2435 1351 2918 1351 1351 1848 1399 1882 1399 1347
16.dat 816 816 816 816 816 1338 1297 1338 1338 1303 1710 1654 1710 1654 1654 2217 1418 2622 1418 1418
17.dat 777 777 777 777 777 2076 1618 2076 1618 1618 1662 1526 1662 1526 1526 1666 1261 1666 1261 1260
18.dat 1085 1085 1085 1085 1085 1978 1905 1978 1909 1819 1631 926 1819 926 926 2954 1392 3370 1392 1392
19.dat 1616 832 1616 891 839 1146 1146 1146 1146 1146 1973 1553 2164 1553 1553 1882 1504 1882 1606 1434
20.dat 1443 1443 1443 1443 1443 2004 1179 2047 1179 1179 1179 963 1236 986 986 1769 1469 1769 1489 1447
21.dat 2169 1677 2169 1677 1677 2230 1651 2230 1651 1651 2343 1332 2355 1418 1376 1425 1359 1425 1365 1297
22.dat 2710 2373 3061 2724 2373 2084 1688 2084 1688 1688 1289 1358 1381 1450 1386 2769 1479 3790 1479 1479
23.dat 869 869 869 869 869 2244 1254 2244 1254 1254 2507 1871 3084 1875 1866 2315 1443 2315 1443 1374
24.dat 1533 1622 1533 1622 1533 2276 1571 2677 1571 1571 1615 1516 1615 1520 1475 2426 1611 2426 1611 1583
25.dat 1655 1418 1655 1433 1418 1599 1500 1599 1500 1495 2703 2221 3082 2221 1900 2217 1998 2217 2018 1610
26.dat 1883 1602 1953 1364 1364 2026 1416 2026 1416 1416 2407 1434 3030 1434 1412 2564 1268 2646 1268 1261
27.dat 929 910 929 929 911 1959 1247 1959 1247 1247 1973 1190 2368 1190 1190 1887 1800 1887 1840 1688
28.dat 1812 1623 1812 1623 1623 1801 1419 1801 1419 1419 1954 1469 2268 1469 1469 1855 1364 1855 1385 1385
29.dat 1551 1551 1774 1678 1551 1049 1061 1049 1024 989 2422 1746 2422 1746 1746 2258 1959 2258 2050 1927
30.dat 1280 1164 1280 1164 1164 2273 1863 2273 1863 1723 2335 1837 2365 1837 1828 1858 1269 1858 1269 1269

Average 1495 1360 1526 1369 1342 1790 1438 1814 1443 1417 2017 1516 2164 1526 1493 2080 1455 2233 1467 1403

Table 3. The Results for Order 50 to Order 70

Orde 50 Orde 60 Orde 70
Problem WAC WAC WAC WGA WGA WAC WAC WAC WGA WGA WAC WAC WAC WGA WGA

