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Shear wave velocity model using HVSR inversion
beneath Bandar Lampung City
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Key points:

* The study found stiff soil layers at depths of approximately 5 m with a value of vg < 330 m/s, and bedrock layers with a
velocity of over 1250 m/s were visible at a depth of 100 m beneath Bandar Lampung city.

* The city of Bandar Lampung is divided into two zones based on the vg structure, with a trending NW-SE boundary.

* The north-central-eastern part has higher vq values and is dominated by hard rock, whereas the south-central-western part
has low-to-moderate vg values and is a groundwater basin area with a thick sediment layer.

» Fault structures are clearly visible in both the lateral and vertical sections, indicating a complex fault structure throughout
the city.

ABSTRACT

The horizontal-to-vertical spectral ratio (HVSR) method has been used to characterize site-effect parameters that are
indispensable in seismic hazard and risk-reduction studies in urban areas and rapid land-use planning. This method is widely
used because it is the cheapest and simplest geophysical method for the acquisition and processing stages. In subsequent
developments, the HVSR method has been widely used to determine elastic rock parameters, particularly shear wave velocity
(vg), through the HVSR curve inversion process. Furthermore, the vg structural model can be used to delineate the presence of
complex geological structures, particularly faults and sedimentary basins. Bandar Lampung is a city in Lampung Province with
many fault structures and groundwater basins to the south. There are 83 HVSR measurement points around Bandar Lampung for
delineating the presence of fault structures and groundwater basins. We produced the HVSR curve from the measurement results
and then performed an inversion process using the particle swarm optimization algorithm to obtain vg for the depth profile.
Subsequently, from this profile, we produced a two-dimensional (2D) lateral and vertical model. The mean vy value was
calculated from all the measurement points, and we found stiff soil layers reaching depths of approximately 5 m, with a value of
vg <330 m/s. A bedrock layer with a velocity exceeding 1250 m/s was visible at a depth of 100 m. Based on the 2D model, the
vg structure shows that the city of Bandar Lampung is divided into two zones, with a NW-SE boundary. The north-middle-
eastern part of the city consists of harder rocks. This harder rock is characterized by extremely high vg values, starting from a
depth of 50 m. In contrast, the south-middle-west exhibits a low-moderate vq anomaly associated with groundwater basins SW
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of the city. From the 2D vy structural model, fault structures can be found along the city, characterized by a contrast of vq values

from low to medium and from medium to high.

Keywords: shear wave velocity; HVSR; fault structures; groundwater basin; Bandar Lampung City
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bandar lampung city. Earthq Sci 37(4): 337-351, doi: 10.1016/j.eqs.2024.04.004.

1. Introduction

Site characterization is a powerful tool that provides
information on basic seismic risk and describes boundary
zones vulnerable to the effects of local earthquakes.
Information obtained from site characterization includes
fundamental frequency (f)), site amplification (4,), and
shear wave velocity (vg). This information is essential for
planning strategies for seismic risk mitigation by
subdividing potentially earthquake-prone areas into zones
based on the same geological and geophysical properties.
Thus, seismic responses can vary inside urban settlements
owing to lateral and vertical heterogeneities in the geologic
setting (Hartzell et al., 1997; Panzera et al., 2017; Toni et
al., 2019). In areas with complex geologic settings, where
manufactured structures interfere with the reconstruction
of the subsoil geometry, a detailed geologic survey cou-
pled with knowedge of shear wave velocity and fundamen-
tal frequency is important (Panzera et al., 2019). In
addition, it is crucial to evaluate the quantitative seismic
risk and estimate the site amplification factors precisely
because the effect of site amplification is significant, parti-
cularly at sites with thick and soft sediments where most
urban environments have been built (Kawase et al., 2019).

Local site conditions play a fundamental role in
earthquake damage distribution and refer to the effects of
the local geological surface and subsurface structure
characteristics on seismic ground motion. The seismic
ground response is related to the sediment depth (%) and
shear wave velocity (vg) (Aki and Richards, 2002; Stanko
et al., 2017), expressed by the fundamental/natural
frequency and site amplification of the sediment. A low
fundamental frequency indicates thick sedimentary layers
and an extremely soft material. For thin sedimentary
layers, the fundamental frequency is high. Local site
amplification refers to the amplitude increase in seismic
wave propagation through surface geological structures.
The peak amplitude (4,) is related to the contrast
impedance between the surface layer and underlying
bedrock, lateral heterogeneities, material damping of the
sediment, and characteristics of the incident wavefield.

