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ABSTRACT

Today, coal is the main source of energy in both developed and developing countries. The use of coal fuel for power generation and industry continues 
to increase. This research will discuss the closing price relationship model for the share prices of two coal companies in Indonesia, namely ABM and 
IND_E, from January 2018 to July 2023. The modeling used is a multivariate time series approach. From the results of data analysis, the best model 
that fits the data is the VAR(3)-BEKK GARCH(1,1). Based on this best model, further analysis of Granger causality, impulse response function (IRF), 
and forecasting for the next 30 periods as well as the proportion of prediction error covariance are discussed.
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1. INTRODUCTION

Coal is a physically and chemically heterogeneous and 
combustible sedimentary rock composed of both inorganic and 
organic matter. Inorganically, coal consists of various ash-forming 
compounds dispersed throughout the coal, and organically, coal 
consists mainly of carbon, hydrogen, and oxygen, with lesser 
amounts of sulfur and nitrogen (Miller, 2005). The main fuels for 
electricity generation in the world are oil, gas and coal. According 
to Danning (2000) states that the prediction of the availability of 
long-term resources from fossil fuels, oil will last 40 years based 
on current consumption levels, gas will last around 65 years, 
and coal will last around 219 years. Danning (2000) also stated 
that coal will still be the main source of energy, especially for 
electricity generation. Today, coal is again being considered 
as an alternative fuel source for oil, especially for electricity 

generation (Speight, 2015). Petroleum, natural gas and coal are 
the cheap fossil fuels that have been used in America for more 
than a century and account for nearly 90% of America’s primary 
energy use. The US has enormous domestic coal reserves, more 
than 94% of US fossil energy reserves (DOE, 1993a). The United 
States is importing large amounts of oil and gas, while coal is a net 
export commodity for the US economy. In the 1980s coal prices 
fell markedly, mainly due to higher mining productivity, excess 
capacity and competition from natural gas (Speight, 2015). Coal’s 
cheapness and abundance make it an attractive energy material, but 
environmental controls and the inconvenience of using solid fuels 
have made oil and natural gas the main fuels in developed countries 
for many domestic, industrial and commercial applications 
(Speight, 2015). Power generation is the largest use of coal in the 
United States. Of the total US domestic energy production in 1992, 
27% was natural gas, 23% crude oil, 32% (21.6 quadrillion Btu) 
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was coal, and the remaining 18% was from nuclear power and 
renewables (EIA, 1993a; 1993b). In 1992, coal-fired steam power 
plants accounted for 56% of the electricity produced in the United 
States (EIA, 1993b). During the last 20 years the use of coal for 
electricity consumption and industry has doubled.

Since 2000, coal has contributed to 40% of global primary energy 
growth (Hecking, 2016). The main international market for coal 
utilization is power generation. The two main components of the 
market are the rehabilitation of existing crops and the building of 
the new power generation capacity (DOE, 1993b). China is the 
biggest market for coal, with capacity additions projected to be 
roughly three times that of South Asia, the second biggest market. 
China’s need for new capacity by 2010 is more than four times 
that of all industrialized countries combined (Speight, 2015). 
Hecking (2016) explains that the reason why coal is the main fuel 
for energy purposes is due to the fact that it is abundant, cheap, 
and available as a domestic resource.

The development of the use of oil, natural gas and coal serving 
as the three main sources of energy for electricity generation in 
America continues to grow (Mohammadi, 2011); in India and 
China, the development is very fast and continues to increase in the 
use of coal fuel, especially for industrial purposes. In all of these 
developed countries (USA, China and India), the main generator 
technology is trying to burn pulverized coal (PC). The use of PC 
combustion technology continues to undergo improvements to 
increase the efficiency and reduce emissions. The 21st century is the 
coal century, no energy source has developed bigger than coal since 
2000, both oil, natural gas, and renewable energy (Hecking, 2016).

Energy is one of the central issues of the 21st century, and oil and 
coal are the two most important primary sources for energy. Oil 
and Coal illustrate the complex relationship between humans 
and these fuels as a source of energy and the consequences. The 
nature of these energies, the manner in which they are used, and 
the technical, environmental, social, and policy consequences of 
large-scale consumption of oil and coal. Billions of dollars’ worth 
of infrastructure has been created to find, produce, transport, 
process and burn oil and coal. In most parts of the world, coal-fired 
power plants generate at least half of all the electricity needed, 
and in almost all countries, transportation is synonymous with oil 
consumption (Tabak, 2009). Coal is the main source of electrical 
energy for China’s consumption and industry today. The large 
dependence on electrical energy from coal and fluctuating coal 
prices, this affects various industries and has an impact on the 
prices of merchandise in China (Zhihua et al., 2011). Many studies 
studying the relationship of energy prices, especially oil and coal, 
have been carried out. Studies that discuss the existence of a 
long-term positive correlation between oil prices and merchandise 
prices (Cunado and Perez de Gracia, 2005; Cologni, 2008; Chang 
and Jiang, 2003). Chen (2008) in his study concluded that the 
proportion of changes in commodity prices is due to changes in 
oil prices. Coal is the main form of energy used in both industry 
and household consumption in China. Therefore, variations in 
coal prices are expected to affect goods prices in China. By using 
monthly data from January 2002 to October 2010 (Zhihua et al., 
2011) in his study he built a state-of-the-parameter model and error 

correction model to estimate the effect of coal prices on goods 
prices in China. The long-run equilibrium relationship between 
coal prices and PPI, and CPI, can be observed. From the results of 
his research, Zhihua et al. (2011) concluded that there is a positive 
correlation between coal prices and CPI and PPI in China in the 
long term. This research will discuss modeling the closing prices 
of shares of two coal industry companies in Indonesia, namely 
coal companies ABM and IND_E (Indika Energy) from January 
2018 to July 2023. Data modeling uses a multivariate time series 
analysis approach.