1 2 3 T1 T2 1 2 3 T1 T2 1 2 3 T1 T2

1.dat 2183 1425 2215 1425 1315 1615 1511 1615 1511 1377 2544 1437 2726 1437 1437
2.dat 4203 1715 4245 1715 1715 2095 2060 2095 2079 1841 2235 1968 2341 2055 1876
3.dat 1664 1412 1664 1466 1433 1828 1524 2032 1524 1435 1568 1421 1675 1421 1328
4.dat 2513 1290 2653 1290 1290 2485 1675 2767 1693 1693 3029 1787 3030 1787 1588
5.dat 2373 1840 2373 1840 1840 1950 1555 2059 1560 1430 2617 1772 2923 1772 1701
6.dat 2540 1706 2812 1702 1641 2148 1641 2176 1669 1471 3575 1829 3958 1829 1829
7.dat 2351 2093 2695 1855 1592 2343 1264 2378 1264 1233 2818 1570 3182 1570 1528
8.dat 2894 1736 2725 1758 1682 2154 1609 2228 1610 1608 3091 1656 3067 1676 1676
9.dat 2969 1976 3393 1976 1750 2239 1844 2395 1947 1666 2058 1677 2058 1677 1677
10.dat 1930 1265 1942 1257 1257 2441 1409 2553 1409 1409 2246 1627 2371 1656 1648
11.dat 1970 1569 1970 1590 1590 2486 1585 2486 1585 1525 2323 1856 2437 1880 1738
12.dat 2079 1691 2324 1691 1564 2750 2022 2992 2062 1943 2454 1917 2909 1917 1637
13.dat 1904 1026 2795 1026 1006 2754 1706 3219 1742 1684 2393 1695 2409 1685 1524
14.dat 1885 1541 1990 1541 1458 2560 2309 2678 2313 2002 1964 1519 1992 1533 1504
15.dat 1976 1441 2400 1444 1404 2442 1514 2442 1527 1527 2468 1675 2468 1675 1675
16.dat 3332 1947 3872 1947 1854 1689 1401 1689 1401 1401 3228 1722 3320 1722 1530
17.dat 2309 1918 2427 1918 1918 2389 1492 2425 1492 1335 2672 2247 2672 2303 2037
18.dat 2357 1771 2357 1771 1619 2371 2109 2304 2127 1750 2381 1676 2911 1623 1397
19.dat 2402 1736 2446 1780 1564 2401 1696 3122 1726 1646 2222 1468 2292 1492 1481
20.dat 2617 1621 2831 1621 1621 2602 1681 2749 1681 1630 2804 1312 3078 1333 1146
21.dat 2166 1289 2166 1289 1289 1859 1663 1865 1672 1441 2199 1492 2199 1492 1463
22.dat 2202 1851 2202 1965 1673 2395 1866 2429 1866 1778 2264 1774 2411 1759 1594
23.dat 1658 1430 1574 1467 1415 2287 1348 2371 1358 1347 2148 1695 2270 1686 1556
24.dat 2247 1256 2261 1256 1247 2574 1981 2574 1982 1443 2702 1589 2740 1589 1526
25.dat 2313 1696 2598 1710 1512 2617 1393 2804 1398 1119 2575 1923 2575 1970 1708
26.dat 2493 1883 2483 1883 1883 2005 1241 2360 1299 1207 2086 1612 2086 1612 1612
27.dat 2428 1300 2698 1315 1315 3233 1523 3034 1523 1523 2239 1520 2372 1520 1443
28.dat 2981 2054 3410 2071 1874 3047 1767 3680 1954 1849 2653 1591 2970 1591 1509
29.dat 1780 955 1847 955 952 2338 1357 2544 1377 1264 2563 1198 2568 1176 1176
30.dat 2711 1678 2612 1678 1678 2835 1440 3416 1446 1446 3487 1932 3627 1929 1908

Average 2381 1604 2533 1606 1532 2364 1640 2516 1660 1543 2520 1672 2655 1679 1582

2. METHODOLOGY

To address the MPDCMST problem, we propose two heuris-
tics in this paper: the WGAT1 and WGAT2 algorithms. These

two algorithms are created based on Prim’s modification algo-
rithm, much like how it was employed in WAC1 to WAC3.
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In WGAT1 and WGAT2 algorithms, we add probability for
every edge incident to the vertices in HVTs. HVTs represent
the collections of vertices that need to be connected on the s
stage or period. MaxVTs is the maximum number of vertices
that can be linked in the s period, where s = 1, 2, 3 (i.e., the
number of periods needed until all vertices are connected is 3).
MaxVTs is

⌊ n
3

⌋
. The same set of elements for HVTs as used

in WAC’s algorithms is chosen as shown in Table 1.
Table 1 shows the set of vertices that must be connected in

every period. For example, for vertex order 30, the vertices
that must be connected in the first period are vertices 2 and
3; in the second period, the vertices that must be connected
are vertices 4, 5; and in the third period, the vertices that must
be connected are vertices 6 and 7. Note that the vertices 4
or 5 have the probability to be connected in the first period.
This situation occurs when MaxVT1 − |HVT1 | > 0 and all
vertices in HVT1 are already stored inV , thus the algorithm
chooses the smallest weighted edge that satisfies the constraints
(not constitute cycle and not violated degree restriction). This
is similar to vertices 6, and 7, those vertices may be already
connected in the first or second period.

