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1. Introduction 

 

Regression analysis is a statistical method that is widely used to determine the relationships between one or more 
independent variables and dependent variables. Generally, the data used in regression analysis are continuous data with a 
normal distribution. However, in several studies, the dependent variable studied uses data categories, which state success and 
failure events or have values of 0 and 1. In regression analysis, the model used to analyze the relationship between the 
independent variable and the dependent variable uses dichotomous data, namely, the logistic regression model. The 
assumption of logistic regression analysis includes that there is no multicollinearity between independent variables; it does not 
require a linear relationship between independent variables and dependent variables; it does not require heteroscedasticity 
assumptions; independent variables do not have the same diversity between groups of variables; dependent variables are 
dichotomous; at least a sample of 50 sample data points for a predictor variable is necessary; and the independent variable 
does not require the assumption of multivariate normality. In several logistic regression studies, problems are often found 
where the data used contain multicollinearity. There are several methods used to overcome this multicollinearity problem, 
including least absolute shrinkage and selection (LASSO) and the Liu estimator. The LASSO method shrinks the coefficient 
(parameter β) to be exactly 0 or close to 0. This method has been proven to be able to remove multicollinearity in binary logistic 
regression (Herawati et al, 2020). On the other hand, Liu's method is an alternative in the form of a biased loss estimator that 
uses an estimated value of d, where the shrinkage parameter d can take a value between 0 and 1. This method is also able to 
address multicollinearity in binary logistic regression. The advantages and capabilities of Liu's method in overcoming 
multicollinearity have been studied as well as the application of this method to several real-life problems by several researchers 
(Mansson et al., 2012; Mansson et al., 2015; Jahufer, 2013; Saputri, et al., 2024).  

In this study, the performance of the LASSO and LIU estimators was proven to eliminate multicollinearity using simulated 
data containing multicollinearity with several different samples. The best method has the smallest MSE and AIC values among 
the methods evaluated. Furthermore, this best method is applied to real data on poverty levels in Indonesia. 

Poverty is a problem that continues to haunt all developing countries, including Indonesia. However, the poverty level 
in Indonesia in 2024 is expected to decrease spatially in both urban and rural areas. For example, in urban areas, the poverty 
level rate appears to have decreased to 7.09 percent from the previous level of 7.29 percent in March 2023. Moreover, in rural 
areas, the percentage of poor people decreased from 12.22% to 11.79% in March 2023. A decline in the poverty level has also 
occurred throughout Indonesia, with the greatest decline occurring in Bali and Nusa Tenggara. Examining the solid factors of 
domestic economic activity and various government social assistance programs, especially in response to the increase in food 
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inflation in early 2024, led to a reduction in the poverty level rate in March 2024 (Central Bureau of Statistics, 2024). This fact 
does not necessarily mean that the poverty rate in Indonesia has been effectively resolved and that Indonesia is free from 
poverty problems. Therefore, the best method obtained from simulation data will be applied to data on poverty levels in 
Indonesia to determine which factors still influence poverty levels in Indonesia. 
 

2. Materials and methods 
 

2.1. Binary logistic regression analysis 
 

Logistic regression analysis is a regression analysis in which the dependent variable has binary or dichotomous 
properties with one or more independent variables (Hosmer & Lemeshow, 2000). A dichotomous or binary variable is a variable 
that has only two categories, namely, 0 and 1. The dependent variable is symbolized by y. Because it has two categories, for 
example, the category that states success events 𝑦 = 1 and the category that states failure events 𝑦 = 0. 

According to Agresti (2002), the variable 𝑌 is a variable that follows the Bernoulli distribution. The probability function 
for Y with parameter (𝑥) is as follows: 
 

𝑓(𝑦) =  𝜋(𝑥)𝑦 (1 − 𝜋(𝑥))1−𝑦  , 𝑦 = 0,1                                                        (1) 
 

The probability of the variable Y for a given value of 𝑥 is denoted as π(x). According to Hosmer & Lemeshow (2000), the 
logistic regression model involving 𝑝 as a predictor variable is as follows: 

 

𝜋(𝑥) =  
exp(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝)

1+exp(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+ 𝛽𝑝𝑥𝑝)
                                                              (2) 