2. STATISTICAL MODEL

In a modeling data multivariate time series, we need to check 
the assumptions of stationarity, cointegration, autoregressive 
conditional heteroscedasticity (ACR) effect, and cross correlation 
among the variables. Checking these assumptions is very important 
in modeling multivariate time series analysis (Hamilton, 1994; 
Wei, 2006; 2019; Tsay, 2010; 2014; Virginia et al., 2018; Warsono 
et al., 2019a; 2019b; 2020; Russell et al., 2022; 2023). The 
stationarity of the time series data can be checked by checking 
the pattern of the plot of the data and by testing the stationarity 
using the Augmented Dickey-Fuller test (ADF test) (Pankratz, 
1991; Wei, 2006; 2019; Tsay, 2010; 2014). To check that there 
is a cointegration between the variables, it can be tested using 
the Johansen test (Johansen, 1988), to check the ARCH effect, 
the Lagrange Multiplier test (LM test) can be used, and the 
cross correlation between the variables can be checked using 
Portmanteau test (Wei, 2006; 2019; Tsay, 2010; 2014).

2.1. Stationary Data
To test whether the data meet the stationary assumptions using 
the Augmented Dickey-Fuller (ADF-test) is conducted by the 
following model:

∆ ∆z c z z et t t
i

m

i t t= + + + +−
=

−∑φ δ β1
1

1  (1)

The null and alternative hypotheses are as follows:

H
0

0:δ =  and H
1

0:δ <

In the statistical test to test the null hypothesis, we use the test- Ä 
or Dickey-Fuller test as follows:

Sδ

δ
=  (2)

The null hypothesis is rejected if the P-value ≤ α, for α=0.05, 
(Virginia et al., 2018, Warsono et al., 2019a; 2019b).

If the stationary assumptions are not met, the common method 
to eliminate nonstationary assumptions is differencing (Pankratz, 
1991; Montgomery et al., 2008). We define differencing with the 
operator ∇:

∇ = − = −−Z Z Z B Zt t t t1
1( )  (3)
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where

BZ Zt t= −1  (4)

The power functions for operators B and ∇  are defined as follows:

B Z Zn
t t n= − ,

∇ =∇ ∇ −n
t

n
tZ Z( ) ( ),

1  (5)

and

∇ =0
( ) .Z Zt t

One approach to eliminating trends in time series data is 
differencing. Differentiation has two relative advantages in fitting 
the trend model to the data. First, it does not need to estimate 
parameters, so it is a simple approach and usually we just have to 
look at the data plot after differencing whether the data meets the 
stationary assumption or not; Second, the fitting model assumes 
that the trend remains the same throughout the time series and will 
continue to exist. Differentiation can allow the trend component to 
change from time to time (Montgomery et al, 2008). In practice, 
usually one or two differencing is enough to eliminate trends in 
the data (Warsono, 2019a; 2019b).

2.2. Cointegration
Engle and Granger (1987) introduced the concept of cointegration, 
and Johansen (1988) developed the concept of estimation and 
inferentiality. The time series Zt is said to be integrated with order 
one process, I(1), if (1−B)Zt is stationary (Tsay, 2014). In general, 
the univariate time series Zt is an I(d) process, if (1−B)d Zt is 
stationary (Hamilton, 1994; Wei, 2006; 2019; Tsay, 2014). Rachev 
et al. (2007) stated that cointegration is a feedback mechanism 
that forces processes to stay close together or large data sets are 
driven by the dynamics of a small number of variables, this is 
one of the important concepts of the theory of econometrics. This 
cointegration implies a long-term stable relationship between 
variables in forecasting (Tsay, 2014). If in the vector autoregressive 
(VAR) model, there exists cointegration between variables, then 
the model needs to be modified into VECM (Hamilton, 1994; Tsay, 
2010; 2014; Wei, 2006; 2019). To check if there is a cointegration 
between vector time series, then one needs to test the cointegration 
rank. One of the methods that can be used to test the rank of 
cointegration is the trace test. The test is as follows:

Tr r T
i r

k

i( ) = − −
= +
∑

1

1ln( )λ . (6)

2.3. Test for ARCH effect (Lagrange Multiplier Test 
(LM- Test))
Weiss (1984) showed the importance of detecting the ARCH effect 
in time series data. Engle (1982) stated that the data time series has 
a problem with autocorrelation and also with heteroscedasticity. 
The test that can be used to detect the heteroscedasticity or ARCH 
effect is ARCH-LM (Engle, 1982; Tsay, 2010).

To check whether there is an ARCH effect, we can build a model 
and test it as follows, consider the AR(p) model

Z Z Zit t p t p t= + + + +− −α α α ε
0 1 1 1 1 1

....  (7)

from model (7), we can build a model

ε γ γ ε γ ε
1

2

0 1 1

2

1

2

1t it q t q tu= + + + +− −...  (8)

To check whether there is an ARCH effect, we test whether the null 
hypothesis is Ho: γ i i i q= ∀ =0 1 2, , ... ,  or Ho: no ARCH effect. 
The test statistic is using the Lagrange Multiplier test (LM-test),

LM = T R2,

where T is the sample size and R2 is calculated from the model (8). 
Reject the null hypothesis if P-value <0.05. LM approximately 
has a Chi-square distribution with degrees of freedom equal to q.