Studies using ambient noise measurements (microtre-
mors) have been widely conducted using the horizontal-to-

vertical spectral ratio (HVSR) technique. It provides
reasonable estimates for determining the natural frequency
of soil (Mucciarelli and Gallipoli, 2001). The HVSR
method can be applied to various scientific disciplines,
including geology (Mantovani et al., 2018), seismology
and site micro-zonation study (D’Amico et al., 2008;
Gallipoli et al., 2019; Paolucci et al., 2015; Scherbaum et
al., 2003), engineering (Mucciarelli and Gallipoli, 2001),
fault and subsoil investigations (Akkaya, 2015; Akkaya
and Ozvan, 2019; Harutoonian et al., 2013; Khalili and
Mirzakurdeh, 2019; Maresca et al., 2018; Setiawan et al.,
2018; Zaenudin et al., 2022), and archaeology (Abu Zeid
et al., 2016, 2017a, b; Bignardi et al., 2017; Wilken et al.,
2015).

HVSR applications in the geotechnical field have also
been developed to obtain a one-dimensional (1D) layer
model described in the shear wave velocity-to-depth
profile (Raptakis and Makra, 2010). This shows that the
HVSR is sufficient for obtaining the shear wave velocity
structure model at a local site. However, if a priori
information is known, such as the range of vy and
thickness of the layers around the research area, the
accuracy of the HVSR curve inversion increases (Féh et
al., 2003). Several other geophysical methods have been
used to determine the thickness and number of layers in
the HVSR curve inversion process (Pilz et al., 2010;
Maghami, 2021; Rahman et al., 2016; Pamuk et al., 2017).

In this study, the shear wave velocity structure in
Bandar Lampung, located in Lampung Province (southern
Sumatra Island), was investigated. Bandar Lampung has a
relatively complex geological structure, with many fault
structures crossing the city and various rock formations.
Most of the fault structures are northwest-to-southeast
(NW-SE) (Figure 1). Therefore, this study focused on
mapping the structure of vy and estimating the presence of
faults from the vq cross sections. In addition, this study
focused on the thickness of the sediment layer in Bandar
Lampung. According to Zaenudin et al. (2020), gravity
data show that the southwestern area toward Mount
Betung contains a thick layer of sediment. In this area, the
groundwater basins are located at a depth of 800 m.

Microtremor data obtained using the HVSR method
were used to determine the seismic site characteristics
(dynamic properties) of subsurface soil layers, expressed
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Figure 1.

Regional geological structure of the Sumatra fault system along the Semangka and Lampung segment (Barber et

al., 2005; Darmawan et al., 2021; Mangga et al., 1993). The red box indicates the research area located in Bandar Lampung

City.

by the fundamental/natural frequency (f)). Then, we
inverted the HVSR curve to obtain vg for the depth profile
around Bandar Lampung. In the inversion stage, we used
the particle swarm optimization (PSO) inversion algorithm
because this method converges quickly and is relatively
stable (Farduwin and Yudistira, 2021). Although there are
many sophisticated and reliable inversion algorithms for
HVSR curve inversion, the inversion method using the
PSO algorithm is sufficient for identifying subsurface
structures. Using the PSO inversion algorithm, Zaenudin et
al. (2022) determined the local fault structure based on the
vg structure obtained from the HVSR curve inversion. To
increase the best model of the obtained inversion results,
we correlated them with the natural frequency (f)) as a
reference to estimate the thickness of the sediment layer
and depth of the bedrock, as suggested by Ibs-von Seht and
Wohlenberg (1999).

2. Geological setting

The study area is located on the southern tip of
Sumatra Island in the southern part of Lampung Province.
Sumatra is one of the largest islands in Indonesia, with
complex geological conditions. The structure of the island
resulted from the subduction of the Indian Plate beneath
the Eurasian Plate. This subduction has occurred since the
Cenozoic Period, forming a subduction zone along the
collisional boundary (McCaffrey, 2009) and causing a
changing the position of Sumatra Island, which initially
trended west-east to NW-SE (Hamilton, 1979). These
conditions make Sumatra an area of high seismicity. The
deformation process on Sumatra began during the
Oligocene-Miocene. This led to the formation of the

Sumatra Fault, which is a horizontal fault that remains
active today and forms several fault segments (Barber et
al., 2005). The Sumatra Fault extends from Aceh (northern
tip of Sumatra) to Lampung (southern tip) and is a dextral
strike-slip fault that moves obliquely to the northwest
(Sieh and Natawidjaja, 2000).