 
Maximum likelihood estimation (MLE) is a method used to estimate parameters in logistic regression. In maximizing the 

likelihood function, the MLE method provides an estimator parameter β and requires the data to follow a certain distribution. 
When 𝑦𝑖  spreads binomially, from equation (2), the likelihood function is obtained as follows: 

 

𝐿(𝛽|𝑦) = ∏ 𝑓(𝑦|𝛽)

𝑛

𝑖=1

 

= ∏ 𝜋𝑖

𝑦𝑖 
𝑁

𝑖=1

(1 − 𝜋𝑖)
1−𝑦𝑖  

= (𝜋𝑖)
∑ 𝑦𝑖(1 − 𝜋𝑖)

∑ 1−𝑦𝑖                                                       (3) 
 

Therefore, the likelihood function is obtained as follows: 
 

(𝛽|𝑦) = ∏
𝑛𝑖!

𝑦𝑖!(𝑛𝑖−𝑦𝑖)!

𝑁
𝑖=1 𝜋𝑖

𝑦𝑖 
(1 − 𝜋𝑖)𝑛𝑖−𝑦𝑖                                                     (4) 

Then, the maximum possibility 𝛽 can be obtained by setting each p + 1 in equation (4) to the same value as zero. 
Equation (4) can be written as follows: 

 

𝛽𝑀𝐿𝐸̂ =  (𝑋𝑇𝑊̂𝑋)
−1

𝑋𝑇𝑧̂                                                                     (5) 
 

where 𝑊̂ = 𝑑𝑖𝑎𝑔[𝜋𝑖̂(1 − 𝜋𝑖̂)] and z ̂ is the vector where the ith element has a value 𝑧̂𝑖 = log(𝜋̂𝑖) +  
𝑦𝑖−𝜋̂𝑖

𝜋̂𝑖(1−𝜋̂𝑖)
. 

 

2.2. Least absolute shrinkage and selection operator (LASSO) 
 

The least absolute shrinkage and selection operator (LASSO) method can be used to overcome multicollinearity 
problems. LASSO was introduced by Tibshirani (1996), where LASSO works to shrink the correlated coefficients (parameter β) 
to be exactly zero or close to zero. According to Hastie, Tibshirani & Wainwright (2015), parameter estimation in LASSO is as 
follows: 
 

𝜋𝑖 =  
1

1+exp (−βTxi
′)

                                                                                           (6) 
 

Lagrangian constraints (𝐋𝐈-norm) can be incorporated in estimating log-likelihood parameters in logistic regression. The 
combined log-likelihood equation for vector β is as follows: 
 

𝑙(𝛽) = 𝐿(𝛽⃓ 𝑦𝑖 , … , 𝑦𝑛) 

= ∑ [𝑦𝑖𝑙𝑛 (
1

1 + exp (−𝛽𝑇𝑥𝑖
′)

) + (1 − 𝑦𝑖) (
exp (𝛽𝑇𝑥𝑖

′)

1 + exp (−𝛽𝑇𝑥𝑖
′)

) ]

𝑛

𝑖=1

 

=  ∑ [(1 − 𝑦𝑖)𝛽𝑇𝑥𝑖
′  + ln (1 + exp(−𝛽𝑇𝑥𝑖

′)) ]𝑛
𝑖=1                                   (7) 

 

The combined equation between the log-likelihood and Lagrangian constraints produces the following equation: 
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𝑙(𝛽)    = − ∑ [(1 − 𝑦𝑖)𝛽𝑇𝑥𝑖
′  + ln(1 + (−𝛽𝑇𝑥𝑖

′))]𝑛
𝑖=1 − 𝜆 ∑ |𝛽𝑗|𝑝

𝑘                           (8) 
 

Therefore, we obtain logistic regression parameter estimates with LASSO 
 

𝛽𝜆
𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑙(𝛽) −  𝜆 ∑ |𝛽𝑗|𝑝

𝑗=1                                                       (9) 
 

𝝀 is the bias value in the LASSO method, where the λ value > 0. The λ value is obtained via several methods, including 
the cross-validation method (Tibshirani, 1996). 
 