2.4. Cross Correlation
One of the requirements in multivariate time series modeling is 
the existence of a lag-correlation between series components, 
which in the end the cross-correlation matrix is used as a measure 
of the strength of the linear relationship between time series data 
(Wei, 2014). The lag-k cross-correlation matrix of Zt is defined 
as follows:

ρ ρk ij kk D D= = − −
[ ( )] .

1 1Γ  (9)

Where

ρij
ij

ii jj

it jt k

it jt
k

k Cov Z Z
Sd Z Sd Z

( )
( )

( ) ( )

( , )

( ). ( )
,= = −Γ

Γ Γ0 0   (10)

ρij k( ) is correlation coefficient between Zit and Zj,t-k, k>0. Given 
the data {Zt | t = 1, 2,…, T}, the cross-covariance matrix Гk can 
be estimated by

1

1ˆ ( )( ) , 0.
T

k t t k
t k

Z Z Z Z k
T −

= +

′Γ = − − >∑

where Z
T

Zt
t

T

=
=
∑1

1

 is the vector sample mean. The cross-

correlation ρk is estimated by

1 1ˆ ˆˆˆ ˆ[ ( )]ρ ρ − −= = Γk ij kk D D , (11)

where k ≥ 0 and D̂  are m × m matrix diagonal from the sample 
standard deviation from the component of the series. To test 
whether there is a cross correlation between variables, the 
following null hypothesis is tested:

Ho k: ...ρ ρ ρ
1 2

0= = = = ,
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The statistical test is

2 1 1
0 0

1

1 ˆ ˆ ˆ ˆ( ) − −

=

 ′= Γ Γ Γ Γ −∑
k

m s s
s

Q k T tr
T s

, (12)

where T is the sample size, m dimension of Zt, tr(A) is a trace 
matrix A, namely the sum of diagonal elements of matrix A. The 
test is called the Portmanteau test, if the P-value <0.05, then the 
null hypothesis is rejected.

2.5. VAR(p)-BEKK GARCH(s,t) model
Model VAR(P) can be written as follows:

Z Zt o i t i
i

p

t= + +−
=
∑θ θ ε

1

where Zt is m×1 vector observation at time t, θo is m×1 vector 
parameter constant, θi is m×m parameter matrix, εt is m×1 vector 
residual. Studies on volatility modeling, especially in the fields 
of finance, business, and capital markets, are very important. To 
study the volatility of time series or multivariate time series data, 
the Generalized Autoregressive Conditional Heteroscedasticity 
(GARCH) model is widely used because it is a good approach to 
conditional variance modeling analysis. Engle and Kroner (1995) 
developed a general multivariate GARCH model called BEKK 
representation. Let Ϝ(t-1) be the past values of εt and suppose 
that Ht is the conditional covariance matrix of the m-dimensional 
random vector εt. Suppose Ht is conditional variance with respect 
to Ϝ(t-1), then the multivariate GARCH(s,t) model can be written 
as follows:

ε t F t| ( )−1 ⁓ N(0, Ht),

H A A G H Gt o i
i

s

t i i
i

t

t it
= + +

=
−

=
−∑ ∑−

δ ε ε' ' '
.

1

1

1

1
1

where δo, Ai, and Gi are m×m parameter matrices.

2.6. Normality Test of Residuals
Some methods are available to check the normality of the residuals. 
Some methods are commonly used to check whether the errors 
(residuals) are normally distributed: (1) check the histogram of the 
residuals; (2) check the Q–Q plot of the data or error (residuals); 
and (3) use the statistical test, the Jarque–Bera (JB) test, with the 
null hypothesis that the data are normally distributed (Brockwell 
and Davis, 2002; Wei, 2006; Tsay, 2010). The JB test is calculated 
as follows:

JB T S K
= +

−









6

3

4

2

2
( ) , (13)

where T is the sample size, S is the expected skewness and K is 
the expected excess kurtosis.

2.7. Stability Test
Hamilton (1994), Lutkepohl (2005), and Wei (2019) stated 
that to check that the VAR(p) model is stationary covariance, 

it can be checked from the inverse roots of the AR polynomial 
characteristics. A VAR(p) model is said to be stable (stationary, in 
both the mean and variance) if all its roots have a modulus smaller 
than one and all of them lie within the unit circle. For example, 
the VAR(p) model can be written

Z c Zt t= + −Φ1 1  +…+Φ pZ + �ε t  (14)

The characteristic polynomial on the matrix is called the 
characteristic polynomial of the VAR(p) model is said to be stable 
if the root of

| ... |λ λ λp p p
pI − − − − =− −1

1

2

2
0Φ Φ Φ  (15)

Are all inside the unit circle or have moduli smaller than one. 
Therefore, the VAR(p) model is covariance stationary as long as 
|λ| < 1 for all values of λ satisfying (15) (Hamilton, 1994; Wei, 
2019). Lutkepohl (2005) states that |λ| < 1 is the stability condition.

2.8. Granger Causality Test
One of the most popular causality tests used in various multivariate 
time series data studies is the Granger causality Test. According to 
(Hamilton, 1994; Lutkepohl, 2005; Warsono et al., 2020; Russel 
et al., 2022; 2023), the Granger causality test is used to determine 
the short-term relationship in the form of reciprocity between 
variables under study. Suppose that we analyze the Granger 
causality between variables X and Y and the model for Granger 
causality Test is:

x c x x x y

y y u
t t t t p t p t

t p t p t

= + + +…+ +

+ +…+ +
− − − −

− −

1 1 2 2 1 1

2 2

α α α β

β β
 (16)

Based on the assumption of ordinary least squares (OLS), the null 
hypothesis to be tested is as follows:

H p0 1 2
0: β β β= =…= =

(Y is not Granger Causal X) against

H at least oneof p1 0: β ≠

(Y Granger Causal X). The statistic test is as follows:

FTest
RSS RSS p

RSS T p
=

−
− −

( ) /

/ ( )

0 1

1
2 1

 (17)

Reject the null hypothesis if F-Test > F(α, p, T-2p-1) or if P-value <0.05 
(Hamilton, 1994).

