Science and Technology Indonesia

e-ISSN:2580-4391*p*-ISSN:2580-4405 Vol. 9, No. 4, October 2024

Research Paper

Science & Technology Indonesia

Check for updates

The Use of Probability and Edge Analysis to Solve the Multi-Period Degree Constrained Minimum Spanning Tree Problem

Wamiliana^{1*}, Akmal Junaidi², Mohammad Danil Hendry Gamal³, Taqwan Thamrin⁴

¹Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Lampung, Bandar Lampung, 35145, Indonesia

²Department of Computer Science, Faculty of Mathematics and Natural Science, Universitas Lampung, Bandar Lampung, 35145, Indonesia

³Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia

⁴Faculty of Computer Science, Universitas Bandar Lampung, Bandar Lampung, 35145, Indonesia

*Corresponding author: wamiliana.1963@fmipa.unila.ac.id

Abstract

The goal of the Multiperiod Degree Constrained Minimum Spanning Tree (MPDCMST) problem is to determine the smallest weightspanning tree that satisfies the vertex installation criterion for each period and maintains the degree requirement in each vertex. This issue emerges as a network connection problem. The degree requirement indicates the reliability of each vertex, and the vertex connection/installation requirement denotes the priority vertices that must be inserted in the network within a specific time frame. The installation is split up into multiple phases/stages. This is because of various considerations such as severe weather, budgetary limitations, etc. In this research, two algorithms for solving the MPDCMST using probability hybridized with Prim's modification, and edge analysis are proposed. The algorithms are implemented on the undirected complete graph of orders 10 to 100. The solutions are compared with some heuristics which are already in the literature. The results show that the proposed algorithms perform better.

Keywords

Multi-Period, Degree Constrained, Minimum Spanning Tree, Probability Factor, Edge Analysis

Received: 15 June 2024, Accepted: 28 September 2024 https://doi.org/10.26554/sti.2024.9.4.999-1008

1. INTRODUCTION

Undoubtedly, graph theory has proven to be one of mathematical disciplines that has been embraced in numerous practical applications. Graph theory is also distinguished by having precise dates of origin (Vasudev, 2006). A graph serves as a means to depict discrete entities and the association linking them. For a set $V = \{v1, v2, \dots, vn\}$ of vertices, where V is not empty, and a set of edges *E*, represented as e_{ij} , $i, j \in V$, a graph G(V, E)E is a structure consisting of an ordered pair of V and E. An object can be symbolized by a vertex, while the connection between objects can be denoted by an edge. The vertices can represent various entities like cities, stations, buildings, computers, people/organizations, and more. Meanwhile, the edges can symbolize roads, train tracks, pipes, relationships /connections, and similar elements. Moreover, the graph creation process allows for adaptability, enabling the depiction of edges without strict adherence to specific rules; they can be drawn in curved or straight lines.

There are a lot of uses of graph theory, for example, graph colouring is used to model practical scheduling applications (Thevenin et al., 2018; Thadani et al., 2022), Kawakura and

Shibasaki (2018) and Kannimuthu et al. (2020) use that concept in agriculture; a leaf-labelled tree is used to represent a phylogenetic tree by Huson and Bryant (2006) and Brandes and Cornelsen (2009); a combined tree is used to represent DNA by Mathur and Adlakha (2016); Hamiltonian circuits with relation in network design is explored by Hsu and Lin (2009); cycle graph, complete graph, and minimum spanning tree concepts are used in data security by Al Etaiwi (2014) in creating complex cipher; expander and extremal graph are used by Priyadarsini (2015) to create cipher for data security, while bipartite and corona graph are used by Ni et al. (2021) to do encryption in cryptography, and many more.

Given a connected weighted graph G(V, E), where the weight is nonnegative, one of the classical problems is finding a minimum spanning tree (MST) of that graph. One of the fundamental concepts in graph theory and optimization is MST. This concept is commonly used to solve various real-world problems. It is a valuable concept with a variety of applications in diverse fields. It helps to optimize resource usage, connectivity, and efficiency while maintaining a connected and acyclic structure. There are numerous applications of the MST, such as constructing power grids for communication networks. To

determine the MST, three well-known techniques are available: Boruvka's algorithm which was introduced by Boruvka (1926), Prim's algorithm developed by Prim (1957), and Kruskal's algorithm by Kruskal (1956). The MST can identify clusters or groups of data points close to each other in data mining; design optimal electrical circuits with minimum total wire length, and so on.

The Degree constrained Minimum Spanning Tree (DCMS T) Problem is a variation of the classic MST problem, which involves finding a tree that spans all the vertices in a given graph while satisfying a certain degree restriction on each vertex. In other words, it seeks to connect all vertices with the fewest total edge weight, while ensuring that each vertex adheres to a specific degree requirement. Because of the added constraints, solving the DCMST issue may be more difficult than solving the regular MST problem. The DCMST occurs during the designing of networks, where the degree limitation symbolizes the permissible quantity of connections for each vertex. In essence, the operational capacity of each vertex imposes a constraint on the count of links (such as wires or roads) that can link to a vertex. For instance, the use of the DCMST concept is relevant in the design of road systems. In this context, a set of roads needs to interconnect various suburbs or towns, while adhering to a condition that no more than a specified number of roads (e.g., four roads) are permissible to meet at a junction (Wamiliana et al., 2020).