2.3. Liu’s Method 
 

Liu's method is an alternative method of logistic regression in the form of a bias loss estimator and generalized direct 
estimator proposed for linear regression models by Liu (1993) to overcome multicollinearity problems. Compared with other 
methods, the Liu estimator has advantages, such as having a scalar mean square error (SMSE) value that is smaller than the 
ridge estimate. Therefore, according to Liu (1993), the use of an alternative estimation method where the resulting parameter 
can be useful as a linear function of the shrinkage parameter 𝑑 is recommended. 

The shrinkage parameter d can take values between zero and one, and when d is less than one, we have ‖𝛽̂𝑑‖ ≤

 ‖𝛽̂𝑀𝐿𝐸‖. Liu's method was further developed by Mansson et al. (2012) in the logistic regression model as follows: 
 

𝛽𝑑̂ =  (𝑋′𝑊̂𝑋 + 𝐼)
−1

(𝑋′𝑊̂𝑋 + 𝑑𝐼)𝛽̂𝑀𝐿𝐸                 (10) 
 

The estimates for the d value proposed by Hoerl & Kennard (1970) are as follows: 
 

𝑑1 = 𝑚𝑎𝑥 [0,   
𝑎̂𝑗 𝑚𝑎𝑥

2 −1

1

𝜆𝑗 𝑚𝑎𝑥
+𝑎𝑚𝑎𝑥

2̂
]                                                                  (11) 

 

Furthermore, the proposed estimator, which is based on the concepts outlined in Kibria (2003), is as follows: 
 

:𝑑2 = 𝑚𝑎𝑥 [0, 𝑚𝑒𝑑𝑖𝑎𝑛 
𝑎̂𝑗

2−1

1

𝜆𝑗 
+𝑎𝑗

2̂
]                                                            (12) 

 

𝑑3 = 𝑚𝑎𝑥 [0,
1

𝑝
∑ (

𝑎̂𝑗
2−1

1

𝜆̂𝑗 
+𝑎𝑗

2̂
)𝐽

𝑗  ]                                                             (13) 

 

Finally, the following estimator was proposed in which other quantiles in addition to the median were used and 
successfully applied by Khalaf & Shukur (2005). 
 

𝑑4 = 𝑚𝑎𝑥 [0, 𝑚𝑎𝑥  
𝑎̂𝑗 

2 −1

1

𝜆̂𝑗 
+𝛼̂𝑗

2
]                                                                         (14) 

 

𝑑5 =  𝑚𝑎𝑥 [0, 𝑚𝑖𝑛  
𝑎̂𝑗 

2 −1

1

𝜆̂𝑗 
−𝛼̂𝑗

2
]                                                                         (15) 

 

𝑑6 =  𝑚𝑎𝑥 [0, 𝑚𝑒𝑑𝑖𝑎𝑛  
𝑎̂𝑗 

2 −1

1

𝜆̂𝑗 
−𝛼̂𝑗

2
]                                                                      (16) 

 

2.4. Data and analysis 
 

In this study, the data used were simulation data with n = 25, 50, and 75 and independent variables used as many as 6 
variables (p = 6), with a correlation level between variables of 0.99 and 100 repetitions. Data simulation for data X via Monte 
Carlo simulation is based on McDonald & Galarneau (1975) with the following equation: 

 

𝑋𝑖𝑗 = (1 − 𝜌2)1/2𝑍𝑖𝑗 + 𝜌𝑍𝑖(𝑝+1)                                                           (17) 
 

where Z represents the data generated in the standard normal or normally distributed form and where N(0,1) and  are 
specified. The performance of the MLE, LASSO, and Liu methods used in this study was illustrated via simulation studies to 
show how this method can improve the estimation of logistic model parameters containing multicollinearity via R. The 
dependent variable Y is generated by the probability of logistic regression. 
 

𝑃(𝑦𝑖 = 1)𝑌 =  𝜋(𝑥) =
exp(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝)

1+xp(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝)
                     (18) 
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where 𝛽0= 0 and 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 1. The multicollinearity of the independent variables is calculated via the 
VIF. If the VIF value is > 10, it can be concluded that there is significant multicollinearity between the independent variables. 
The best method for estimating parameters is evaluated by the MSE and AIC. Next, the best method obtained will be applied 
to real data, namely, data on poverty levels in Indonesia, which consists of 6 independent variables and contains 
multicollinearity. 
 

3. Results 
 

To start the analysis, the first step involved simulating the data as described in the research methods section. After the 
data were generated, correlation values between independent variables were examined for each sample size used. The 
correlation values for n=25, 50 and 75 are presented in Table 1 below. 
 