Where to calculate the residual sum of squares 1 or RSS1 using 
the shocks of model (16) is calculated as follows:

T
2

1 t
t 1

RSS û
=

=∑  (18)

Under the null hypothesis the model (16) is written as follows:

x c x x x et t t t p t p t= + + +…+ +− − −0 1 2 2
γ γ γ  (19)
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To calculate the residual sum of squares 0 or RSS0 using the shocks 
of model (19) is calculated as follows:

T
2

0 t
t 1

RSS ê
=

=∑ .

2.9. Impulse Response Function (IRF)
Hamilton (1994) and Tsay (2014) stated that IRF is an analytical 
technique used to analyze the response of a variable due to shock 
in another variable. Wei (2006) stated that the VAR model can be 
written in vector MA (∞) as follows:

Z µ µ µ µt t t t= + + +− −Ψ Ψ
1 1 2 2

. (20)

Thus, the matrix is interpreted as follows:

∂
∂

=+Zt s
t

sµ
�Ψ .

The element of the i-th row and j-th column indicates the 
consequence of the increase of one unit in innovation of variable 
j at time t (μjt) for the i variable at time t + s (Zi, t + s) and fixed 
all other innovation. If the element of μt changed by δ1, at the 
same time, the second element will change by δ2,…, and the nth 
element will change by δn, then the common effect from all of 
these changes on the vector Zt + s will become

∆ ΨZ
X
u

X
u

X
ut s

t s

t

t s

t

t s

nt
n s+

+ + +=
∂
∂

+
∂
∂

+…+
∂
∂

=
1

1

2

2
δ δ δ δ . (21)

The plot of the i-th row and jth column of Ψs � as a function of s 
is called IRF.

2.10. Forecasting m-steps ahead and Proportion of 
Prediction Error Covariance
In analyzing the ABM and IND_E data, forecasting will also be 
carried out using the best model that fits the {Zt} data. By using 
the best model that fits the data, forecasting is performed directly 
for the next 30 periods (days). The proportion of predicted error 
covariance will be used to explain the contribution of other 
variables to a variable in forecasting for the next several periods 
ahead, and the contribution of other variables to the long-term 
forecasting results of a variable will also be evaluated (Hamilton, 
1994; Lutkepohl, 2005; Florens, 2007; Tsay, 2014).

3. RESULTS AND DISCUSSION

Figure 1 shows that in 2018 the daily closing price for ABM shares 
was relatively stable but with quite high price fluctuations, in 
2019 it had a downward trend with relatively stable fluctuations, 
in 2020 the daily closing price for ABM shares was in the lowest 
and stable position, namely with low fluctuations, from 2021 to 
June 2022 the price trend continues to rise with relatively large 
price fluctuations, which means even though the daily closing 
price rises but the volatility is high, from June 2022 to December 
2022 the trend decreases and fluctuates, and in 2023 ABM’s daily 
closing share price tends to rise and fluctuate. Figure 1 shows the 
pattern of changes in the closing price from IND_E from January 

2018 to June 2019, it can be seen that the closing price trend is 
decreasing and fluctuating, from July 2019 to March 2020 the 
closing price trend is increasing and fluctuating, and from April 
2020 to December 2020 the price is relatively stable with a flat trend 
and relatively small price fluctuations. From 2021 to June 2021 
to June 2022 the trend is up and fluctuates relatively high. From 
July 2022 to July 2023, the closing price trend is decreasing and 
fluctuating. Figure 1 indicates that the closing prices of ABM and 
IND_E are not stationary and have a high diversity, which indicates 
an autoregressive conditional heteroscedasticity (ACRH) effect.

Table 1 shows that the variables ABM and IND_E are not stationary, 
and this is consistent with Figure 2, where the autocorrelation 
decreases very slowly, this shows that the data is not stationary 
(Pankratz, 1991). Table 2 shows the cointegration test with the null 
hypothesis that there is no cointegration relationship between the 
variables ABM and IND_E. From the results of the cointegration test 
with the trace test, Ho was not rejected (Table 2), where the test on Ho 
with rank (r) = 0 and 1 both tests had P-values of 0.2296 and 0.1158, 
respectively. In the absence of cointegration between variables, there 
is no long-term relationship between ABM and IND_E variables 
(Hamilton, 1994; Wei, 2006; 2019; Tsay, 2010; 2014).

From the results of the cross correlation analysis (Table 3) and 
the results of the cross correlation test presented in the form of a 
schematic representation of cross correlation (Table 4) with the 
null hypothesis there is no cross correlation and the test results up 
to the 11th lag obtained a plus sign (+) which shows that the test 
is significant with alpha = 0.05, which means that there is a cross 

Figure 1. Plot of daily closing price data ABM and IND_E from 
January 2018 to July 2023

Table 1: Dickey-Fuller unit root tests
Variable Type Rho P Tau P
ABM Zero mean 0.09 0.7028 0.07 0.7051

Single mean –2.60 0.7059 –0.91 0.7864
Trend –6.09 0.7370 –1.82 0.6966

IND_E Zero mean –0.57 0.5547 –0.51 0.4961
Single mean –4.64 0.4707 –1.51 0.5294
Trend –12.31 0.2979 –2.77 0.2084

IND_E: Indika energy
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correlation up to lag 11 between ABM and IND_E data. From the 
results obtained in Tables 3 and 4, it is suggested that modeling the 
relationship between the ABM and IND_E variables should involve 
autoregressive modeling. From the autoregressive conditional 
heteroscedasticity (ARCH) test (Table 5) with null there is no ARCH 
effect tested with the Lagrange Multiplier test (LM test), the null 
hypothesis is rejected. So there is an ARCH effect on the ABM and 
IND_E data. Therefore, based on Tables 3-5, it is suggested that 
modeling the relationship between ABM and IND_E variables does 
not only need to involve autoregressive modeling but also needs to 
involve ARCH or GARCH modeling. From Table 6, the minimum 
AICC is in AR2 and AR3, which are relatively very close to the 
AICC values. Based on the results of the analysis, the model to be 
used was the VAR(3)-BEKK GARCH(1,1) model.