To overcome this problem, many algorithms and techniques have been investigated, and they often involve a combination of graph theory, optimization, and heuristics to find feasible solutions that meet the degree restrictions while minimizing the total edge weights. Some of the algorithms that have already been proposed include Iterative refinement (Deo and Kumar, 1997), Branch and cut (Caccetta and Hill, 2001), Simulated Annealing (Krishnamoorthy et al., 2001), Tabu search (Caccetta and Wamiliana, 2001), Genetic Algorithm (Zhou and Gen, 1997), Ant colony (Adasme and Firoozabadi, 2020), Modified Branch and Bound and the idea of Lin Kernighan algorithm (one of the TSP heuristic approach that is frequently employed) (Thiessen et al., 2020), and many more.

A Multi-Period Degree Constrained Minimum Spanning Tree (MPDCMST) is a specialized variant of the Minimum Spanning Tree (MST) problem that considers degree constraints and spans multiple periods or time intervals. This problem arises in various applications, including network design, transportation planning, and resource allocation, where the goal is to find a spanning tree that satisfies both edge weight constraints and vertex degree constraints over multiple periods. In real situations, establishing connections between all elements within a network needs a specific duration and sequence of steps for successful implementation. The time frame for completion is subject to fluctuations based on the network's requirements and its relative importance. The MPDCMST adds the dimension of time intervals or periods. This means that the tree needs to satisfy degree constraints for each vertex in each period while minimizing the sum of edge weights over

all periods. This problem is more complex than the classical MST or the DCMST because of the added period constraint. The period constraint is added due to some conditions such as harsh weather, limitation of funds, and so on.

Solving the MPDCMST problem typically involves finding a set of trees, for each period, that collectively satisfy the degree constraints and minimize the sum of edge weights across all periods. This problem can have applications in various domains, such as designing communication networks that have varying demands over time or optimizing transportation routes considering varying traffic conditions. The problem might be tackled using a combination of techniques from graph theory, optimization, and algorithms for spanning trees, considering both the spatial and temporal dimensions of the problem.

Kawatra (2002) introduced the MPDCMST problem and implemented it on the directed graph and used a combination of branch exchange and Lagrangean relaxation. The order of the graphs ranges from 40 to 100 with a central vertex set at vertex 1. The investigation spanned a 10-year planning horizon. Junaidi et al. (2008) investigated the MPDCMST by developing two algorithms by modifying Kruskal's algorithm and tested the method using a variety of problems sourced from the TSPLIB. Wamiliana et al (2015a) developed four algorithms by modifying Kruskal's algorithms. The results show that in every period, the priority vertex is treated similarly as other vertices, and if at the end of the period that vertex is still uninstalled/ not connected, forcing it to be connected is better rather than connecting that vertex in the beginning of the period; while Wamiliana et al. (2015b) show that adopting Depth First Search Technique will improve the quality of the solution. Wamiliana et al. (2018) proposed WAC1, WAC2, and WAC3 algorithms. Those algorithms are based on Prim's modification algorithm, and implemented on undirected complete graphs of orders ranging from 10 to 100 increasing in increments of 10, where the weights of the edges are nonnegative with values generated uniformly from 1 - 1000. Prim's algorithm was modified because Prim's algorithm maintains connectivity, moreover, those algorithms adopted a one-year timeframe consisting of three periods. This modification of the MPDCMST approach aimed to reflect the real-world situation in Indonesia, where project funding is often allocated over three discrete terms. Wamiliana et al. (2020) use a similar reason when proposing WWM1 and WWM2 algorithms using GNU Octave. Even though Prim's algorithm is used more because it maintains connectedness, the modification of Kruskal's algorithm has also been investigated among others (Junaidi et al., 2008; Wamiliana et al., 2015a, 2018).

This paper is organized as follows: In Section 1 the background, problem statement, and literature review are given. Section 2 is Methodology. In this section, the proposed algorithm for solving the MPDCMST is discussed. Section 3 is the Result, where the implementation of the proposed algorithm is given, followed by a conclusion in Section 4.

Table 1. The Vertices in HVT_s , s = 1, 2, 3

	Vertex Order											
	10	20	30	40	50	60	70	80	90	100		
HVT_1	9	9	93	934	2,3,4,5	2,3,4,5	2,3,4,5	2,3,4,5	2,3,4,5	2,3,4,5		
11/1 2	4	2,0	2,0,4	6	6,7	6,7,8	6,7,8	6,7,8	6,7,8,9			
HVT_{o}	3	3	4.5	567	6,7,8,9	7,8,9,10	8,9,10,11	9,10,11,12	9,10,11,12	9,10,11,12,13		
11/19 0	0	0	4,5	5,0,7	11	12,13	13,14,15	13,14,15	13,14,15	14,15,16,17		
HVT_{a}		4	67	8 0 10	10,11,12	12,13,14	14,15,16,17	16,17,18,19	16,17,18,19	18,19,20,21		
11/ 13	4	4	0,7	0,9,10	13	15	18,19	20,21,22	20,21,22	22,23,24,25		