Regionally, the study area lies within the Sumatra fault
system segment, extending from the pull-apart basin zone
in Suoh to the Semangka and Lampung Bay segments. The
Semangka fault represents the Semangka Bay segment. It
continues to the Sunda Strait, whereas the Lampung-
Panjang and Tarahan faults represent the Lampung Bay
segment and continue to the Rajabasa Mountains. Sinistral
strike-slip faults dominate the fault segment around
Lampung Bay. This fault movement is greatly influenced
by the oblique subduction of the Eurasian Plate in the
Sunda Arec.

Bandar Lampung is located 80 km (western research
area) from the Semangka Fault earthquake source line. The
Lampung-Panjang and Tanjung-Karang faults are also
located in this city with the same orientation and
characteristics as the Semangko Fault. Based on the
geological map of Tanjung Karang (Mangga et al., 1993),
Bandar Lampung consists of three main strata (Figure 2):
The Pre-Tertiary consisting of the bedrock of metamorphic
rock (basement of Bandar Lampung) is distributed in
eastern and southeastern research area, and intrusive
igneous rock is distributed in the eastern area; the Tertiary
strata are composed of the magmatic intrusive igneous
rock in the western part and sedimentary rock in the
southeastern-northeastern and western-southwestern parts;
and the Quaternary strata are composed by sedimentary
rock, surface deposits (alluvium), and young volcanic
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Figure 2.

Geological map of Bandar Lampung consisting of surficial deposits (QA: cobbie, pebble, sand, clay, and peats),

volcanic rock (QHV: andesite-basalt lava, breccia, and tuff; Qti: pumiceous tuff, rhyolitic tuff, welded tuff, tuffaceous
claystone, and tuffaceous sandstone), sedimentary rock (Tpot: welded tuff and breccia with intercalations of chert),
metamorphic rock (PZGS: green amphibole-schist and dioritic orthogneiss amphibolites), and intrusive rock (Tmgr: granite
and granodiorite). The red lines indicate the trajectory of cross sections 4 to F' and the black dots are HVSR acquisition points

(modified from Mangga et al., 1993).

deposits distributed in the part of central to the western
research area.

Bandar Lampung contains four geomorphological
units: structural, volcanic, denudational, and fluvial
(Mulyasari et al., 2019). The structural unit is associated
with the Lampung-Panjang and Tanjung-Karang faults,
which played a role in the changing geomorphology. The
volcanic unit was controlled by recent volcanic activity
(Betung Volcano) and magnetism. Denudational units
were controlled by erosion and are characterized by a
lithology or rock formation on a hill morphology that
differs from the surrounding lithology. Fluvial units are the
products of recent geological processes. They are
characterized as unlithified and sedimentary materials
distributed in a plain or flat relief (Rustadi et al., 2022).

3. HVSR theory

HVSR is a method based on ambient seismic noise
measurements. Ambient noise, commonly called microtre-
mors, can appear anywhere on the surface of the Earth and
is related to atmospheric phenomena and anthropogenic
activities (Asten, 1978; Gutenberg, 1958). A microtremor
is characterized by tiny wave oscillation (107 to 1072 mm)
with highly attenuated spectral components and can be

measured by passive recording techniques. During propa-
gation from source to receiver, elastic waves encounter
attenuation—generally caused by geometric factors (increa-
sed wavefront dimensions)—and are inelastic because not
all rocks are perfectly elastic, particularly sediments.

The HVSR method is simple and reliable, estimating
natural/dominant frequency values by measuring the three
components of microtremors (NS, EW, and vertical).
Owing to its simplicity in measurement and processing,
this method has developed rapidly. It has been widely
applied in many areas to determine site effects and
microzonation maps, particularly in densely populated
areas (urban settlements). This method was first proposed
by Nogoshi and Igarashi (1970, 1971), then developed by
Nakamura (1989), and is commonly referred to as the
Nakamura Technique. In 1989, Nakamura stated that the
peak amplitude of the HVSR was the result of multiple
body-wave reflections. Nevertheless, Nakamura (2000)
revealed a theory stating that there is a combination of
surface and body waves that affects the shape of the HVSR
curve and depends on the viscoelastic parameters of the
layers, distance, and distribution of sources (Sylvette et al.,
2000).