3.1. Model VAR(3)-BEKK GARCH(1,1)
The mean model VAR(3):
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And the BEKK GARCH(1,1) model:
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Table 2: Cointegration rank test using trace
H0: 
Rank=r

H1: 
Rank>r

Eigen 
value

Trace P Drift in 
ECM

Drift in 
process

0 0 0.0077 10.7122 0.2296 Constant Linear
1 1 0.0023 2.4715 0.1158

From Table 7, the relationship models and parameters significantly 
affect ABMt and IND_Et (Figure 3). Figure 3 explains that ABMt 
is significantly influenced by ABMt-1, IND_Et-2, and IND_Et-3 
with the magnitude of the estimated parameter (Influence) being 
27.50, 2.94 and -2.82 with P-values respectively 0.0001, 0.0149, 
and 0.0048. Figure 3 also explains that IND_Et is significantly 
influenced by IND_Et-1 with the estimated parameter (influence) 
being 31.36 with a P-value of 0.0001. This means that if the value 
of IND_Et-1 increases by 1 unit, then IND_Et increase by 31.36. 
Table 8 shows that the BEKK GARCH(1,1) model (Model 23) 
most of the parameters are significant with the P-values <0.05.

3.2. Diagnostic Model
ABM ABM

IND E ABM
t t

t t

= − + −

− +
−

− −

12 5608 0 9592

0 0099 0 0018 0 0

1

1 2

. .

. _ . . 8816
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From Table 9, the univariate model ANOVA diagnostics show 
that the model (24) and model (25) are significant with P-values 
<0.0001 and <0.0001 and R-square values of 0.9899 and 0.9923, 
respectively. This means that model (24) and model (25) are 
able to explain the diversity of ABMt and IND_E respectively 
by 98.99% and 99.23%. From Table 10, it can be seen that the 
normality test with the null hypothesis that the residuals are 
normally distributed is rejected with P-values <0.0001 and 
<0.0001 respectively, but from Figure 4, the prediction error 
distribution for ABMt and IND_Et does not appear to deviate 
much from the normal distribution. Table 10 also provides the 
results of the ARCH effect test, with the null hypothesis that there 
is no ARCH effect, and the results show that the null hypothesis 
is rejected, which means there is an ARCH effect. This indicates 
that modeling involving the GARCH model is very relevant for 
ABM and IND_E data. Table 11 shows that the modulus of the 
Roots of AR and GARCH characteristic polynomials is smaller 
than 1. This shows that the VAR(3)-BEKK GARCH (1,1) (Table 
8) model is a stable model (Hamilton, 1995; Lutkepohl, 2005; 
Wei, 2019). Thus, the VAR(3)-BEKK GARCH (1,1) model is a 
reliable model and can be used for further analysis.

Figure 2: Autocorrelation function for (a) ABM and (b) IND_E

ba
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3.3. Granger Causality Test and Impulse Response 
Function
From the results of the Granger causality test presented in 
Table 12 for Test 1 with the null hypothesis that ABM is 
influenced by itself and is not influenced by past and current 
information from IND_E, test with Chi-square=9.75 with 
P-value=0.0208 < 0.05. So the null hypothesis is rejected and 
we conclude that in the multivariate time series model, ABM 
is not only influenced by past information from itself, but is 
also influenced by past and current information from IND_E. 
Test 2 with the null hypothesis is that IND_E is influenced by 
itself and is not influenced by past and current information from 
ABM, Chi-square test = 0.98 with P-value = 0.8057 > 0.05. So 
the null hypothesis is not rejected, and this means that IND_E 
is only affected by IND_E’s own past information and is not 
affected by ABM.

Figure 5a and b show that if a shock of one standard deviation 
(Impulse) occurs in ABM, then ABM and IND_E will respond 
(ABM → ABM, and ABM → IND_E). It can be seen that the 
long-run response of ABM to the impulse ABM (ABM → 
ABM) (Figure 5a), the responses decrease and are significant, 
for the next 10 lags the response values are: 0.9592, 0.9183, 

0.9169, 0.9156, 0.9116, 0.9077, 0.9039, 0.9001, 0.8962, and 
0.8923. The long-run IND_E responses to the impulse ABM 
(ABM → IND_E) (Figure 5b), the responses decrease and 
are not significant because zero values are in the interval, for 
the next 10 lags the response values are: −0.0049, 0.0097, 
0.0057, 0.0026, −0.0007, −0.0041, −0.0074, −0.0108, −0.0141, 
and −0.0175. Figure 5b indicates that a change in the ABM 
score does not affect a change in IND_E, and this result is in 
accordance with the results of the Granger causality test (Test 
2, in Table 12).

