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Abstract 

Accurate estimation of thermal maturity is essential in characterizing a source rock, especially using vitrinite reflectance (Ro). The limitations 

of laboratory data related to the high cost of analysis require a special reliable method to measure the Ro value indirectly in the source rock layer. 
The proposed method is a continuous prediction of the value of Ro from well logs data using the Multiple Linear Regression (MLR) technique in 

the Palembang Sub-Basin, South Sumatra Basin. A total of 25 Ro data from 2 wells (RCW-01 and RCW-02) are available from the laboratory's 

core data analysis results. The Ro data varies from 0.39% to 0.76%, with an average of 0.54%. Prediction of the value of Ro is carried out using 
the MLR method, which is then carried out training and validation for continuous Ro. The training was carried out using one well (RCW-01) at 

2287-3027 m and testing at other intervals (1848-2286 m). The results of the training show an estimation accuracy of R2 0.99, while the test results 

produce R2 0.81. The MLR formula in the RCW-01 well was then applied to the RCW-02 well for the validation test phase. The well RCW-02 
produces a good correlation estimate equal to R2 0.85. Prediction of the value of Ro using the MLR method can be used to evaluate the source rock 

layer of a sedimentary basin in the form of a continuous interval. 
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1. Introduction  

Thermal maturity is an essential geochemical parameter in 

evaluating the source rock of a sedimentary basin. Various 

molecular parameters are widely used in estimating the thermal 

maturity of sedimentary rock (Abarghani et al., 2019). 

Vitrinite reflectance (Ro) has been widely used for 

determining the thermal maturity of source rock and estimating 

the amount of an area uplifted or eroded, paleo heat flow, and 

thermal modeling (Peters and Cassa, 1994; Wibowo et al., 

2023). Problems in applying the Ro technique in oil and gas 

exploration have been detected for a long time, such as 

identification of differences or variations in vitrinite, especially 

in dispersed organic material (DOM), suppression of hydrogen-

rich kerogen, contamination caused by caving, and reworked 

organic material. Besides, the Ro technique is unique 

invaluating thermal maturity in sedimentary basins, especially 

its simplicity and applicability (Kadkhodaie and Rezaee, 2017). 

Therefore, to produce an accurate and measurable evaluation, 

an extensive collection of sample data is needed in the analysis 

stage (Tariq et al., 2020). 

Given the importance of Ro in determining the thermal 

maturity evaluation stage and the high cost of laboratory sample 

data (core) analyses, a continuous Ro estimation method is 

needed based on well-log data (Labani and Rezaee, 2012). Lang 

(1994) explains a relationship between the value of Ro and 

depth. The higher the depth value, the higher the temperature or 

Ro value. Then it is associated with a decrease in the transit time 

interval (log DT) value in the well-log data. This relationship 

was then refined by Mallick and Raju (1995) in the Upper Asam 

basin, India, which resulted in a mathematical relationship 

between Ro and log DT. However, this study has limitations in 

the form of only using one data log (log DT) in evaluating 

thermal maturity, while according to Hussein and Abdula 

(2018) the resistivity value also can have a relationship with 

thermal maturity. Especially in the source rock that has reached 

the oil window, the resistivity value will be higher than the zone 

still in the diagenesis stage (Afifah and Setiawan, 2019). 

This study aims to find an appropriate and simple method 

for predicting the Ro value in the Palembang Sub-Basin, South 

Sumatra Basin, using the Multiple Linear Regression (MLR) 

method based on well logs data (Zhao et al., 2019). The well-

logs data used as input are density logs, DT, Gamma-Ray (GR), 

neutron porosity (NPHI), and deep resistivity (RILD). All these 

logs are used because they are directly or indirectly related to 

the evaluation of thermal maturity. 