Table 1 Correlation values between variables for n = 25, 50 and 75. 

n = 25 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 

𝑋1 1 0.9855553 0.9813981 0.9892030 0.9863767 0.9820822 
𝑋2 0.9855553 1 0.9847641 0.9876933 0.9917750 0.9873204 
𝑋3 0.9813981 0.9847641 1 0.9841272 0.9822016 0.9738643 
𝑋4 0.9892030 0.9876933 0.9841272 1 0.9859681 0.9864211 
𝑋5 0.9863767 0.9917750 0.9822016 0.9859681 1 0.9908091 
𝑋6 0.9820822 0.9873204 0.9738643 0.9864211 0.9908091 1 

n = 50 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 

𝑋1 1 0.9830985 0.9855550 0.9785363 0.9817809 0.9818400 
𝑋2 0.9830985 1 0.9819366 0.9799110 0.9799350 0.9807683 
𝑋3 0.9855550 0.9819366 1 0.9857661 0.9831067 0.9835635 
𝑋4 0.9785363 0.9799119 0.9857661 1 0.9765319 0.9754445 
𝑋5 0.9817809 0.9799350 0.9831067 0.9765319 1 0.9814711 
𝑋6 0.9818400 0.9807683 0.9835635 0.9754445 0.9814711 1 

n = 75 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 
𝑋1 1 0.9873363 0.9832745 0.9878074 0.9859102 0.9841967 
𝑋2 0.9873362 1 0.9873720 0.9882705 0.9890132 0.9852008 
𝑋3 0.9832745 0.9873720 1 0.9818524 0.9866369 0.9821433 
𝑋4 0.9878074 0.9882705 0.9818524 1 0.9868148 0.9821531 
𝑋5 0.9859102 0.9890132 0.9866369 0.9868148 1 0.9853063 
𝑋6 0.9841967 0.9852008 0.9821433 0.9821531 0.9853063 1 

 

Table 1 shows that the independent variables have high correlation values above 0.5. This shows that there is a high 
possibility that there is a strong relationship between variables, which allows for multicollinearity between variables. For this 
reason, an evaluation was carried out on the VIF values between independent variables for n = 25, 50, and 75. The results of 
the analysis can be seen in Table 2. 
 

Table 2 VIF values. 

n Independent Variable 

 X1 X2 X3 X4 X5 X6 
25 60.1037 86.6308 44.8282 81.0369 104.1233 72.4655 
50 50.6109 44.7655 67.2899 41.7368 42.2690 43.5353 
75 61.2666 79.4079 52.0325 61.8288 69.9952 47.1938 

 

Table 2 shows that VIF values > 10 were obtained for all the independent variables in all the sample data studied (n=25, 
50, 75). This means that multicollinearity occurs due to the existence of independent variables in each sample size used. On 
the basis of the results of the correlation test and the VIF values above, it can be concluded that there is multicollinearity 
between the independent variables of n = 25, 50, and 75. This is in accordance with what is expected in these research data. 
After appropriate data are obtained, the next step is to estimate the parameters via the MLE, LASSO and Liu methods and 
compare the results on the basis of the standard error (SE) value of each estimator for n=25, 50, and 75. The results of the 
analysis can be seen in Table 3 below. 

From Table 3, it can be concluded that the MLE, LASSO, and Liu estimators at n = 25, 50, and 75 have varying 𝛽̂𝑝 values. 

Compared with that of the MLE method, the estimated value of 𝛽̂𝑝 in the LASSO and Liu methods is closer to the actual 

parameter, namely, 𝛽̂𝑝 =1. However, if we look in detail at the SE value for the Liu method, the SE value for Liu is smaller than 

the SE values for the MLE and LASSO methods. This shows that the estimation of the parameters 𝛽̂1 − 𝛽̂6  via the Liu method 
is much better than that via the MLE and LASSO methods. The smaller the SE value of a parameter is, the better it is at 
estimating the parameter, especially in data that contain multicollinearity, and the parameter estimator is good for use in the 
model used. In addition, to ensure the results, the MSE and AIC values of the MLE, LASSO and Liu methods are evaluated to 
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determine the best method. The results of the analysis of the MSE and ACI values are shown in Table 4. 
 