Table 2. The Results for Order 10 to Order 40

			Orde 10					Orde 20					Orde 30					Orde 40		
Problem	WAC	WAC	WAC	WGA	WGA	WAC	WAC	WAC	WGA	WGA	WAC	WAC	WAC	WGA	WGA	WAC	WAC	WAC	WGA	WGA
	1	2	8	T1	T2	1	2	8	T1	T2	1	2	8	T1	T2	1	2	8	T1	T2
1.1.4	000	000	000	000	000	1095	1109	1005	1109	1109	1449	1949	1449	1940	1940	1500	1997	1505	1997	1905
1.dat	1076	1076	1076	1076	1076	1923	1050	1925	1950	1000	1440	1040	1440	1040	1040	1528	1969	1595	1411	1295
2.dat	1909	090	1909	1070	1070	1222	074	1222	074	1222	0207	1410	0519	1410	1620	1659	1000	1789	1411	1150
0.dat	1179	929	1179	929	929	1701	1909	1701	1909	1909	2097	1077	2318	1077	1020	1038	1257	1090	1237	1132
4.dat	1910	1576	1091	1576	1576	1791	1090	1791	1090	1090	1766	1041	1766	1041	1041	1719	1200	1870	1200	1141
5.dat	1401	1401	1401	1401	1401	1974	1900	1974	1900	1991	9251	1000	9251	1000	2066	9211	1497	9600	1497	1497
7 dat	9588	9477	2588	9559	9478	9901	9027	9901	9027	9027	2031	1909	2605	1909	1174	2011	1508	2035	1427	1427
8 dat	2300	466	2388	466	466	2201	1779	9974	1779	1779	1665	1638	1665	1628	1628	2002	1448	2815	1472	1970
0 dat	1511	1511	1511	1511	1511	1785	1454	1785	1454	1454	1849	1566	1849	1566	1566	2000	1300	2013	1200	1959
10 dat	9104	9996	9194	9104	9194	1608	1106	1608	1106	1089	1017	1909	2061	1909	1909	1671	1115	1984	1127	1110
11 dat	1971	1458	1971	1259	1971	2106	2044	9999	2088	2026	2620	1814	2001	1814	1814	2495	1664	3146	1664	1550
12 dat	2121	1978	2121	1978	1978	1738	1821	1738	1821	1258	1454	1558	1454	1558	1518	1621	1138	1560	1128	1138
18 dat	1415	1119	1682	1119	1119	1619	1348	1619	1348	1840	8108	1871	8417	1906	1906	2801	1971	3285	1971	1834
14 dat	1803	1803	1802	1803	1749	1778	1787	1839	1839	1562	1506	1517	1506	1545	1408	2432	1595	2432	1595	1521
15 dat	1429	1228	1429	1228	1228	1471	1162	1475	1162	1162	2435	1851	2918	1851	1851	1848	1899	1882	1899	1847
16 dat	816	816	816	816	816	1338	1297	1338	1338	1808	1710	1654	1710	1654	1654	2217	1418	2622	1418	1418
17 dat	777	777	777	777	777	2076	1618	2076	1618	1618	1662	1526	1662	1526	1526	1666	1261	1666	1261	1260
18 dat	1085	1085	1085	1085	1085	1978	1905	1978	1909	1819	1631	926	1819	926	926	2954	1201	3370	1892	1892
19 dat	1616	832	1616	891	839	1146	1146	1146	1146	1146	1978	1558	2164	1558	1558	1882	1504	1882	1606	1484
20.dat	1448	1448	1448	1448	1448	2004	1179	2047	1179	1179	1179	968	1236	986	986	1769	1469	1769	1489	1447
21.dat	2169	1677	2169	1677	1677	2230	1651	2230	1651	1651	2343	1332	2355	1418	1876	1425	1859	1425	1365	1297
22.dat	2710	2373	3061	2724	2373	2084	1688	2084	1688	1688	1289	1358	1381	1450	1386	2769	1479	3790	1479	1479
23.dat	869	869	869	869	869	2244	1254	2244	1254	1254	2507	1871	3084	1875	1866	2315	1448	2815	1448	1374
24.dat	1533	1622	1533	1622	1533	2276	1571	2677	1571	1571	1615	1516	1615	1520	1475	2426	1611	2426	1611	1583
25.dat	1655	1418	1655	1433	1418	1599	1500	1599	1500	1495	2703	2221	3082	2221	1900	2217	1998	2217	2018	1610
26.dat	1883	1602	1958	1364	1364	2026	1416	2026	1416	1416	2407	1434	3030	1484	1412	2564	1268	2646	1268	1261
27.dat	929	910	929	929	911	1959	1247	1959	1247	1247	1973	1190	2368	1190	1190	1887	1800	1887	1840	1688
28.dat	1812	1623	1812	1623	1623	1801	1419	1801	1419	1419	1954	1469	2268	1469	1469	1855	1364	1855	1385	1385
29.dat	1551	1551	1774	1678	1551	1049	1061	1049	1024	989	2422	1746	2422	1746	1746	2258	1959	2258	2050	1927
30.dat	1280	1164	1280	1164	1164	2273	1863	2273	1863	1723	2335	1837	2365	1837	1828	1858	1269	1858	1269	1269
Average	1495	1360	1526	1369	1342	1790	1438	1814	1448	1417	2017	1516	2164	1526	1493	2080	1455	2233	1467	1403