2. Source rock characteristics 

Talang Akar shale is in the form of coaly shale, which was 

deposited in the Late Eocene – Middle Miocene. This formation 

was deposited in a fluvial-deltaic environment composed of 

kerogen types I and II (Argakoesoemah and Kamal, 2004). The 

shale has amorphous and vitrinitic kerogen, which can generate 

oil and gas. TOC in this formation has good potential, which is 

around 1.5 – 8% in the Limau area, in the Kuang area, it is 

potentially less good, with values ranging from 0.33 – 0.9%. 

This shale is categorized as mature in the Limau area, and late 

mature in the Kuang and Muaraenim-Lematang areas with T-

max values of 436 – 450 oC and Ro 0.45 – 0.94%. The Lembak 

and Kuang areas were early-matured with 425 – 433 oC T-max 

values and 0.3 – 0.4 % (Table 1) (Wibowo, 2013).
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Table 1. Characteristics of the source rock in the South Sumatra Basin, especially in the Talang Akar shale (Wibowo, 2013). 

South Sumatra 

Back Arc basin 

Source Rock Analysis References 

TOC (%) Ro (%) Tmax (oC) Thickness 
(ft) 

Kerogen 
Type 

Dep. Env. Maturity 
Index 

 

Benakat Shale 

(South 
Palembang 

Sub-Basin) 

1.7 – 8.5 - 436 - 441 660 - 2508 II & III Terrestrial Peak -

Postmature 

Sarjono & Sarjito 

(1989) 

Benakat Shale 
(South 

Palembang) 

0.5 – 16 0.64 – 1.4 435 - 455 - II & III Fluvio-
deltaic 

- Suseno et al. 
(1992) 

Benakat Shale 
(Lahat Fm.) 

1.0 – 3.0 - - - - Shallow 
lacustrine 

- Ginger & 
Fielding (2005) 

Talang Akar 

Shale (South 
Palembang 

Sub-Basin) 

0.33 – 8 0.3 – 0.94 436 - 450 990 - 1815 I & II Fluival, 

deltaic & 
shallow 

marine 

Immature – 

late mature 

Sarjono & Sarjito 

(1989) 

Talang Akar 
Shale 

5 - - - - - - Ginger & 
Fielding (2005) 

Talang Akar 

Shale 

5 0.35 – 1.11 - - - Deep 

marine 

- Argakoesoemah 

& Kamal (2004) 
Gumai Shale 

(South 

Palembang 
Sub-Basin) 

0.5 – 11 0.5 – 0.7 400 – 440 495 - 4950 III Shallow to 

deep 

marine 

Immature – 

peak mature 

Sarjono & Sarjito 

(1989) 

Gumai Shale 8 - - - III Marine Immature Ginger & 

Fielding (2005) 

 

 

3. Theory 

3.1 Multiple linear regression (MLR) 

Linear regression is the most widely used technique in 

establishing the relationship between the dependent 

(output/target) and independent (input) variables. It uses a 

linear approach to model the correlation function between input 

and output variables (Emelyanova et al., 2016). In the case of 

one input variable is called single linear regression, while for 

multiple input variables, it is called multiple linear regression. 

The expression between input (xi) and output (yi), assuming a 

linear relationship, can be written as: 

𝑦𝑖 =  𝜃0 + 𝑥1𝜃1 + 𝑥2𝜃2 + ⋯ + 𝑥𝑛𝜃𝑛 + 𝜀𝑖 , 𝑖 = 1,2, … 𝑛    (1) 

In matrix notation, Equation (1) can be expressed as: 

𝑌 = 𝑋𝜃𝑇 +  𝜀   (2) 

where Y is the vector of the observed values yi of the 

variable known as the output or dependent variable, X is the 

vector form of the input or independent variable xi, 𝜃 is the 

vector of dimension parameters (n + 1)—the elements known 

as the regression coefficients (for example, 𝜃0 is the intercept) 

and is the vector form of the error term 𝜀𝑖. 