Table 3 Values of 𝛽̂𝑝 and SE in the MLE, LASSO, and Liu methods for n = 25, 50 and 75. 

n = 25 β̂p SE 

 MLE LASSO LIU MLE LASSO LIU 

β̂1 1.15e+14 1.1168 -1.24e – 05 19.389348 0.9573 0.0999 

β̂2 -1.07e+12 0.6428 -3.16e – 07 8.15527051 4.4381 0.0999 

β̂3 3.28e+ 13 2.0811 -2.32e – 06 19.4251196 0.0157 0.0999 

β̂4 -1.40e+14 0.6656 -1.24e – 05 5.78962215 2.884 0.0996 

β̂5 -6.59e+12 0.8240 -2.28e – 08 37.2348995 0.1000 0.0999 

β̂6 1.002e+14 2.8538 -1.23e - 08 15.3285868 1.4645 0.1000 

n = 50 β̂p SE 

MLE LASSO LIU MLE LASSO LIU 

β̂1 125.5341 0.4807 0.0017 16.5464 45.0760 0.09999014 

β̂2 64.3883 0.7259 0.0001 4.7514 3.4023 0.0999736 

β̂3 276.4802 1.1891 0.0004 45.0222 156.6259 0.09988864 

β̂4 2.9544 1.6238 0.0018 5.6277 11.7517 0.09999941 

β̂5 -145.624 2.1738 5.12e – 05 15.0407 0.0001 0.09999941 

β̂6 82.0230 2.1177 1.50e – 05 3.6686 176.3854 0.1 

n = 75 β̂p SE 

MLE LASSO LIU MLE LASSO LIU 

β̂1 3.2821 0.9562 0.0015 0.71536876 17.9985 0.09999991 

β̂2 18.9339 1.1492 0.0003 3.86477248 0.1000 0.09999903 

β̂3 4.3312 1.3643 0.0005 12.0116452 16.6810 0.09999583 

β̂4 16.9225 1.7549 0.0016 5.92102649 1.7256 0.1000 

β̂5 6.7331 0.9265 5.05e – 06 3.12660553 3.1920 0.1000 

β̂6 12.6864 1.0088 3.72e – 06 5.06832898 4.8707 0.1000 
 

Table 4 MSE values for MLE, LASSO, and LIU. 

Sample Sizes MSE AIC 

 MLE LASSO LIU MLE LASSO LIU 
n =25 267.36 1.3455 0.0599 14.05 -48.2964 -59.4711 
n =50 349.7437 1.3903 0.0599 14.03 -105.0664 -109.4559 
n =75 343.0046 1.2709 0.0598 14.00 -172.44 -177.8635 

 

In Table 4, it can be seen that at n = 25, 50, and 75, the smallest MSE value was obtained via the Liu method compared 
with the MSEs of the MLE and LASSO methods. The average MSE value for Liu's method is 0.0599 for the three data samples. 
Therefore, the best method that can be used to overcome multicollinearity is the Liu method. This is because the smaller the 
MSE value of a model is, the better and more accurate the modeling value obtained will be. Apart from that, the AIC value of 
the Liu method was also proven to be smaller than those of MLE and LASSO. The larger the sample size is, the smaller the AIC 
value obtained. Therefore, the best method that can be used to overcome multicollinearity on the basis of the MSE and AIC is 
the Liu method. 
 

4. Discussion 
 

4.1. Application of Liu's method to real data 
 

The real data used in this research are secondary data obtained from the Central Statistics Agency, Indonesia. The 
dependent variable (Y) is a nominal variable that has only two categories or levels, namely, 0/poor and 1/not poor. Moreover, 
the independent variable (X) consists of 6 variables, namely, population density (𝑋1), the human development index (𝑋2), the 
average length of schooling (𝑋3), per capita expenditure (𝑋4), the literacy rate (𝑋5) and life expectancy (𝑋6). Before the data 
were analyzed via Liu's method, multicollinearity was first checked. Table 5 shows the correlations between the independent 
variables. 