Table 3. The Results for Order 50 to Order 70

			Orde 50					Orde 60					Orde 70		
Problem	WAC 1	WAC 2	WAC 8	WGA T1	WGA T2	WAC 1	WAC 2	WAC 8	WGA T1	WGA T2	WAC 1	WAC 2	WAC 8	WGA T1	WGA T2
1.dat	2183	1425	2215	1425	1815	1615	1511	1615	1511	1877	2544	1437	2726	1437	1437
2.dat	4203	1715	4245	1715	1715	2095	2060	2095	2079	1841	2235	1968	2341	2055	1876
3.dat	1664	1412	1664	1466	1433	1828	1524	2032	1524	1435	1568	1421	1675	1421	1328
4.dat	2513	1290	2653	1290	1290	2485	1675	2767	1693	1693	3029	1787	3030	1787	1588
5.dat	2373	1840	2373	1840	1840	1950	1555	2059	1560	1430	2617	1772	2923	1772	1701
6.dat	2540	1706	2812	1702	1641	2148	1641	2176	1669	1471	8575	1829	3958	1829	1829
7.dat	2351	2093	2695	1855	1592	2343	1264	2378	1264	1233	2818	1570	3182	1570	1528
8.dat	2894	1786	2725	1758	1682	2154	1609	2228	1610	1608	3091	1656	3067	1676	1676
9.dat	2969	1976	3393	1976	1750	2239	1844	2395	1947	1666	2058	1677	2058	1677	1677
10.dat	1930	1265	1942	1257	1257	2441	1409	2558	1409	1409	2246	1627	2371	1656	1648
11.dat	1970	1569	1970	1590	1590	2486	1585	2486	1585	1525	2323	1856	2437	1880	1738
12.dat	2079	1691	2324	1691	1564	2750	2022	2992	2062	1943	2454	1917	2909	1917	1637
13.dat	1904	1026	2795	1026	1006	2754	1706	3219	1742	1684	2393	1695	2409	1685	1524
14.dat	1885	1541	1990	1541	1458	2560	2309	2678	2313	2002	1964	1519	1992	1533	1504
15.dat	1976	1441	2400	1444	1404	2442	1514	2442	1527	1527	2468	1675	2468	1675	1675
16.dat	3332	1947	3872	1947	1854	1689	1401	1689	1401	1401	3228	1722	3320	1722	1580
17.dat	2309	1918	2427	1918	1918	2389	1492	2425	1492	1335	2672	2247	2672	2303	2037
18.dat	2357	1771	2357	1771	1619	2371	2109	2804	2127	1750	2381	1676	2911	1623	1397
19.dat	2402	1786	2446	1780	1564	2401	1696	3122	1726	1646	2222	1468	2292	1492	1481
20.dat	2617	1621	2831	1621	1621	2602	1681	2749	1681	1630	2804	1312	3078	1333	1146
21.dat	2166	1289	2166	1289	1289	1859	1663	1865	1672	1441	2199	1492	2199	1492	1463
22.dat	2202	1851	2202	1965	1673	2395	1866	2429	1866	1778	2264	1774	2411	1759	1594
23.dat	1658	1430	1574	1467	1415	2287	1348	2371	1358	1347	2148	1695	2270	1686	1556
24.dat	2247	1256	2261	1256	1247	2574	1981	2574	1982	1443	2702	1589	2740	1589	1526
25.dat	2313	1696	2598	1710	1512	2617	1393	2804	1398	1119	2575	1923	2575	1970	1708
26.dat	2493	1883	2483	1883	1883	2005	1241	2360	1299	1207	2086	1612	2086	1612	1612
27.dat	2428	1300	2698	1815	1315	3233	1523	3034	1523	1523	2239	1520	2372	1520	1443
28.dat	2981	2054	3410	2071	1874	8047	1767	3680	1954	1849	2658	1591	2970	1591	1509
29.dat	1780	955	1847	955	952	2338	1357	2544	1377	1264	2563	1198	2568	1176	1176
30.dat	2711	1678	2612	1678	1678	2835	1440	3416	1446	1446	3487	1932	3627	1929	1908
Average	2381	1604	2533	1606	1532	2364	1640	2516	1660	1548	2520	1672	2655	1679	1582

2. METHODOLOGY

To address the MPDCMST problem, we propose two heuristics in this paper: the WGAT1 and WGAT2 algorithms. These

two algorithms are created based on Prim's modification algorithm, much like how it was employed in WAC1 to WAC3. In WGAT1 and WGAT2 algorithms, we add probability for every edge incident to the vertices in HVT_s . HVT_s represent the collections of vertices that need to be connected on the *s* stage or period. MaxVTs is the maximum number of vertices that can be linked in the *s* period, where s = 1, 2, 3 (i.e., the number of periods needed until all vertices are connected is 3). $MaxVT_s$ is $\lfloor \frac{n}{3} \rfloor$. The same set of elements for HVT_s as used in WAC's algorithms is chosen as shown in Table 1.

Table 1 shows the set of vertices that must be connected in every period. For example, for vertex order 30, the vertices that must be connected in the first period are vertices 2 and 3; in the second period, the vertices that must be connected are vertices 4, 5; and in the third period, the vertices that must be connected are vertices 6 and 7. Note that the vertices 4 or 5 have the probability to be connected in the first period. This situation occurs when $MaxVT_1 - |HVT_1| > 0$ and all vertices in HVT_1 are already stored in V, thus the algorithm chooses the smallest weighted edge that satisfies the constraints (not constitute cycle and not violated degree restriction). This is similar to vertices 6, and 7, those vertices may be already connected in the first or second period.