The goal is to minimize the error of the cost function (the 

most widely used function is the mean squared error function) 

which is defined as: 

𝐽(𝜃0, 𝜃1, … , 𝜃𝑛 =  
1

2𝑛
 ∑ (𝑦𝑖̂  −  𝑦𝑖)2𝑛

𝑖=1   (3) 

where 𝐽(𝜃0, 𝜃1, … , 𝜃𝑛) is the cost-function; 𝑦𝑖̂ and 𝑦𝑖 represent 

the predicted and actual output (Mandal et al., 2022). 

4. Method  

This study uses the MLR method to optimize the 

parameters related to the Ro value with precision to predict the 

value using well logs data such as: Density, DT, GR, NPHI 

RILD. The advantage of this method is the accuracy and 

simplicity of computation in predicting a value based on many 

parameters (Jaber and Shuker, 2014). 

Twenty-five core data samples from two wells (RCW-01 

and RCW-02) were used to calibrate the predicted MLR results. 

The RCW-01 well is used as a well for the application of MLR 

because it has complete geochemical data and well logs. The 

prediction results were then retested at two different intervals 

to see how accurate the predictions were. After producing a 

good estimation accuracy value, the MLR equation obtained in 

RCW-01 was tested for validation on the RCW-02 well. The 

prediction results' accuracy is determined by the correlation 

coefficient (CC) value, and the root means square error 

(RMSE). 

5. Result and discussion 

To perform the MLR technique, the actual measurement of 

Ro and the collection of well log data were carried out. Based 

on Figure 1, the resistivity value has a very important 

relationship with the Ro value. Based on these results, RILD is 

used as the MLR input. Ro has a strong relationship with DT, 

where the resulting CC is -0.69. Density and NPHI have 

intermediate bonds, which have CC values of -0.38 and -0.22. 

While GR has a low relationship because of mineral content 

(Wibowo et al., 2020a), CC of 0.11. 

The initial stage in performing the MLR technique is to 

perform quality control on all data that will be used as input. 

Figure 2 is all well logs data (RILD, DT, Density, NPHI, and 

GR) which are used as inputs (independent values) in the MLR 

technique, and core sample data Ro as the dependent value. 

Based on the results of MLR processing, the formula is 

obtained: 

𝑅𝑜𝑀𝐿𝑅 = 10^(−1.08823165 −  0.32997306 ∗
 𝐿𝑜𝑔(𝑁𝑃𝐻𝐼)  +  0.23583975 ∗  𝐿𝑜𝑔(𝐷𝑇)  +  0.23392235 ∗
 𝐿𝑜𝑔(𝐺𝑅) −  0.15643133 ∗  𝐿𝑜𝑔(𝑅𝐼𝐿𝐷)  −  0.30933119 ∗

 𝐿𝑜𝑔(𝐷𝐸𝑁)) (4) 
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Fig. 1. Correlation coefficient (CC) between Ro from the core and well logs data (Density, DT, GR, NPHI, and RILD). 

Figure 3 shows the MLR model's results with a high 

accuracy level in predicting Ro over the entire RCW-01 well-

layer interval, with an R2 value of 0.95 (Figure 4). To test the 

MLR method in making predictions, the RCW-01 well was 

divided into two layers, especially in the Talang Akar 

Formation (TAF). Layers at the 2287-3027 m interval were 

used as the MLR input (Figure 5), and the 1848-2286 m interval 

was used as the blind data (Figure 7). The formula result for this 

training is as: 

𝑅𝑜𝑀𝐿𝑅 =  10^(−1.08823165 −  0.32997306 ∗
 𝐿𝑜𝑔(𝐶𝑁𝐶𝐹) +  0.23583975 ∗  𝐿𝑜𝑔(𝐷𝑇)  +  0.23392235 ∗
 𝐿𝑜𝑔(𝐺𝑅) −  0.15643133 ∗  𝐿𝑜𝑔(𝑅𝐼𝐿𝐷)  −  0.30933119 ∗

 𝐿𝑜𝑔(𝑍𝐷𝐸𝑁)) (5) 

Figure 6 confirms the height of accuracy obtained from the 

MLR method (eq. 5), and the validation results obtained in 

Figure 7 produce R2 0.81 (Figure 8). Based on these results, it 

can be concluded that the MLR method can be used to predict 

Ro as a function of several well logs, RILD, DT, Density, 

NPHI, and GR data. 