The HVSR processing stage obtains an HVSR curve at
a single point in the measurement location. The three
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recorded seismic components are divided into several
windows based on the desired window length. Then, on
each of these windows, a Fourier transform is performed
for all components, smoothing the curves, and calculating
the ratio between the horizontal and vertical components.
The Fourier spectral ratio between the horizontal and
vertical (H/V) components of the microtremors can be
expressed as

HIV (@) = {[S2(@)s + 5 @l | 125%@)) . ()

where [S (@)xs and S (W)ew] are the spectra of two
horizontal components, [S (w)y] is the spectrum of the
vertical component (¥), and w is the angular frequency.
The average value was calculated from all curves to obtain
the HVSR curve as a function of frequency. The HVSR
curve consists of one or more peaks describing the
subsurface layer as several layers of sediment above the
bedrock layer. In general, we assume that there is more
than one peak amplitude in the HVSR curve. In this case,
the peak with the lowest frequency is called the resonant
fundamental frequency (f;).

There are two types of parameters at the peak of the
curve: the peak amplitude and frequency. The peak
frequency, where the peak amplitude occurs, is referred to
as the natural or fundamental frequency (f;). In contrast,
the peak amplitude (4,) is directly related to the speed
contrast, i.e., a sharp speed contrast produces a large H/'V
peak amplitude and vice versa. The peak amplitude in the
HVSR curve is also caused by the difference between the
top layer of the sediment and the rock layer below it
(SESAME, 2004). The HVSR method is suitable for areas
with low-to-moderate seismic activity (Kyaw et al., 2015).

4. Methodology

Microtremor measurements were conducted in Bandar
Lampung City using a three-component seismometer at 83
measurement point locations (Figure 2) for 25-30 min
with a sampling time of 0.01 s. Determining the measure-
ment parameters was necessary to reduce the disturbance
at the measurement location. We used a Butterworth filter
of order two with a cutoff frequency of approximately
0.3 Hz to reduce the effect of wind around the
measurement location and drift caused by the tool
(Mihaylov et al., 2016, 2019). During processing, we used
Geopsy and Octave software concerning the standard
HVSR processing procedure to obtain a reliable curve
(Nakamura, 1989; SESAME, 2004). The processing
parameters include a frequency filter range of 0.5-20 Hz
and window length of 30 s with 25% overlap. (Maghami et
al., 2021). We then applied an antitrigger algorithm to

eliminate transient or very low amplitude signals (short-
term average (STA)=1 s; long-term average (LTA)=30 s)
with STA/LTA of 1.0-3.5. We used a filter with a
smoothing coefficient of 20 to remove the effects of
modulation and spikes with extreme values on the HVSR
curve (Konno and Ohmachi, 1998). The following
equation is used to calculate the HVSR curve for each
window:

HVSR = M

14622

H(f)= E(f +N (), 2)

where H(f) = amplitude spectra of the horizontal
component; V(f) = amplitude spectra of the vertical
component; E(f) = amplitude spectra of EW component;
N(f) = amplitude spectra of NS component;

The spectral ratio between the horizontal and vertical
components of ambient noise shows a peak value at a
certain frequency, which is related to the resonant
frequency (f;) of the soil layer thickness at a site (Ibs-von
Seht and Wohlenberg, 1999):

h=af’ (3)
where / is the depth of the sediment layer (Quaternary),
and a and b are the correlation coefficients related to the
geometry and geotechnical properties of a site. From
Equation (3), it is difficult to determine the suitability of
the correlation coefficient for the geometry of the dynamic
properties of the soil layers. Therefore, the HVSR curve
inversion was used to determine the thickness of each layer
at each site.

In the HVSR curve inversion stage, we applied the
PSO algorithm to estimate the value of the shear wave
velocity (vg) against depth (). This algorithm has
advantages in terms of geophysical data inversion because
it converges quickly and is relatively stable (Farduwin and
Yudistira, 2021; Farduwin et al., 2021). Zaenudin et al.
(2022) compared the PSO and GA algorithms using
synthetic modelling and found that PSO is faster, provides
the best solution, and is more stable. PSO is an inversion
technique that imitates the social behavior of bird swarms
(particles or individuals) to find food (Kennedy and
Eberhart, 1995). Flocking behavior and individual intelli-
gence affect the behavior of each particle in finding food
or a target. When an individual finds the closest target, all
others head toward it.