Like in the WAC's algorithms, in the WGAT1 and WGAT2, before starting the algorithms, vertex 1 is set as the central vertex and stored in a set of vertices $V, V = \{1\}$. T is empty (\emptyset) , and the maximum period is 3. The algorithms start by calculating the probability p of edges incident to vertices in HVT_1 . Then, for those edges, a random number q is assigned (0 < q < 1). If $p \ge q$, do edge analysis (check the smallest edge among the edges incident to HVT_s and has the smallest path to the central vertex). If all edges satisfy the edge analysis condition, then choose the smallest edge, store it to T and the corresponding incident vertex to V. Otherwise, search for other smallest edges that are not incident to the vertices in HVT_s and choose the smallest edge. Note that the number of edges that can be selected in this condition is $MaxVT_s - |HVT_s|$. Next, check the degree and cycle conditions. If the edge does not violate both conditions then do the same steps until the first stage finishes. The algorithm does a similar process in the second and third stages, except in the third stage the algorithm checks if |T| = n - 1 to ensure that the spanning tree is obtained.

Figure 1 is the flowchart of the proposed algorithm. The main difference between the algorithms proposed with those in the literature is in adopting the probability and edge analysis. That flowchart is applied for WGAT1 and WGAT2. The difference between WGAT2 and WGAT2 is in the implementation. In WGAT2, the algorithm is running 30 times for every problem on every vertex order (i.e., the algorithm runs 900 times for every order). For every problem, the best value is recorded, and then take the average of the best solution. The algorithms are written in Java.

This snipped code is written in Java to connect/install an edge to the network on a certain period.

```
Edge shortestEdge = getStortestEdge(period);
int inTarget = shortestEdge.target;
Vertex targetVertex = getVertexDyld(inTarget);
if(addVertex(targetVertex)) {
nodes.add[new_Node(targetVertex.id, period.group));
shortestEdge.group = period.group;
this.edges.mod(shortestEdge.source1.link++;
getVertexByld(shortestEdge.target).link++;
```

The algorithm also checks whether a circuit has been constituted, and remove the considered edge which causes the circuit to occur, as shown in the following:

3. RESULTS AND DISCUSSION

The WGAT1 and WGAT2 algorithms are implemented on complete graphs. Those graphs have orders ranging from 10 to 100, increasing in increments of 10. There are 30 problems generated for every vertex order (the problems are named as dat.1, dat.2, ..., dat.30). The WGAT1 and WGAT2 are compared with the WAC1, WAC2, and WAC3. Table 2 shows the results for order 10, 20, 30, and 40, Table 3 shows the results for order 50 to order 70, and Table 3 shows the results for order 80 to order 100

From Table 2 and Figure 2, it can be seen that for order graph of order 10, all algorithms give the same solution on nine problems (problems 1.dat, 2.dat, 6.dat, 9.dat, 16.dat, 17.dat, 18.dat, 20.dat, 23.dat), while for other problems, the WGAT2 has the smallest solution on 19 problems (3.dat, 4.dat, 5.dat, 7.dat, 8.dat, 10.dat, 11.dat, 12.dat, 13.dat, 14.dat, 15.dat, 21.dat, 22.dat, 24.dat, 25.dat, 26.dat, 28.dat, 29.dat, and 30.dat), where among those 10 problems the WAC2 shares the same solutions on 14 problems (3.dat, 4.dat, 5.dat, 8.dat, 10.dat, 12.dat, 13.dat, 15.dat, 21.dat, 22.dat, 25.dat, 28.dat, 29.dat, and 30.dat) and the WGAT1 shares the same solutions on 10 problems (3.dat, 5.dat, 12.dat, 13.dat, 15.dat, 21.dat, 26.dat, 28.dat, 29.dat, and 30.dat), and the WAC1 share the same solution in one problem (11.dat). The WAC2 has the smallest solutions on 19.dat and 27.dat.

Figure 3 shows the results for vertex order 20. From this figure, the WGAT2 has the smallest solutions on 29 problems except problem number 16 (16.dat), where the smallest solution is gained by the WAC2. The WAC1 and WAC3 have the same solutions as the WGAT2 only in one problem(2.dat), the WAC2 and WGAT1 share the same solutions as the WGAT2 on 19 problems (1.dat, 3.dat, 4.dat, 5.dat, 6.dat., 7.dat, 8.dat, 9.dat, 15.dat, 17.dat, 19.dat, 20.dat, 21.dat, 22.dat, 23.dat, 24.dat, 26.dat, 27.dat, and 28.dat).

From Table 2 and Figure 4 it can be seen that for graph of order 30, the solutions of the WGAT2 are the smallest

Figure 1. The Flowchart of the Algorithm

on 25 problems (1.dat, 2.dat, 3.dat, 4.dat, 5.dat, 6.dat, 7.dat, 8.dat, 9.dat, 10.dat, 11.dat, 14.dat, 15.dat, 16.dat, 17.dat, 18.dat, 19.dat, 23.dat, 24.dat, 25.dat, 26.dat, 27.dat, 28.dat, 29.dat, and 30.dat). Among those 25 problems, the WAC2 and WGAT1 have the same solutions on 13 problems (4.dat, 5.dat, 8.dat, 9.dat, 10.dat, 11.dat, 15.dat, 16.dat, 17.dat, 18.dat, 19.dat, 28.dat, and 29.dat). Out of 30 problems, the WAC1 and WAC3 have the smallest solutions on two problems (12.dat, and 22.dat), while the WAC2 has the smallest solution on three problems out of 30 problems (13.dat, 20.dat, and 21.dat).