Figure 6a and b show that if a shock of one standard deviation 
(Impulse) occurs in IND_E, then ABM and IND_E will respond 
(IND_E → ABM, and IND_E → IND_E). It can be seen that 
ABM’s long-run response to impulse IND_E (IND_E → ABM) 
(Figure 6a) responses with an upward and significant trend, 
for the next 10 lags the response values are: −0.0099, 0.0621, 
0.0711, 0.0829, 0.0940, 0.1052, 0.1162, 0.1272, 0.1381, and 
0.1489. The long-run IND_E responses to the IND_E impulse 
(IND_E → IND_E) (Figure 6b), the responses decrease and are 
not significant because zero values are in the interval, for the 
next 10 lags the response values are: 1.0059, 1.0546, 1.0548, 
1.0583, 1.0583, 1.0584, 1.0583, 1.0582, 1.0580, and 1.0578. 
Figure 6b indicates that the presence of an impulse value on 
IND_E affects changes in ABM and IND_E, and this result is 
in accordance with the results of the Granger causality test (Test 
1, in Table 12).

Table 3: Cross correlations of dependent series up to lag 11
Lag Variable ABM IND_E Lag Variable ABM IND_E
0 ABM 1.00000 0.72392 6 ABM 0.96718 0.69221

IND_E 0.72392 1.00000 IND_E 0.73497 0.97059
1 ABM 0.99335 0.71875 7 ABM 0.96182 0.68652

IND_E 0.72585 0.99583 IND_E 0.73627 0.96522
2 ABM 0.98836 0.71362 8 ABM 0.95687 0.68080

IND_E 0.72777 0.99125 IND_E 0.73769 0.96031
3 ABM 0.98289 0.70814 9 ABM 0.95107 0.67564

IND_E 0.72948 0.98610 IND_E 0.73901 0.95577
4 ABM 0.97770 0.70309 10 ABM 0.94583 0.67035

IND_E 0.73117 0.98110 IND_E 0.74009 0.95141
5 ABM 0.97199 0.69768 11 ABM 0.93976 0.66503

IND_E 0.73311 0.97590 IND_E 0.74089 0.94683
IND_E: Indika energy

Table 4: Schematic representation of cross correlations
Variable/Lag 0 1 2 3 4 5 6 7 8 9 10 11
ABM ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
IND_E ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
+ is >2*SE, - is <−2*SE, is between. SE: Standard error, IND_E: Indika energy

Table 5: Tests for ARCH disturbances based on OLS residuals ABM and Indika energy
Variable Order Q P LM P Variable Order Q P LM P
ABM 1 998.1640 <0.0001 992.0887 <0.0001 IND_E 1 974.8729 <0.0001 961.4543 <0.0001

2 1932.6626 <0.0001 992.1519 <0.0001 2 1853.7624 <0.0001 961.7116 <0.0001
3 2803.8389 <0.0001 992.2094 <0.0001 3 2643.8686 <0.0001 961.7249 <0.0001
4 3613.2042 <0.0001 992.2504 <0.0001 4 3360.0286 <0.0001 961.8562 <0.0001
5 4357.4338 <0.0001 992.5427 <0.0001 5 4016.5953 <0.0001 962.0016 <0.0001
6 5043.8709 <0.0001 992.5600 <0.0001 6 4621.1409 <0.0001 962.0126 <0.0001

IND_E: Indika energy, LM: Lagrange multiplier, OLS: Ordinary least squares, ARCH: Autoregressive conditional heteroscedasticity

Table 6: Minimum information criterion based on AICC
Lag AR0 AR1 AR2 AR3 AR4 AR5
IACC 25.994 17.246 17.225 17.227 17.234 17.238
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3.4. Forecasting and Proportion Prediction Error 
Covariance
Figure 7a shows that the VAR(3)-BEKK GARCH(1,1) model is 
a reliable model, while Figure 7a shows that the predicted values 
and real data are very close. This indicates that the built model 
sounds good and can be used for forecasting for next several 
periods. Figure 7b is the result of forecasting for the next 30 
periods. Table 13 shows that the forecasting value for the next 
30 periods has a slightly downward trend and the further the 
confidence interval, the forecasting period tends to widen. This 
indicates that forecasting with distant periods tends not to be stable. 
Figure 8a provides information on the proportion of prediction 
error covariance of ABM and IND_E in ABM forecasting data for 

Table 7: Model parameter estimate and test of vector autoregressive (3)
Equation Parameter Estimate SE t P Variable
ABM CONST1 −12.56088 4.37772 −2.87 0.0042 1

AR1_1_1 0.95926 0.03488 27.50 0.0001 ABM (t-1)
AR1_1_2 −0.00992 0.02434 −0.41 0.6838 IND_E (t-1)
AR2_1_1 −0.00187 0.04615 −0.04 0.9677 ABM (t-2)
AR2_1_2 0.08162 0.03348 2.44 0.0149 IND_E (t-2)
AR3_1_1 0.03827 0.03371 1.14 0.2565 ABM (t-3)
AR3_1_2 −0.06010 0.02129 −2.82 0.0048 IND_E (t-3)

IND_E CONST2 6.62576 4.13303 1.60 0.1092 1
AR1_2_1 −0.00459 0.01726 −0.27 0.7905 ABM (t-1)
AR1_2_2 1.00594 0.03208 31.36 0.0001 IND_E (t-1)
AR2_2_1 0.01877 0.02063 0.91 0.3632 ABM (t-2)
AR2_2_2 0.04271 0.04547 0.94 0.3477 IND_E (t-2)
AR3_2_1 −0.01762 0.01675 −1.05 0.2931 ABM (t-3)
AR3_2_2 −0.04857 0.03177 −1.53 0.1266 IND_E (t-3)