Like in the WAC’s algorithms, in the WGAT1 and WGAT2,
before starting the algorithms, vertex 1 is set as the central ver-
tex and stored in a set of vertices V ,V = {1}. T is empty
(∅), and the maximum period is 3. The algorithms start by
calculating the probability p of edges incident to vertices in
HVT1. Then, for those edges, a random number q is assigned
(0 < q < 1). If p ≥ q, do edge analysis (check the smallest
edge among the edges incident to HVTs and has the smallest
path to the central vertex). If all edges satisfy the edge analysis
condition, then choose the smallest edge, store it toT and the
corresponding incident vertex toV . Otherwise, search for other
smallest edges that are not incident to the vertices inHVTs and
choose the smallest edge. Note that the number of edges that
can be selected in this condition is MaxVTs − |HVTs |. Next,
check the degree and cycle conditions. If the edge does not vio-
late both conditions then do the same steps until the first stage
finishes. The algorithm does a similar process in the second
and third stages, except in the third stage the algorithm checks
if |T | = n − 1 to ensure that the spanning tree is obtained.

Figure 1 is the flowchart of the proposed algorithm. The
main difference between the algorithms proposed with those
in the literature is in adopting the probability and edge analy-
sis. That flowchart is applied for WGAT1 and WGAT2. The
difference between WGAT2 and WGAT2 is in the implemen-
tation. In WGAT2, the algorithm is running 30 times for every
problem on every vertex order (i.e., the algorithm runs 900
times for every order). For every problem, the best value is
recorded, and then take the average of the best solution. The
algorithms are written in Java.

This snipped code is written in Java to connect/install an
edge to the network on a certain period.

The algorithm also checks whether a circuit has been consti-
tuted, and remove the considered edge which causes the circuit
to occur, as shown in the following:

3. RESULTS AND DISCUSSION

The WGAT1 and WGAT2 algorithms are implemented on
complete graphs. Those graphs have orders ranging from 10
to 100, increasing in increments of 10. There are 30 problems
generated for every vertex order (the problems are named
as dat.1, dat.2, . . . , dat.30). The WGAT1 and WGAT2 are
compared with the WAC1, WAC2, and WAC3. Table 2 shows
the results for order 10, 20, 30, and 40, Table 3 shows the
results for order 50 to order 70, and Table 3 shows the results
for order 80 to order 100

From Table 2 and Figure 2, it can be seen that for order
graph of order 10, all algorithms give the same solution on nine
problems (problems 1.dat, 2.dat, 6.dat, 9.dat, 16.dat, 17.dat,
18.dat, 20.dat, 23.dat), while for other problems, the WGAT2
has the smallest solution on 19 problems (3.dat, 4.dat, 5.dat,
7.dat, 8.dat, 10.dat, 11.dat, 12.dat, 13.dat, 14.dat, 15.dat,
21.dat, 22.dat, 24.dat, 25.dat, 26.dat, 28.dat, 29.dat, and
30.dat), where among those 10 problems the WAC2 shares
the same solutions on 14 problems (3.dat, 4.dat, 5.dat, 8.dat,
10.dat, 12.dat, 13.dat, 15.dat, 21.dat, 22.dat, 25.dat, 28.dat,
29.dat, and 30.dat) and the WGAT1 shares the same solutions
on 10 problems (3.dat, 5.dat, 12.dat, 13.dat, 15.dat, 21.dat,
26.dat, 28.dat, 29.dat, and 30.dat), and the WAC1 share the
same solution in one problem (11.dat). The WAC2 has the
smallest solutions on 19.dat and 27.dat.