For vertex order 40, the solutions of WGAT2 are the smallest on 29 problems out of 30 problems, except one problem (28.dat) where WAC2 performs better. Among those 29 problems, the WAC2 and WGAT1 have the same solutions on 6

Table 4. The Results for Order 80 to Order 100

			Orde 80					Orde 90					Orde 100		
Problem	WAC 1	WAC 2	WAC 3	WGA T1	WGA T2	WAC 1	WAC 2	WAC 3	WGA T1	WGA T2	WAC 1	WAC 2	WAC 3	WGA T1	WGA T2
1.dat	2239	1570	2239	1570	1473	2334	1789	2450	1794	1770	2361	1574	2433	1555	1484
2.dat	2611	2192	2673	2214	1719	2500	1932	2674	2027	1883	2887	1620	2890	1615	1555
3.dat	3088	1873	3207	1864	1759	2466	1599	2531	1599	1599	1935	1474	1935	1474	1857
4.dat	2463	1515	2463	1515	1475	2608	1762	2690	1804	1607	2005	1405	2074	1425	1374
5.dat	2868	1827	3004	1827	1808	3206	1693	3290	1728	1587	1820	1601	1926	1647	1585
6.dat	2813	1540	8551	1542	1542	2705	1694	2793	1709	1653	2907	1558	3041	1558	1584
7.dat	3099	1959	3187	1959	1959	2415	1557	2415	1651	1424	2397	1626	2531	1626	1529
8.dat	1878	1482	1873	1487	1458	2277	1448	2277	1448	1448	2846	1558	2846	1558	1558
9.dat	3241	1603	3251	1603	1485	2428	1920	2697	1920	1627	2339	1586	2487	1536	1536
10.dat	3051	1964	3821	1964	1839	2271	1628	2271	1638	1429	2529	1854	2779	1854	1693
11.dat	2160	1653	2169	1702	1672	3136	1767	3266	1767	1767	2536	1629	2536	1629	1340
12.dat	1692	1324	1705	1324	1324	2537	1731	2586	1781	1875	2650	1481	3019	1481	1457
13.dat	2560	1588	3060	1588	1502	2580	1487	2580	1448	1841	2341	1567	2452	1563	1551
14.dat	1892	1421	1892	1470	1458	2299	1450	2321	1450	1403	8112	1880	3723	1811	1810
15.dat	2642	1918	2733	1918	1915	2542	1701	8016	1707	1875	3209	1834	3434	1835	1610
16.dat	1800	1484	1984	1484	1401	2646	1310	2692	1310	1271	2023	1410	2143	1410	1306
17.dat	2461	2050	2491	2053	1709	2574	1883	2582	1879	1857	2412	1654	2554	1654	1509
18.dat	2479	1718	2498	1746	1785	1980	1341	2184	1841	1841	2770	1686	2770	1701	1544
19.dat	2964	1560	2964	1560	1560	2569	1791	2677	1791	1705	3137	1476	3212	1476	1428
20.dat	3166	1818	3110	1818	1608	3838	1716	4126	1716	1609	2216	1589	2374	1621	1487
21.dat	2834	1857	3094	1857	1695	2516	1674	2581	1678	1574	2121	1631	2154	1651	1518
22.dat	2589	1626	3071	1819	1551	2739	1874	2792	1874	1750	2629	1497	2771	1497	1288
23.dat	2700	2236	2858	2211	1615	2099	1263	2099	1308	1227	2844	1854	8014	1863	1727
24.dat	2271	1955	2317	2049	1626	2271	1670	2514	1704	1630	3192	1580	3473	1533	1468
25.dat	2247	1813	2294	1813	1568	1722	1098	1750	1098	1098	2429	1413	2528	1446	1387
26.dat	2548	1782	2874	1794	1523	3520	1640	3882	1639	1501	2333	1448	2722	1448	1398
27.dat	2681	2032	3020	2045	1769	2834	1638	2905	1643	1604	2085	1405	2238	1405	1455
28.dat	2718	1449	2561	1503	1459	2908	1799	3126	1799	1616	2481	1662	2487	1720	1628
29.dat	2220	1504	2876	1540	1344	2590	2013	2761	1954	1694	3279	1853	3329	1853	1821
30.dat	2459	1404	2459	1467	1421	2532	1667	2863	1667	1592	2231	1634	2231	1636	1510
Average	2548	1722	2708	1742	1599	2588	1649	2713	1660	1543	2535	1598	2670	1602	1511

Figure 2. The Comparative Solutions for Order 10

problems (6.dat, 12.dat, 16.dat, 18.dat, 22.dat, 30.dat).

The performance of the algorithms on vertex order 50 are shown on Figure 6. For vertex order 50, out of 30 problems, the solutions of WGAT2 algorithm are the smallest on 28 problems (among those WGAT1 share the same solutions in nine problems (2.dat, 4.dat, 5.dat, 10.dat, 17.dat, 20.dat, 21.dat, 26.dat, and 30.dat), while WAC2 also share the same solution with WGAT2 on 8 problems (2.dat, 4.dat, 5.dat, 17.dat, 20.dat, 21.dat, 26.dat, and 30.dat). Out of 30 problems , the WAC2 solutions are the smallest on two problems (3.dat and 11.dat).

Figure 7 shows the performance of the algorithms or vertex order 60. The solutions of the WGAT2 algorithm are the smallest on 26 problems, where three problems (10.dat,

Figure 3. The Comparative Solutions for Order 20

16.dat, and 27.dat) out of those 26 problems, the solutions of the WAC2 and WGAT1 algorithms also the same with the WGAT2 algorithm. The smallest solutions of the rest four problems are gained by the WAC2 algorithm (4.dat, 15.dat, 28.dat, and 30.dat). Table 4 below shows the results for order 80 to order 100.