SE: Standard error, IND_E: Indika energy

ABMt-1 IND_Et-2

ABMtABMt

IND_Et-3
IND_Et-1

Figure 3: Parameters that have a significant effect on ABMt and 
IND_Et

Table 9: Univariate model ANOVA diagnostics
Variable R-square SD F P
ABM 0.9899 94.12578 17233.2 <0.0001
IND_E 0.9923 60.21690 22599.1 <0.0001
SD: Standard deviation, IND_E: Indika energy

Table 10: Univariate model white noise diagnostics
Variable Durbin Watson Normality ARCH

χ2 P F P
ABM 2.22578 4305.62 <0.0001 77.19 <0.0001
IND_E 1.89579 1334.85 <0.0001 8.55 0.0035
IND_E: Indika energy

Table 8: GARCH model parameter estimates and test
Parameter Estimate SE t Pr > |t|
GCH C1_1 16.50975 14.37014 1.15 0.2509
GCHC1_2 −13.94647 16.96394 −0.82 0.4112
GCHC2_2 98.95676 26.67641 3.71 0.0002
ACH1_1_1 0.44521 0.02955 15.07 0.0001
ACH1_2_1 −0.11137 0.02558 −4.35 0.0001
ACH1_1_2 −0.00193 0.01181 −0.16 0.8705
ACH1_2_2 0.25065 0.02551 9.83 0.0001
GCH1_1_1 0.91573 0.00808 113.34 0.0001
GCH1_2_1 0.02990 0.00893 3.35 0.0008
GCH1_1_2 0.00271 0.00327 0.83 0.4076
GCH1_2_2 0.95409 0.00832 114.70 0.0001
SE: Standard error

Figure 4: Prediction error normality for (a) ABM and (b) IND_E

b

a



Wamiliana, et al.: Modeling and Forecasting Closing Prices of some Coal Mining Companies in Indonesia by Using the VAR(3)-BEKK GARCH(1,1) Model

International Journal of Energy Economics and Policy | Vol 14 • Issue 1 • 2024 587

Table 11: Roots of AR and GARCH characteristic polynomial
Characteristic polynomial Index Real Imaginary Modulus Radian Degree
VAR 1 0.9980 0.0059 0.9981 0.0059 0.3402

2 0.9980 −0.0059 0.9981 −0.0059 −0.3402
3 0.2428 0.0000 0.2428 0.0000 0.0000
4 −0.0141 0.2212 0.2217 1.6347 93.6632
5 −0.0141 −0.2212 0.2217 −1.6347 −93.6632
6 −0.2454 0.0000 0.2454 3.1416 180.0000

GARCH 1 1.0353 0.0000 1.0353 0.0000 0.0000
2 0.9870 0.0000 0.9871 0.0000 0.0000
3 0.9849 0.0000 0.9850 0.0000 0.0000
4 0.9730 0.0000 0.9730 0.0000 0.0000

VAR: Vector autoregressive, GARCH: Generalized autoregressive conditional heteroscedasticity

Table 12: Granger-causality Wald test
Test Group variable Null hypothesis Test DF χ2 P
Test 1 Group 1 variable: ABM

Group 2 variable: IND_E
ABM is influenced by itself and is not affected 
by past and current information of IND_E

1 3 9.75 0.0208

Test 2 Group 1 variable: IND_E
Group 2 variable: ABM

IND_E is influenced by itself and not affected 
by past and current information of ABM

2 3 0.98 0.8057

IND_E: Indika energy

Figure 5: Response to Impulse in ABM with two standard errors (a) Response ABM, (b) Response IND_E

Figure 6: Response to Impulse in IND_E with two standard errors (a) Response ABM,(b) Response IND_E

b

b

a

a
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Table 13: Forecasting ABM and IND_E for the next 30 periods
Variable Obs Forecast SE 95% confidence limits Variable Obs Forecast SE 95% confidence limits
ABM 1069 3573.865 46.859 3482.023–3665.707 IND_E 1069 2114.674 41.373 2033.583–2195.766

1070 3571.205 65.350 3443.120–3699.289 1070 2111.992 59.091 1996.175–2227.809
1071 3567.766 79.965 3411.035–3724.496 1071 2106.140 74.372 1960.372–2251.909
1072 3564.396 92.739 3382.631–3746.162 1072 2100.471 87.308 1929.350–2271.593
1073 3560.809 104.396 3356.194–3765.423 1073 2094.647 98.884 1900.837–2288.457
1074 3557.188 115.240 3331.321–3783.056 1074 2088.844 109.468 1874.289–2303.399
1075 3553.516 125.499 3307.541–3799.492 1075 2083.042 119.322 1849.174–2316.909
1076 3549.797 135.321 3284.572–3815.022 1076 2077.252 128.604 1825.192–2329.312
1077 3546.030 144.806 3262.214–3829.846 1077 2071.474 137.425 1802.125–2340.823
1078 3542.217 154.031 3240.320–3844.113 1078 2065.708 145.864 1779.820–2351.597
1079 3538.357 163.052 3218.780–3857.934 1079 2059.955 153.979 1758.162–2361.749
1080 3534.451 171.913 3197.506–3871.395 1080 2054.215 161.814 1737.064–2371.366
1081 3530.499 180.650 3176.431–3884.567 1081 2048.487 169.405 1716.458–2380.516
1082 3526.501 189.292 3155.496–3897.507 1082 2042.772 176.780 1696.289–2389.255
1083 3522.459 197.862 3134.655–3910.263 1083 2037.071 183.960 1676.514–2397.627
1084 3518.372 206.383 3113.868–3922.875 1084 2031.383 190.966 1657.096–2405.670
1085 3514.240 214.870 3093.102–3935.378 1085 2025.708 197.811 1638.005–2413.412
1086 3510.064 223.339 3072.328–3947.801 1086 2020.048 204.510 1619.214–2420.882
1087 3505.845 231.803 3051.518–3960.171 1087 2014.401 211.075 1600.701–2428.100
1088 3501.582 240.274 3030.652–3972.512 1088 2008.768 217.513 1582.449–2435.087
1089 3497.275 248.763 3009.708–3984.843 1089 2003.150 223.835 1564.440–2441.859
1090 3492.927 257.279 2988.668–3997.185 1090 1997.545 230.047 1546.660–2448.430
1091 3488.535 265.830 2967.517–4009.554 1091 1991.956 236.156 1529.097–2454.814
1092 3484.101 274.425 2946.238–4021.965 1092 1986.381 242.168 1511.739–2461.023
1093 3479.626 283.070 2924.818–4034.434 1093 1980.821 248.088 1494.577–2467.065
1094 3475.109 291.773 2903.244–4046.974 1094 1975.276 253.920 1477.601–2472.951
1095 3470.551 300.539 2881.505–4059.598 1095 1969.746 259.669 1460.803–2478.689
1096 3465.953 309.374 2859.589–4072.316 1096 1964.232 265.338 1444.177–2484.286
1097 3461.313 318.285 2837.486–4085.141 1097 1958.733 270.932 1427.715–2489.750
1098 3456.634 327.275 2815.185–4098.083 1098 1953.249 276.452 1411.413–2495.086