Figure 3 shows the results for vertex order 20. From this
figure, the WGAT2 has the smallest solutions on 29 problems
except problem number 16 (16.dat), where the smallest solu-
tion is gained by the WAC2. The WAC1 and WAC3 have the
same solutions as the WGAT2 only in one problem(2.dat), the
WAC2 and WGAT1 share the same solutions as the WGAT2
on 19 problems (1.dat, 3.dat, 4.dat, 5.dat, 6.dat., 7.dat, 8.dat,
9.dat, 15.dat, 17.dat, 19.dat, 20.dat, 21.dat, 22.dat, 23.dat,
24.dat, 26.dat, 27.dat, and 28.dat).

From Table 2 and Figure 4 it can be seen that for graph
of order 30, the solutions of the WGAT2 are the smallest

© 2024 The Authors. Page 1002 of 1008
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Figure 1. The Flowchart of the Algorithm

on 25 problems (1.dat, 2.dat, 3.dat, 4.dat, 5.dat, 6.dat, 7.dat,
8.dat, 9.dat, 10.dat, 11.dat, 14.dat, 15.dat, 16.dat, 17.dat,
18.dat, 19.dat, 23.dat, 24.dat, 25.dat, 26.dat, 27.dat, 28.dat,
29.dat, and 30.dat). Among those 25 problems, the WAC2 and
WGAT1 have the same solutions on 13 problems (4.dat, 5.dat,
8.dat, 9.dat, 10.dat, 11.dat, 15.dat, 16.dat, 17.dat, 18.dat,
19.dat, 28.dat, and 29.dat). Out of 30 problems, the WAC1

and WAC3 have the smallest solutions on two problems (12.dat,
and 22.dat), while the WAC2 has the smallest solution on three
problems out of 30 problems (13.dat, 20.dat, and 21.dat).

For vertex order 40, the solutions of WGAT2 are the small-
est on 29 problems out of 30 problems, except one problem
(28.dat) where WAC2 performs better. Among those 29 prob-
lems, the WAC2 and WGAT1 have the same solutions on 6

© 2024 The Authors. Page 1003 of 1008
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Table 4. The Results for Order 80 to Order 100

Orde 80 Orde 90 Orde 100
Problem WAC WAC WAC WGA WGA WAC WAC WAC WGA WGA WAC WAC WAC WGA WGA

1 2 3 T1 T2 1 2 3 T1 T2 1 2 3 T1 T2

1.dat 2239 1570 2239 1570 1473 2334 1789 2450 1794 1770 2361 1574 2433 1555 1484
2.dat 2611 2192 2673 2214 1719 2500 1932 2674 2027 1883 2887 1620 2890 1615 1555
3.dat 3088 1873 3207 1864 1759 2466 1599 2531 1599 1599 1935 1474 1935 1474 1357
4.dat 2463 1515 2463 1515 1475 2608 1762 2690 1804 1607 2005 1405 2074 1425 1374
5.dat 2868 1827 3004 1827 1808 3206 1693 3290 1728 1537 1820 1601 1926 1647 1535
6.dat 2813 1540 3551 1542 1542 2705 1694 2793 1709 1653 2907 1553 3041 1553 1534
7.dat 3099 1959 3187 1959 1959 2415 1557 2415 1651 1424 2397 1626 2531 1626 1529
8.dat 1878 1482 1873 1487 1458 2277 1443 2277 1443 1443 2846 1553 2846 1553 1553
9.dat 3241 1603 3251 1603 1485 2428 1920 2697 1920 1627 2339 1536 2487 1536 1536
10.dat 3051 1964 3821 1964 1839 2271 1628 2271 1638 1429 2529 1854 2779 1854 1693
11.dat 2160 1653 2169 1702 1672 3136 1767 3266 1767 1767 2536 1629 2536 1629 1340
12.dat 1692 1324 1705 1324 1324 2537 1731 2586 1731 1375 2650 1481 3019 1481 1457
13.dat 2560 1588 3060 1588 1502 2580 1437 2580 1443 1341 2341 1567 2452 1563 1551
14.dat 1892 1421 1892 1470 1453 2299 1450 2321 1450 1403 3112 1880 3723 1811 1810
15.dat 2642 1918 2733 1918 1915 2542 1701 3016 1707 1375 3209 1834 3434 1835 1610
16.dat 1800 1434 1934 1434 1401 2646 1310 2692 1310 1271 2023 1410 2143 1410 1306
17.dat 2461 2050 2491 2053 1709 2574 1883 2582 1879 1857 2412 1654 2554 1654 1509
18.dat 2479 1718 2493 1746 1735 1980 1341 2184 1341 1341 2770 1686 2770 1701 1544
19.dat 2964 1560 2964 1560 1560 2569 1791 2677 1791 1705 3137 1476 3212 1476 1428
20.dat 3166 1818 3110 1818 1608 3838 1716 4126 1716 1609 2216 1589 2374 1621 1487
21.dat 2834 1857 3094 1857 1695 2516 1674 2581 1678 1574 2121 1631 2154 1651 1518
22.dat 2589 1626 3071 1819 1551 2739 1874 2792 1874 1750 2629 1497 2771 1497 1288
23.dat 2700 2236 2858 2211 1615 2099 1263 2099 1308 1227 2844 1854 3014 1863 1727
24.dat 2271 1955 2317 2049 1626 2271 1670 2514 1704 1630 3192 1530 3473 1533 1468
25.dat 2247 1813 2294 1813 1568 1722 1098 1750 1098 1098 2429 1413 2528 1446 1387
26.dat 2548 1782 2874 1794 1523 3520 1640 3882 1639 1501 2333 1448 2722 1448 1398
27.dat 2681 2032 3020 2045 1769 2834 1638 2905 1643 1604 2085 1405 2238 1405 1455
28.dat 2718 1449 2561 1503 1459 2908 1799 3126 1799 1616 2481 1662 2487 1720 1628
29.dat 2220 1504 2876 1540 1344 2590 2013 2761 1954 1694 3279 1853 3329 1853 1821
30.dat 2459 1404 2459 1467 1421 2532 1667 2863 1667 1592 2231 1634 2231 1636 1510