There are five stages in the PSO algorithm. First, we
determine the number of individuals to generate the search
space of the model parameter (where X ;, < X < X ).
The second stage generates an initial population of X using
random numbers in the model parameter search space
determined in the first stage. We then obtain the initial
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populations x{,xJ,x3,---.,x’; where i = iteration, j = n-th
individual, and n = number of individuals. For the HVSR
inversion, the model parameters consisted of # and vg. The
velocity (v) of each individual was set to zero in the initial

iteration (V) =v)=v]=---=1=0). The third stage
involves calculating the objective functions f[x)]; f[x)];
fIx31; -5 fIx)]. In this study, we used norm-2 (|le|[’) to

calculate the objective function. In the next stage, we
determine parameters / and g, where / is the best position
of the individual in the given iteration. Thus, g is the best
position that a particle can reach within a group. The best
positions / and g, are determined from the smallest
objective function (f, ;). In the final stage, we update the v
and x values for each iteration with the following equation:
vi(k+1) = wv; (k) + ¢ (g (k) — x; (k) + ¢, (1; (k) — x; (k)
Xi(k+1)=x;(k)+vi(k+1). O]
x(1) = (x (1= Ar) +v(t)At,

v(t)—v(t—Ar)
At

_v(t=AD+ o Ar(g (1 —ty) — x(t — At))

where
@1 = nag, 0 = nag i, — (0, )w,a,a, €R 5)

w is the inertia moment, ¢; and ¢, are the global and local
acceleration, and ¢, and a, are global and local acceleration
constants. Using regressive discretization (RR-PSO) on v
and a in the time function (Fernandez-Martinez and
Garcia-Gonzalo, 2012), we obtain a discrete model using

the following equation:
x(t) — x(t— Ar)

1) =
v 1+ (1 —w) AL+ AL

Then, the equation for RR-PSO can be written as
follows:

V(D) + @i At(g (1) — x() + 2 Ar(1 () — x (1))
1+ (1 —w)At+ @AF

x(t+AD=x@®)+v(+Ar)At;t,At € R

x(0) = x0;v(0) = vo;00 = @1 + 5. ®)

v(t—At) =

In the inversion stage, five-to seven-layer models were
used. Seven layers were used at points located on the
boundaries of the three rock formations, and there are
many fault structures in the area. This method is expected
to image a more detailed subsurface model because of its
complex structure. We limited the search space for the vg
model in layer 1 to 100—-800 m/s, 2—4 to 500—1500 m/s,
and 5-7 to 800-2500 m/s. This search space refers to the
EC8 soil classification (European Commission, 2004)
where soil deposits with loose-to-medium cohesion values
or soft-to-hard soil layers have vg;,<180 m/s. We assumed
that the vg value had the same range as that vgs; therefore,
we limited the search space to a minimum of 100 m/s. The
maximum value was set to 800 m/s because dense sand,
gravel, or clay deposits do not exceed 800 m/s.
Furthermore, we set a larger value for the downward layer
assuming that the velocity increases with depth. Therefore,
we set the velocity to 2 500 m/s for the last layer.

In search space model 4, we created several schemas.
For this model, the search space for layers 1-3 ranged
from 1 to 20 m and that for layers 4—7 ranged from 5 to 50 m.
We developed this scheme to detect thin layers associated
with near-surface sediment layers. Then, we assigned each

iy
(1) ~ x()-2x(t—AD)+x(t—2A1)  x (1)—x (t— A1)
* )= AP B At '
(6)
Then, we apply the following relationship,
+( -y +ex (- AN +v() A1) = @18 (1 —1y) + ol — 1),
P A1l — 1)) —x (1 — AD)) )

1+(1 —w) At + pAF
layer fixed g, and g, values of 30 and 10, respectively. We
estimated the P-wave velocity (vp) and density (p) values

using the following equation (Brocher, 2005):

vp = 0,9409 +2,0947vs — 0,8206v; +0,2683v; +0,0251v}
)
0 =1,6612v, —0,4721v} + 0,067 1v; —0,0043v4 +

0,000106v;, (10)

where vp is in km/s and density is in g/cm®. Equation 4 is
valid for vg values of 0-4.5 km/s. The uncertainty
information was calculated using the standard deviation of
all models produced during the inversion process. The
forward function used in this inversion stage is from Herak
(2008), who assumes that the 1D model of the HVSR
curve depends only on the ground response (amplification
spectra) owing to the vertical propagation of body waves.
Although several researchers have used the surface wave
approach—particularly Rayleigh wave ellipticity—and
more complex modeling using Rayleigh and Love waves
and the full wavefield approach, both comprehensive
approaches used full wavefields or body waves to produce
similar (but not identical) curves (Albarello et al., 2023).
The only difference was in amplitude (H/V).