SE: Standard error, IND_E: Indika energy

the next 30 periods. Figure 8a explains that for ABM forecasting 
up to a lag of 20 in the future, the effect of IND_E is <1%. For 

long-run forecasting (lag 30), IND_E contributes 2% of the 
variance to ABM. Figure 7c shows the prediction error for ABM, 

Figure 7: (a) Model and forecast, (b) forecast, and (c) prediction error for ABM

c

a b
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Figure 10: (a) Model and forecast, (b) forecast, and (c) prediction error for IND_E

c

a b

Figure 9: Conditional variance from model VAR(3)-BEKK GARCH(1,1) for (a) ABM and (b) IND_E

a b

Figure 8: Proportion prediction error covariance for data (a) ABM and (b) IND_E

a b
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it appears that the residual is very high in 2018 and in 2021, 2022, 
and 2023 until July. This indicates that the use of the BEKK 
GARCH model to explain the pattern of data diversity seen from 
conditional variance is very appropriate. Figure 9a shows the 
conditional variance of the VAR(3)-BEKK GARCH(1,1) model 
for ABM data. It appears that the conditional variance during 
2018 and from January 2021 to July 2023 fluctuated and was 
high, this shows that price changes during this period are unstable. 
From January 2019 to December 2020, the conditional variance 
(volatility) was relatively low, this indicated that the price changes 
that occurred were not drastic.

Figure 10a shows that the VAR(3)-BEKK GARCH(1,1) model 
is a reliable model to explain the behavior of IND_E data, where 
Figure 10a shows that the predicted value and real IND_E data 
are very close together. This indicates that the built model sounds 
good and can be used for forecasting for next several periods of 
IND_E data. Figure 10b and Table 13 are the results of forecasting 
for the next 30 periods, Table 13 shows that the forecasting value 
for the next 30 periods has a downward trend and the further the 
confidence interval the forecasting period tends to widen, this 
indicates that forecasting with a long period tends to be unstable. 
Figure 8b provides information on the proportion of prediction 
error covariance of ABM and IND_E data to explain IND_E 
forecasting data for the next 30 periods. Figure 8b explains that for 
forecasting IND_E up to lag 13 in the future, the effect of ABM 
is around 5% and the influence of IND_E itself is around 95%. 
For long-run forecasting (lag 30), ABM contributed 3.6% of the 
variance to IND_E and IND_E itself contributed around 96.4% 
of the variance. Figure 10c shows the prediction error for IND_E, 
showing relatively high residuals from January 2018 to July 2023. 
This indicates the use of the BEKK GARCH model to explain the 
pattern of data diversity seen from conditional variance, which 
is very suitable for IND_E data. Figure 9b shows the conditional 
variance of the VAR(3)-BEKK GARCH(1,1) model for the IND_E 
data. It appears that the conditional variance from January to June 
2018 was relatively high, and from June 2018 to December 2020 
the conditional variance was relatively low and from January 
2021 to July 2023 the conditional variance was relatively high. 
This shows that in the period January 2021 to July 2023 the price 
changes have occurred drastically.

4. CONCLUSION

The study of energy is an interesting topic, both oil energy and coal 
energy. These two energy sources are still the largest contributor 
to the need for electrical energy in the world today, especially 
for electrical energy both for households and for industry. This 
research discusses the closing price of the share prices of coal 
companies in Indonesia, namely ABM and IND_E, from January 
2018 to July 2023. The best model that describes the pattern of 
data relationships between ABM and IND_E is VAR(3)- BEKK 
GARCH(1,1).

Based on this best model, further analysis was carried out with 
the following results: From the Granger causality analysis it can 
be concluded that IND_E has a significant effect on changes 
in ABM prices in the short term; From the Impulse Response 

Function (IRF) analysis, if there is a shock of one standard 
deviation on IND_E, ABM responds significantly and this result 
is in accordance with the results of the Granger causality analysis 
where in the short term IND_E has an effect on ABM, whereas 
if there is a shock of one standard deviation on ABM, IND_E 
responds but changes are not significant; For forecasting the next 
30 periods (days) the ABM data tends to trend slightly downward, 
while the IND_E data tends to trend downward. In forecasting 
ABM data for the next 30 days IND_E provides information of 
less than 2%, whereas in forecasting data of IND_E for the next 
30 days ABM provides information of less than 5%.
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