The results for vertex order 70 and 80 can be seen on Table Figure 5. For vertex order 70, the solutions of the WGAT2 algorithm on 26 problems out of 30 problems are the smallest, where six problems (1.dat, 6.dat, 9.dat, 15.dat, 26.dat, 29.dat) of those 26 problems, the solutions of the WGAT1 also the same with the WGAT2 algorithms, and five problems (1.dat, 6.dat, 9.dat, 15.dat, 26.dat) the solutions of the WAC2 algo-

Figure 4. The Comparative Solutions for Order 30

Figure 5. The Comparative Solutions for Order 40

Figure 6. The Comparative Solutions for Order 50

Figure 7. The Comparative Solutions for Order 60

Figure 8. The Comparative Solutions for Order 70

Table 5. The Comparison of the Average Solutions of WAC1,WAC2, WAC3, WGAT1 and WGAT2 for Every Vertex Order

Order	WAC1	WAC2	WAC3	WGAT1	WGAT2
10	1495	1360	1526	1369	1340
20	1790	1438	1814	1443	1417
30	2017	1516	2164	1526	1491
40	2080	1455	2233	1467	1403
50	2381	1604	2533	1607	1532
60	2364	1640	2516	1660	1543
70	2520	1672	2655	1679	1582
80	2548	1722	2708	1742	1599
90	2588	1649	2713	1660	1543
100	2535	1598	2670	1602	1511

rithm also the same as the WGAT2. The smallest solutions of the rest four problems are gained by the WAC2 algorithm (2.dat, 8.dat, 10.dat, 19.dat).

Figure 9. The Comparative Solutions for Order 80

Figure 10. The Comparative Solutions for Order 90

For vertex order 80, the solutions of the WGAT2 algorithms on 22 problems are the smallest, where one problem (7.dat) out of those 22 problems, the solutions of the WAC2 and WGAT1 also the same as the WGAT2 algorithm. The smallest solutions of the rest 8 problems are gained by the WAC2 algorithm (6.dat, 11.dat, 12.dat, 14.dat, 18.dat, 19.dat, 28.dat, and 30.dat).

The results for vertex order 90 and 100 can be seen on Figure 6. For vertex order 90, the solutions of the WGAT2 algorithm on all 30 problems are the smallest, where five problems (3.dat, 8.dat, 11.dat, 18.dat, and 25.dat) out of 30 problems, the solutions of WAC2 and WGAT1 also the same as the WGAT2 algorithm.

For vertex order 100, the solutions of the WGAT2 algorithm on all 30 problems are the smallest, where 3 problems

Figure 11. The Comparative Solutions for Order 100

Figure 12. The Comparison of the Average Solutions for Vertex Order 10 to 100

(8.dat, 9.dat, and 27.dat) out of 30 problems, the solutions of WAC2 and WGAT1 are also the same as the WGAT2 algorithm.

From the discussion and the figures above, we can see that in general, the performance of the WGAT2 algorithm is the best among all the algorithms compared. The comparison of the average solutions for every order is shown in Table 5.

Table 5 shows that the performance of WAC2, WGAT1 and WGAT2 surpass WAC1, and WAC3. The WAC2 performs better than WGAT1, but cannot surpasses the WGAT2 algorithm. In overall, the performance of WGAT2 is the best.

Figure 12 compares the solutions of the WAC1, WAC2, and WAC3. WGAT1, and WGAT2 algorithms using a line chart. It also can be seen that the WGAT2 is the best among

others. Introducing probability for edges incident to vertices in HVTs gives a chance for the algorithm seeking for better solution. The average solutions of WGAT2 are the smallest among others.

4. CONCLUSIONS

According to the preceding discussion, we can conclude that in general, the performance of the WAC2, WGAT1, and WGAT2 better than that of the WAC1, and WAC3. Moreover, the WGAT2 performs the best among others, where in every graph order, the solutions of WGAT2 surpasses all algorithms in almost all problems. It is also can be seen that from the figures above that the graph of WGAT2 algorithm always in the bottom part (the minimum). Thus, assigning probability for the vertices in the set HVTs gives the algorithm searches more flexible rather than just choosing the smallest possible edge weight as usually done in greedy algorithm. The edge analysis also plays important process where this process assures that the chosen edge contributes smaller path length from the central vertex. Moreover, implement the algorithm to the same problem more than once also give better solution. This can be done because in every implementation the value of generated q may be differ. Until now, there is no research about the MPDCMST incorporated with machine learning. Incorporating machine learning techniques to adjust constraints based on historical data may enhance the robustness of solutions.

5. ACKNOWLEDGMENT

This project is being funded by a research grant from the Directorate of Higher Education of the Republic of Indonesia, under contract number. 057/E5/PG.02.00.PL/2024, and subcontract no. 574/UN26.21/PN/2024. Kindly accept our sincere gratitude for your support.