The MLR formula (eq. 4) was used to validate the TAF well 

RCW-02. Figure 9 shows the results with high accuracy in 

predicting Ro. CC value shows R2 0.85 between prediction Ro 

and core data Ro. The MLR correlation method produces an 

accurate model between the predicted and actual Ro values. 

RMSE value in well RCW-01 is 0.034 with R2 0.95. 

Furthermore, when the validation test was carried out on the 

RCW-02 well, it resulted in an RMSE of 0.044 with an R2 of 

0.85. The decrease in correlation value is due to the distance of 

the RCW-02 well from the RCW-01 well, which is about 15 

km. However, based on these results, the MLR method is 

confirmed to be used to predict the value of Ro. 

In this study, 25 core samples, from two wells were used. 

Ro has been measured for all samples. The parameters that have 

a significant influence on Ro were determined, and all samples 

were used to develop the multiple regression. Variables used 

for the ultimate equation were RILD, DT, Density, NPHI, and 

GR (equation 4). The RILD and DT values are important in 

describing thermal maturity, and both parameters are the main 

sources of information to estimate rock physics properties 

(Eskandari et al., 2004). The multiple regression method gave 

good results during the validation phase in the RCW-1 well, but 

when it is applied to another well (RCW-2), it usually faces 

problems.  Such problems can be avoided with more parameter 

input and intelligent solution techniques such as a neural 

network (Wibowo et al., 2020b; Wibowo et al., 2022). Artificial 

neural networks are adaptive and parallel information 

processing systems that have the ability to develop functional 

relationships between data and provide a powerful toolbox for 

nonlinear interpolations (Waszkiewicz et al., 2019; Tariq et al., 

2020; Adhari and Kardawi, 2022). 
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Fig. 2. Well logs data for Talang Akar shale Formation. 

 

Fig. 3. Well logs data for Talang Akar shale Formation (RCW-01) and 
prediction result of Ro using MLR method. 

 

Fig. 4. Coefficient correlation for Ro prediction using MLR model 

(RCW-01 well). 

 

Fig. 5. Well logs data for Talang Akar shale Formation (interval 2287-

3027 m) and prediction result of Ro using MLR method. 

 

Fig. 6. Coefficient correlation for Ro prediction using MLR model 
(interval 2287-3027 m). 
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Fig. 7. Well logs data for Talang Akar shale Formation (interval 1848-
2286 m) and prediction result of Ro using MLR method. 

 

Fig. 8. Coefficient correlation for Ro prediction using MLR model 

(interval 1848-2286 m). 

  

Fig. 9.  Actual and predicted Ro for RCW-02 well using MLR 

method. 

 

 

Fig. 10. Well logs data for Talang Akar shale Formation (RCW-02) 
and prediction result of Ro using MLR method (using eq. 4). 

6. Conclusion 

The approach using the MLR method has resulted in an 

accurate value in predicting the value of Ro. The MLR method 

uses the input of several well logs data such as Density, DT, 

GR, NPHI, and RILD. The results of modeling using the MLR 

method yielded CC values of R2 0.95 and RMSE 0.034. While 

the results of the validation test using other wells (RCW-02) in 

the formation and lithology which are assumed to be the same, 

produce a CC value of R2 0.85 with an RMSE of 0.044. It is 

estimated that the obtained value can still be increased using a 

non-linear relationship between the input and output 

parameters, such as the Artificial Neural Network method and 

other machine learning methods. 
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