Average 2548 1722 2708 1742 1599 2588 1649 2713 1660 1543 2535 1598 2670 1602 1511

Figure 2. The Comparative Solutions for Order 10

problems (6.dat, 12.dat, 16.dat, 18.dat, 22.dat, 30.dat).
The performance of the algorithms on vertex order 50 are

shown on Figure 6. For vertex order 50, out of 30 problems,
the solutions of WGAT2 algorithm are the smallest on 28 prob-
lems (among those WGAT1 share the same solutions in nine
problems (2.dat, 4.dat, 5.dat, 10.dat, 17.dat, 20.dat, 21.dat,
26.dat, and 30.dat), while WAC2 also share the same solution
with WGAT2 on 8 problems (2.dat, 4.dat, 5.dat, 17.dat, 20.dat,
21.dat, 26.dat, and 30.dat). Out of 30 problems , the WAC2
solutions are the smallest on two problems (3.dat and 11.dat).

Figure 7 shows the performance of the algorithms or ver-
tex order 60. The solutions of the WGAT2 algorithm are
the smallest on 26 problems, where three problems (10.dat,

Figure 3. The Comparative Solutions for Order 20

16.dat, and 27.dat) out of those 26 problems, the solutions
of the WAC2 and WGAT1 algorithms also the same with the
WGAT2 algorithm. The smallest solutions of the rest four
problems are gained by the WAC2 algorithm (4.dat, 15.dat,
28.dat, and 30.dat). Table 4 below shows the results for order
80 to order 100.

The results for vertex order 70 and 80 can be seen on Table
Figure 5. For vertex order 70, the solutions of the WGAT2
algorithm on 26 problems out of 30 problems are the smallest,
where six problems (1.dat, 6.dat, 9.dat, 15.dat, 26.dat, 29.dat)
of those 26 problems, the solutions of the WGAT1 also the
same with the WGAT2 algorithms, and five problems (1.dat,
6.dat, 9.dat, 15.dat, 26.dat) the solutions of the WAC2 algo-
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Figure 4. The Comparative Solutions for Order 30