Table 5 shows that there is a high correlation between 𝑋4 and 𝑋1, 𝑋2 and 𝑋4, and 𝑋2 and 𝑋3. This finding indicates that 
the intervariables have a strong relationship and allows the variables to have multicollinearity. To ensure this, the VIF values 
are checked for each independent variable: X1 = 3.10, X2 = 33.44, X3 = 12.69, X4 = 12.03, X5 = 2.48 and X6 = 4.87. The variables 
X2, X3, X4 and X5 have a VIF value of > 10, which indicates that the variable contains multicollinearity. Next, the β_p and SE 
parameters were estimated on the poverty level percentage data in Indonesia via the best method resulting from the 
simulation above, namely, the Liu method. The parameter estimation results from data on the percentage of poverty level in 
Indonesia are presented in Table 6. 
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Table 5 Correlation between Independent Variables and Poverty Level Data in Indonesia. 

Correlation 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 

𝑋1 1 0.5700 0.5492 0.7099 0.1661 0.2657 
𝑋2 0.5700 1 0.8215 0.8535 0.3921 0.6806 
𝑋3 0.5492 0.8215 1 0.6357 0.6445 0.3812 
𝑋4 0.7099 0.8535 0.6357 1 0.2641 0.4114 
𝑋5 0.1661 0.3921 0.6445 0.2641 1 0.2035 
𝑋6 0.2657 0.6806 0.3812 0.4114 0.2035 1 

 

Table 6 𝛽̂𝑝 and 𝑊𝑖 for poverty level data in Indonesia. 

Variable Liu Method X1,0.05
2  

 β̂p Wi  

β̂1 1.8014 505.2514 3.841 

β̂2 -0.3443 1519.193 

β̂3 -0.3444 6471.665 

β̂4 1.8014 13390 

β̂5 -0.3443 2828.419 

β̂6 -0.3443 678.9153 
 

Table 6 gives the estimated values of 𝛽̂1--𝛽̂6 for the Liu method. On the basis of these values, the logistic regression 
model for poverty level percentage in Indonesia based on Liu's method is as follows: 
 

𝑌̂ =1.8014   - 0.3443𝑋2 - 0.3443𝑋3 + 1.8014𝑋4 - 0.3443𝑋5 - 0.3443𝑋6       
 

Next, parameter testing was carried out on the model to determine which independent variables influence the 

percentage of poverty level in Indonesia via the Wald test with H0: β̂i = 0; H1: β̂i  ≠ 0 and the critical value of the Wald test= 
3.841. Reject H0  if Wi  >  X1,0.05

2 . From the results of calculating the Wald value for each independent variable presented in 

Table 1 above, it can be concluded that all variables (X1, X2, X3, X4, X5, and X6) have Wi  >  X1,0.05
2 = 3.841. All the variables, 

namely, population density, the human development index, the average length of schooling, per capita expenditure, the 
literacy rate, and life expectancy, significantly affect the poverty level of people in Indonesia. 

The variables that influence poverty levels in Indonesia from the test results above will be explored more deeply by 
examining their relationships one by one. The first variable that influences the level of poverty in Indonesia is the population 
density. The population density of a country can increase the number of productive ages or workers. As the workforce 
continues to grow, unemployment will increase, and the number of people who exploit nature because they are unable to 
meet their daily needs will increase, which will automatically affect the level of poverty in the country (Dita & Legowo, 2022). 

The second variable is the human development index, which has a significant influence on poverty levels in Indonesia. 
This finding is in line with previous research showing that the human development index can increase the percentage of poverty 
level in Indonesia (Mukhtar et al, 2019). The human development index is a measure of quality of life. Quality of life is measured 
on the basis of three basic dimensions of human development achievements, namely, a long and healthy life, knowledge, and 
a decent life. Health dimensions are measured via life expectancy at birth. Moreover, the combination of the literacy rate and 
average years of schooling is a measure of the knowledge dimension and is an indicator of people's ability to purchase a number 
of basic needs, which is calculated from the average amount of expenditure per capita as an income approach from 
development achievements toward a decent life. 

Furthermore, a variable that influences poverty levels in Indonesia is the average length of schooling. The results of this 
research show that the average length of schooling influences poverty levels in Indonesia. This finding is in accordance with 
previous research, which also shows that there is a very strong relationship between the average length of schooling and the 
percentage of poor people, namely, the higher the average number of years of schooling is, the lower the percentage of poor 
people (Asro & Ahmad, 2018). This also occurs because the average length of schooling is the factor most considered in 
increasing the human development index (Listiani, et al., 2022). 