5. Results and discussion

5.1. Dominant frequency (f,)

The dominant frequency value was selected
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automatically using Geopsy software, which was selected
at the peak of the HVSR curve. Figure 3 shows the
dominant frequency values, ranging from 0.9 to 7 Hz.
Based on the figure, the Bandar Lampung area is
regionally dominated by relatively moderate-to-high f;
values (f, > 2 Hz), where high £ anomalies appear at the
northern, southern, and western ends and in the central part
to the east of Bandar Lampung City. The high f, anomaly
in the city center correlates with young volcanic deposits
(QHV) consisting of andesite-basalt lava, breccia, and tuff.
This young volcanic deposit originated from Mount
Betung to the west. In addition, a low f, anomaly was
observed in several parts of the city center, including the
SW-central region, several parts above the NE, and the
NW-central-SE direction. These low f, anomalies were
primarily correlated with sedimentary deposits (TPOT and
QTI) with tuff-dominated lithology. Areas with low f
values indicate that the area is composed of soft soil and
has a thick layer of sediment. Thus, the sediment layers at
the northern, western, and southern ends and central-to-
east have a thin layer of sediment compared to other areas.
In other words, the dominant frequency value in an area
can be correlated with the thickness of the sediment layer.
This is consistent with the vg distribution map shown in
Figure 7, in which areas with high frequencies have low vg
values at approximately 30 m depth. The rest, at
approximately 100 m, showed relatively high vg values ,
which spread from north to east and southeast.

5.2. 1D model of vy structure from PSO inversion
result

In this study, the v4-to-depth profile was obtained from
the PSO inversion algorithm using the Herak (2008) code
for the HVSR forward model based on body waves, where
the approach using body waves is better than that using

105°09'E 105°12' 105°15" 105°18’ 105°21"
1 5°21'S
1 5004
1527
o 1 2 3 4 5 6 7
/s (Hz)
Figure 3. Map of dominant frequency (f;) around Bandar
Lampung City.

surface waves (Dal Moro, 2008; Lunedei and Albarello,
2010). The PSO algorithm was selected because of its
quick convergence, stability, and ease of implementation
(Ding YM et al., 2019; Fernandez Martinez et al., 2010;
Pallero et al., 2017). We then used the inversion results to
create a vg distribution map at a certain depth and
produced a cross-sectional map that crosses the
measurement points in the Bandar Lampung area. A
subsurface-layer model with five to seven layers was used
for the inversion process. Models with more than five
layers were used in areas with complex structures. This
was performed to obtain a detailed model describing the
fault structure in the Bandar Lampung area.

Figure 4 shows the HVSR curves obtained at several
measurement sites and the one resulting from inversion
using the PSO algorithm. The inversion results show a
relatively matched HVSR curve between the observed and
calculated values. The curve in Bandar Lampung was
dominated by wide peak curves, which indicated the
possibility of complex variations in the sedimentary and
bedrock structures. This is consistent with the geological
conditions of Bandar Lampung, where many faults cross in
the NW-SE direction. The PJ13 and PJ18 curves showed
more than one peak, indicating an impedance contrast at
different depths. This is because of the geological
conditions at that point, in the form of non-compact sedi-
ments on the surface, which are composed of compacted
sediments below and extremely compact bedrock layers at
the bottom.

Figure 5 shows the subsurface layering model based on
the vg value profile against depth. The results of this
inversion model were obtained to 250 m, with an average
depth of 150 m. The minimum depth of the inversion
results was 100 m. As shown in Figure 5, the distribution
of vy increased with increasing depth. This can also be
seen in Figure 6, which shows that velocity vg increases to
a depth of 150 m. vg increased significantly at depths of 5,
15, 45, and 100 m. At a depth of 0—5 m, the soil was
dominated by layers with vy < 330 m/s, making it a stiff
soil. Then, at a depth of 15 m, it started to increase to
430 m/s and continued to increase until its speed reached
800 m/s at a depth of 45 m. At a depth of 100 m, the value
of vy appeared to increase significantly until the speed
reached 1250 m/s, indicating a harder rock layer. The
speed increased to 1350 m/s at a depth of 150 m.