Figure 5. The Comparative Solutions for Order 40

Figure 6. The Comparative Solutions for Order 50

Figure 7. The Comparative Solutions for Order 60

Figure 8. The Comparative Solutions for Order 70

Table 5. The Comparison of the Average Solutions of WAC1,
WAC2, WAC3, WGAT1 and WGAT2 for Every Vertex Order

Order WAC1 WAC2 WAC3 WGAT1 WGAT2
10 1495 1360 1526 1369 1340
20 1790 1438 1814 1443 1417
30 2017 1516 2164 1526 1491
40 2080 1455 2233 1467 1403
50 2381 1604 2533 1607 1532
60 2364 1640 2516 1660 1543
70 2520 1672 2655 1679 1582
80 2548 1722 2708 1742 1599
90 2588 1649 2713 1660 1543
100 2535 1598 2670 1602 1511

rithm also the same as the WGAT2. The smallest solutions
of the rest four problems are gained by the WAC2 algorithm
(2.dat, 8.dat, 10.dat, 19.dat).
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Figure 9. The Comparative Solutions for Order 80

Figure 10. The Comparative Solutions for Order 90

For vertex order 80, the solutions of the WGAT2 algo-
rithms on 22 problems are the smallest, where one problem
(7.dat) out of those 22 problems, the solutions of the WAC2
and WGAT1 also the same as the WGAT2 algorithm. The
smallest solutions of the rest 8 problems are gained by the
WAC2 algorithm (6.dat, 11.dat, 12.dat, 14.dat, 18.dat, 19.dat,
28.dat, and 30.dat).

The results for vertex order 90 and 100 can be seen on
Figure 6. For vertex order 90, the solutions of the WGAT2
algorithm on all 30 problems are the smallest, where five prob-
lems (3.dat, 8.dat, 11.dat, 18.dat, and 25.dat) out of 30 prob-
lems, the solutions of WAC2 and WGAT1 also the same as the
WGAT2 algorithm.

For vertex order 100, the solutions of the WGAT2 algo-
rithm on all 30 problems are the smallest, where 3 problems

Figure 11. The Comparative Solutions for Order 100

Figure 12. The Comparison of the Average Solutions for Vertex
Order 10 to 100

(8.dat, 9.dat, and 27.dat) out of 30 problems, the solutions of
WAC2 and WGAT1 are also the same as the WGAT2 algo-
rithm.

From the discussion and the figures above, we can see that
in general, the performance of the WGAT2 algorithm is the
best among all the algorithms compared. The comparison of
the average solutions for every order is shown in Table 5.

Table 5 shows that the performance of WAC2, WGAT1
and WGAT2 surpass WAC1, and WAC3. The WAC2 per-
forms better than WGAT1, but cannot surpasses the WGAT2
algorithm. In overall, the performance of WGAT2 is the best.

Figure 12 compares the solutions of the WAC1, WAC2,
and WAC3. WGAT1, and WGAT2 algorithms using a line
chart. It also can be seen that the WGAT2 is the best among
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others. Introducing probability for edges incident to vertices
in HVTs gives a chance for the algorithm seeking for better
solution. The average solutions of WGAT2 are the smallest
among others.

4. CONCLUSIONS

According to the preceding discussion, we can conclude that
in general, the performance of the WAC2, WGAT1, and
WGAT2 better than that of the WAC1, and WAC3. Moreover,
the WGAT2 performs the best among others, where in every
graph order, the solutions of WGAT2 surpasses all algorithms
in almost all problems. It is also can be seen that from the fig-
ures above that the graph of WGAT2 algorithm always in the
bottom part (the minimum). Thus, assigning probability for
the vertices in the set HVTs gives the algorithm searches more
flexible rather than just choosing the smallest possible edge
weight as usually done in greedy algorithm. The edge analysis
also plays important process where this process assures that the
chosen edge contributes smaller path length from the central
vertex. Moreover, implement the algorithm to the same prob-
lem more than once also give better solution. This can be done
because in every implementation the value of generated q may
be differ. Until now, there is no research about the MPDCMST
incorporated with machine learning. Incorporating machine
learning techniques to adjust constraints based on historical
data may enhance the robustness of solutions.
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