Next is the per capita expenditure variable for all households in Indonesia for personal consumption, which also has an 
effect on the poverty level in Indonesia. This is obvious since per capita expenditure is closely related to income level. If the 
income level is low, then it cannot meet the expenses needed for living needs. The results of this study are the same as the 
results of previous research, which showed that average per capita expenditure had a significant influence on poverty level 
levels in 2014 (Setiawan & Adjim, 2017). Finally, the results of the model also show that literacy rates and life expectancy rates 
are factors that can reduce poverty rates in Indonesia, where literacy rates are the proportion of the population of certain age 
groups who have the ability to read and write in Latin letters, Arabic letters, and other letters. The higher the literacy rate is, 
the more the poverty rate decreases significantly. The quality of good human resources positively affects a country's economic 
progress. Moreover, life expectancy is an important parameter for assessing the health of individuals in an area. With an 
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increase in life expectancy, people have a greater life expectancy, which has the potential to increase economic opportunities 
to achieve higher incomes (Johri & Jain, 1984; Messias, 2003). 
 

5. Conclusions 
 

On the basis of the results of research using simulation data with n=25, 50, and 75, the Liu method is the best method 
for solving multicollinearity problems because the MSE value of the Liu method is smaller than the MSE values of the MLE and 
LASSO methods. In addition, Liu's method for poverty level data in Indonesia revealed that population density, the human 
development index, the average length of schooling, per capita expenditure, the literacy rate, and life expectancy significantly 
influence poverty levels in Indonesia. These results suggest that Indonesia needs improved education to obtain human 
resources that are able to compete both now and in the future. For future research, this method can be applied in different 
contexts and data.  

 

Ethical considerations 
 

Not applicable. 
 

Conflict of Interest 
 

The authors declare no conflicts of interest. 
 

Funding 
 

This research did not receive any financial support. 
 

References 

Agresti, A. (2002). An Introduction to Categorical Data Analysis. 2nd Edtion. John Wiley & Sons, Inc. 

Asro, A., & Ahmad, A. (2018). Analysis of factors that affect poverty level in Indonesia. ESPACIOS. 39 (45), 14. 
http://www.1.revistaespacios.com/a18v39n45/a18v39n45p14.pdf 

Central Bureau of Statistics. (2024). Poverty Profile in Indonesia 2023.  https://www.bps.go.id/ 

Dita, C. Y. E., & Legowo, M. (2022).  Analysis of population density that affects poverty and environmental degradation. Proceedings of the 2022 National 
Seminar on Social Sciences (SNIIS). Department of Social Sciences FISH, State University of Surabaya. 
https://proceeding.unesa.ac.id/index.php/sniis/article/view/34. 

Hastie, T., Thibsirani, R., & Wainwright, M. (2015). Statistical Learning with Sparsity the LASSO and Generalizations. John Wiley & Sons, Inc. 

Herawati, N., Nisa, K., & Nusyirwan. (2020). Selecting the Method to Overcome Partial and Full Multicollinearity in Binary Logistic Model. International Journal 
of Statistics and Applications, 10(3), 55-59. doi:10.5923/j.statistics.20201003.01 

Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1), 55-67. 
https://doi.org/10.2307/1267351 

Hosmer, D. W., & Lemeshow, S. (2000).  Applied Logistics Regression. John Wiley & Sons, Inc. 

Jahufer, A. (2013)..Detecting Global Influential Observations in Liu Regression Model. Open Journal of Statistics, .3(1), 5-11. 
https://doi.org/ 10.4236/ojs.2013.31002 

Johri, C.K., & Jain, B.K. (1984). Poverty level, Literacy and Life Expectancy: A Taxonomic Analysis.  Indian Journal of Industrial Relations, 20(2), 211-221. 
https://www.jstor.org/stable/i27768806 

Khalaf, G., & Shukur, G. (2005). Choosing Ridge Parameter for Regression Problems. Communications in Statistics- Theory and Method, 34(5), 1177-1182. 
https://doi.org/10.1081/STA-200056836 

Kibria, B. M. G. (2003). Performance of Some New Ridge Regression Estimators. Communications in Statistics Simulation and Computation, 32(2), 419-435. 
https://doi.org/10.1081/SAC-120017499 