5.3. vgstructure

The vg distribution map in the subsurface layer of the
city of Bandar Lampung shows a clear structural trend.
Laterally, vg showed a relatively significant change and
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Figure 4.
inversion process (blue line).

was marked in areas with faults. This indicates that the
fault became the boundary of the changes in vg, starting
from low-to-medium or medium-to-high. v can be used to
estimate sediment thickness using the well-known quarter-
wavelength approximation (Ryanto et al., 2020) or the
relationship between the average shear wave velocity and
sediment

the fundamental resonant frequency. The

10! 10° 10!

Jf(Hz) S (Hz)

HVSR curve obtained for several observation sites (dashed red line), and the best HVSR curve obtained from the

thickness was not calculated in this study. However, we
examined at the distribution of vg. Figure 7 shows the
distribution of vy at 0, 30, 50, and 100 m. At a depth of
0 m, Bandar Lampung City was dominated by low-to-
moderate vg. Low velocity dominates in most areas,
particularly in the north, which has a very low-velocity
anomaly. Conversely, there is a moderate velocity at the
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Figure 5. vg profile obtained from the inversion process using the PSO algorithm. The blue line shows the uncertainty of
each layer.

west end toward Betung Mountain and parts of the city
center to the east. At a depth of 30 m, the distribution of vy
exhibits a relatively sharp change in the north-central-east
direction, where a moderate anomaly (1000 m/s) appears
and is relatively higher than in other areas. This trend

continued to 100 m depth. Based on Figure 6b—d, Bandar
Lampung City is divided into two parts, where the north-
central-eastern part has a higher anomaly. In contrast, the
south-central-west region exhibited a relatively moderate
anomaly.
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Figure 6. Mean vg profile around Bandar Lampung City.

The north-central-east
anomaly where vy reaches 2000 m/s. This high anomaly
indicates a rock layer that is harder than those in other

area represents a higher

areas. This corresponds to the £, distribution map (Figure 3),
which shows that the north-central-east area has a high f;
anomaly, indicating that the area has a thin sediment layer.
The thickness of the soft sediment layer in this area was
estimated to be no greater than 30 m. The west-central-
south area shows a relatively low-moderate anomaly (vg <

105°09E  105°12/ 105°15' 105°18' 105°21"
— : : : m
{50158
1 5004
{ 5007
105°09E 10512 105°15' 105°18' 105°21"
7-50 m '
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1200

1000 m/s), indicating a relatively thick layer of sediment.
This is consistent with the results of Zaenudin et al.
(2020), who used the gravity method to identify ground-
water basins. The results show that the south-central-west
regions have low-to-moderate vq. These values correlate
with the presence of groundwater basins, corresponding to
a low residual Bouguer anomaly from a previous study.
The zero-value contour of the residual SVD Bouguer
anomaly indicates the groundwater basin boundary. From
this correlation, it is clear that the low vg in the area is
related to the presence of fluids filling the soil layers; in
this case, it is related to the groundwater in the basin.

5.4. vg cross section

The data processing results showed patterns of vq that
could be interpreted as potential fault-plane boundaries.
Three potential fault plane boundaries were successfully
interpreted in cross sections A-4' and B-B' (Figure 8).
These fault planes were estimated to be part of the sinistral
strike-slip fault of the Lampung-Panjang segment. There is
potential for vertical displacement based on the pattern of
shear wave velocities greater than 1000 m/s. Whether this
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15024’
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Figure 7.

vg structure of Bandar Lampung city obtained from HVSR inversion at 0 m (a); 30 m (b); 50 m (c); and 100 m (d).

The black lines on the map indicate geologically confirmed faults based on the regional geological map.
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Figure 8. Inverse modeling of cross sections 4-4' and B-B’,

indicating the potential for strike-slip fault structures.

indication can be interpreted as oblique movement
accompanying a strike-slip fault requires further compara-
tive data. However, this approach is expected to provide
preliminary indications that support previous research on
structural alignments based on gravity anomalies and
second-vertical derivative residual anomalies in Bandar
Lampung (Zaenudin et al., 2020).