REFERENCES

- Adasme, P. and A. D. Firoozabadi (2020). Degree-Constrained-Minimum Spanning Tree Problem. *Complexity*, **2020**(1); 1–25
- Al Etaiwi, W. M. (2014). Encryption Algorithm Using Graph Theory. *Journal of Scientific Research and Reports*, **3**(19); 2519– 2527
- Boruvka, O. (1926). O Jistém Problému Minimálním. Prace Moravske Prirodovedecke Spolecnosti, **3**(3); 37–58
- Brandes, U. and Cornelsen (2009). Phylogenetic Graph Models Beyond Trees. *Discrete Applied Mathematics*, **157**(10); **2361–2369**
- Caccetta, L. and S. P. Hill (2001). A Branch and Cut Method for the Degree Constrained Minimum Spanning Tree Problem. *Networks*, **37**; 74–83
- Caccetta, L. and Wamiliana (2001). Heuristics Algorithms for the Degree Constrained Minimum Spanning Tree Problems. In F. Ghassemi, D. Post, M. Sivapalan, and R. Vertessy, editors, *Proceeding of the International Congress on Modelling* and Simulation (MODSIM). Canberra, pages 2161–2166

- Deo, N. and N. Kumar (1997). Computation of Constrained Spanning Trees: A Unified Approach. In P. M. Pardalos, D. W. Hearn, and W. W. Hager, editors, *Network Optimization*, Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, pages 194–220
- Hsu, L. H. and C. K. Lin (2009). *Graph Theory and Interconnection Network*. Taylor and Francis Group, LLC, New York
- Huson, D. H. and D. Bryant (2006). Application of Phylogenetic Networks in Evolutionary Studies. *Molecular Biology* and Evolution, 23(2); 254–267
- Junaidi, S., Wamiliana, D. Sakethi, and E. T. Baskoro (2008). Computational Aspects of Greedy Algorithm for Solving the Multi Period Degree Constrained Minimum Spanning Tree Problem. *Jurnal Sains MIPA*, **14**(1); 1–6
- Kannimuthu, S., D. Bhanu, and K. S. Bhuvaneshwari (2020). A Novel Approach for Agricultural Decision Making Using Graph Coloring. *SN Applied Sciences*, **2**(1); 31
- Kawakura, S. and R. Shibasaki (2018). Grouping Method Using Graph Theory for Agricultural Workers Engaging in Manual Tasks. *Journal of Advanced Agricultural Technologies*, 5(3); 173–181
- Kawatra, R. (2002). A Multi Period Degree Constrained Minimum Spanning Tree Problem. *European Journal of Operational Research*, 143(1); 53–63
- Krishnamoorthy, M., A. T. Ernst, and Y. M. Sharaila (2001). Comparison of Algorithms for the Degree Constrained Minimum Spanning Tree. *Journal of Heuristics*, 7(6); 587–611
- Kruskal, J. B. (1956). On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. *Proceeding of the American Mathematical Society*, **7**(1); 48–50
- Mathur, R. and N. Adlakha (2016). A Graph Theoretic Model for Prediction of Reticulation Events and Phylogenetic Networks for DNA Sequences. *Egyptian Journal of Basic and Applied Sciences*, **3**(3); 263–271
- Ni, B., R. Qazi, S. U. Rehman, and G. Farid (2021). Some Graph-Based Encryption Schemes. *Journal of Mathematics*, **2021**(1); 6614172
- Prim, R. C. (1957). Shortest Connection Networks and Some Generalizations. *The Bell System Technical Journal*, **36**(6); 1389–1401
- Priyadarsini, P. L. K. (2015). A Survey on Some Applications of Graph Theory in Cryptography. Journal of Discrete Mathematical Sciences and Cryptography, 18(3); 209–217
- Thadani, S., B. Seema, and S. Anand (2022). Applications of Graph Coloring in Various Fields. *Materials Today: Proceedings*, **66**(Part 8); 3498–3501
- Thevenin, S., Z. Nicolas, and P. Jean-Yves (2018). Graph Multi-Coloring for a Job Scheduling Application. *Discrete Applied Mathematics*, **234**; 218–235
- Thiessen, M., L. Quesada, and K. N. Brown (2020). Improving a Branch-and-Bound Approach for the Degree-Constrained Minimum Spanning Tree Problem with LKH. In E. Hebrard and N. Musliu, editors, *Integration of Constraint Programming*, *Artificial Intelligence, and Operations Research. CPAIOR 2020*,

Lecture Notes in Computer Science, volume 12296. Springer International Publishing, Cham, pages 447–456

- Vasudev, C. (2006). *Graph Theory with Applications*. New Age International
- Wamiliana, Asmiati, M. Usman, A. Hijriani, and W. C. Hastono (2018). Comparative Analysis of Some Modified Prim's Algorithms to Solve the Multiperiod Degree Constrained Minimum Spanning Tree Problem. *Indian Journal of Science and Technology*, 11(11); 1–6
- Wamiliana, M. Usman, F. Elfaki, and M. Azram (2015a). Some Greedy Based Algorithms for Multi Periods Degree Constrained Minimum Spanning Tree Problem. *ARPN Journal* of Engineering and Applied Sciences, **10**(21); 10147–10152
- Wamiliana, M. Usman, D. Sakethi, and A. Cucus (2015b). The Hybrid of Depth First Search Technique and Kruskal's Algorithm for Solving the Multiperiod Degree Constrained Minimum Spanning Tree Problem. In *IEEE Proceeding* on 4th International Conference on Interactive Digital Media (ICIDM). pages 1–4
- Wamiliana, M. Usman, W. Warsito, W. Warsono, and J. I. Daoud (2020). Using Modification of Prim's Algorithm and GNU Octave to Solve the Multiperiods Installation Problem. *IIUM Engineering Journal*, **21**(1); 100–112
- Zhou, G. and M. Gen (1997). A Note on Genetics Algorithms for Degree Constrained Spanning Tree Problems. *Network*, **30**; 91–95