Listiani, N., Zulfikar, R., Jaelani, A., & Susanto, D.  (2022) The Years of Schooling Contribution as Factors That Most Considered in Increasing Human Development 
Index. International Journal of Educational, Research & Social Sciences, 3(4), 1599-1606. https://doi.org/10.51601/ijersc.v3i4.431 

Liu, K. (1993). A New Class of Blased Estimate in Linear Regression. Communications ins Statistics- Theory and Method, 22(2), 393-402. 
https://doi.org/10.1080/03610929308831027 

Mansson, K., Kibria, B. M. G, & Shukur, G. (2015). A restricted Liu estimator for binary regression models and its application to an applied demand system. 
Journal of Applied Statistics, 43(6),1-9. https://doi.org/10.1080/02664763.2015.1092110 

Mansson, K., Kibria, B. M. G,  & Shukur, G. (2015). Performance of Some Weighted Liu Estimators for Logit Regression Model: An Application to Swedish 
Accident Data. Communication in Statistics- Theory and Methods. 44(2). 363–375. https://doi.org/10.1080/03610926.2012.745562 

Mansson, K., Kibria, B. M. G., & Shukur, G. (2012). On Liu estimators for the logit regression model.  Econ. Modell, 29, 1483–1488. 
https://doi.org/10.1016/j.econmod.2011.11.015 

McDonald, G. C., & Galarneau, D. I. (1975). A Monte Carlo Evaluation of Some Ridge-Type Estimators. Journal of the American Statistical Association, 70(350), 407-416. 
https://doi.org/10.1080/01621459.1975.10479882 

Messias, E. (2003). Income inequality, illiteracy rate, and life expectancy in Brazil. Am J Public Health. 93(8):1294-1296. 
https://doi.org/10.2105/AJPH.93.8.1294 

Mukhtar, S., Saptono, A., & Arifin, A.S. (2019). The Analysis of the Effects of Human Development Index and Opened Unemployment Levels to the Poverty 
level In Indonesia. Jurnal Ecoplan, 2(2), 77-89. 

https://www.malque.pub
https://doi.org/10.31893/jabb.21001
https://www.malque.pub/ojs/index.php/msj
https://www.bps.go.id/
https://www.scirp.org/journal/articles?searchcode=Aboobacker++Jahufer&searchfield=authors&page=1
http://dx.doi.org/10.4236/ojs.2013.31002
https://www.jstor.org/stable/i27768806
https://doi.org/10.1081/STA-200056836
https://doi.org/10.1081/SAC-120017499
https://doi.org/10.51601/ijersc.v3i4.431
https://doi.org/10.1080/03610929308831027
https://doi.org/10.1080/02664763.2015.1092110
https://www.researchgate.net/journal/Communication-in-Statistics-Theory-and-Methods-1532-415X?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicHJldmlvdXNQYWdlIjoicHVibGljYXRpb24iLCJwb3NpdGlvbiI6InBhZ2VIZWFkZXIifX0
https://doi.org/10.1016/j.econmod.2011.11.015
http://dx.doi.org/10.2105/AJPH.93.8.1294


 
8 

 

  

 

Herawati et al. (2025) 

https://www.malque.pub/ojs/index.php/msj 

 

Saputri, S.A., Herawati, N., Sutrisno, A. , Nusyirwan, & Nisa, K. (2024). Comparison of MLE, Lasso, and Liu Estimator Methods to Overcome Multicollinearity In 
Multinomial Logistic Regression: Simulation Study.  Global Scientific and Academic Research Journal of Multidisciplinary Studies. 3(5), 08-12. 

 Setiawan, A. V., & Adjim, F. (2017).  Determinant of Poverty level in Indonesia.  Economics Development Analysis Journal , 6(1), 22-
29.   https://doi.org/10.15294/edaj.v6i1.22197 

Tibshirani, R. (1996). Regression Shrinkage and Selection via LASSO. Journal of the Royal Statistical Society, 58(1), 267-288. : 
https://www.jstor.org/stable/2346178 

 

https://www.malque.pub
https://doi.org/10.31893/jabb.21001
https://www.malque.pub/ojs/index.php/msj
https://journal.unnes.ac.id/sju/edaj/issue/view/1278
https://doi.org/10.15294/edaj.v6i1.22197