Interesting results were also obtained from cross-
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Figure 9. Inverse modeling of cross sections C-C' and D-D',

indicating the potential for strike-slip fault structures.

sectional models C-C' and D-D’, which indicate the
potential for strike-slip fault planes, particularly near
Lampung Bay. Geologically, this area is a depression
located near Paleozoic schist bedrock. Outcrops of this
bedrock are influenced by a sinistral strike-slip fault
known as the Tarahan fault. The vg distribution pattern was
dominated by velocities of less than 1000 m/s, identified
as Lampung Bay surface deposits. The bedrock is located
in deeper areas, with a pattern returning to the surface
in the Tarahan area, as shown in cross section C-C' of
Figure 9. The interpretation of the downward movement of
the fault zone also supports the geomorphological
conditions of the Tarahan area in Lampung Bay. In
addition, the results of the gravity measurements indicate a
low-anomaly area in this region that can potentially be a
groundwater basin zone (Rustadi et al., 2022; Zaenudin et
al., 2020).

The next modeling was conducted on cross sections E-
E"and F-F', intersecting the previous cross sections in the
northwest-southeast and south-north directions, respecti-
vely (Figure 10). The shear wave velocity distribution
pattern shown in cross section E-E’ was consistent with
those of cross sections C-C’ and D-D'. The potential for
strike-slip fault structures was not clearly visible.
However, this can still be seen from the pattern shown by
velocities above 1000 m/s. In addition, a potential strike-
slip fault pattern indicating vertical movement in the
Tarahan fault area was identified at the right end of cross
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Figure 10. Inverse modeling of cross sections in the

northwest-southeast (Line E-E') and south-north directions
(Line F-F").
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section E-E'. These velocity patterns were also confirmed
from cross sections C-C’ and D-D'. Moreover, the shear
wave velocity model in cross sections F-F' showed a
pattern that was consistent with cross sections 4-4' and B-
B'. The consistency between the shear wave velocity
model and previous gravity research results strengthens the
interpretation of fault structures. These fault structures
limit the potential groundwater basin area in Bandar
Lampung (Zaenudin et al., 2020).

6. Conclusions

In this study, the vg structure in Bandar Lampung City
was estimated using microtremor data (natural seismic
noise) and the HVSR technique. A total of 8§83
measurement points were used to detect geological struc-
tures and groundwater basins in the southern city, Bandar
Lampung. The inversion method used in this study was
PSO. This algorithm was selected because it is a global
approach that avoids being trapped in a minimum local
solution and is relatively fast and stable. In this regard, the
vg structures obtained from the inversion of the HVSR
curve are displayed in the two-dimensional (2D) model
both laterally and vertically (cross section). Based on the
inversion result that has been conducted, the profile of the
average vg curve, with respect to depth, shows the value of
vg, which increases with increasing depth. At shallow
depths (0—5 m), it had an extremely low velocity of less
than 330 m/s, indicating that it was composed of soft
layers (weathered layers). Hard rock layers (vg > 1250
m/s) were visible at depths of > 100 m.

Based on the lateral 2D model, Bandar Lampung City
was divided into two rocky zones in the direction of the
boundary trending NW-SE. The north-central-eastern part
has a higher vq anomaly, ranging from 30 to 100 m deep.
The vg velocity reached more than 2000 m/s, indicating
that the area was dominated by hard rock and thin layers of
soft sediment. This is suitable for the dominant frequency
anomaly map, which shows that the north-central-eastern
region has a high dominant frequency anomaly. This high
dominant frequency indicated that the area had a thin layer
of sediment. On the south-central-west side, it had a low
dominant frequency, which indicates the presence of a
thick layer of sediment. Based on the vg structure map, this
area also has low-to-moderate vg values. Thus, the south-
central-west region is a groundwater basin with a sediment
layer thickness > 100 m.

These results agree with those of previous studies of
groundwater basins at a depth of 800 m. In addition, the v
structure map shows clear fault structures both laterally

and vertically. This was indicated by the difference in
contrast between anomalies, both from low-to-moderate
and from moderate-to-high anomalies. This fault structure
is more clearly observed in the vertical section, where the
Bandar Lampung area has a complex fault structure, and
many faults are scattered throughout the city. This study
provides a clear model description for delineating fault
structures, groundwater basin structures, the thickness of
weathered layers near the surface, and the characterization
of site dynamic parameters, which are needed in seismic
hazard and risk reduction studies in urban areas and rapid
land use planning. However, more intensive measurements
are recommended to obtain better seismic microzonation
results.
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