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Harnessing the power of probiotics to enhance neuroplasticity for 
neurodevelopment and cognitive function in stunting: a comprehensive 
review

Khairun Nisaa , Rizki Arisandia, Nurhadi Ibrahimb and Hardian Hardianc

aDepartment of Physiology, University of Lampung, Bandar Lampung, Indonesia; bDepartment of Medical Physiology and Biophysics, 
Universitas Indonesia, Depok, Indonesia; cDepartment of Physiology, University of Diponegoro, Semarang, Indonesia

ABSTRACT
Background:  Stunting become a global concern because it’s not only affecting physical stature, 
but also affecting on neurodevelopment and cognitive function. These impacts are resulting in 
long-term consequences especially for human resources, such as poor-quality labor, decreased 
productivity due to decreasing of health quality, including immunity and cognitive aspect.
Discussion: This comprehensive review found that based on many studies, there is an altered gut 
microbiota, or dysbiosis, in stunted children, causing the impairment of brain development 
through Microbiota-Gut Brain Axis (MGB Axis) mechanism. The administration of probiotics has 
been known affect MGBA by improving the physical and chemical gut barrier integrity, producing 
antimicrobial substance to inhibit pathogen, and recovering the healthy gut microbiota. Probiotics, 
along with healthy gut microbiota, produce SCFAs which have various positive impact on CNS, 
such as increase neurogenesis, support the development and function of microglia, reduce 
inflammatory signaling, improve the Blood Brain Barrier’s (BBB’s) integrity, produce neurotropic 
factors (e.g. BDNF, GDNF), and promote the formation of new synapse. Probiotics also could 
induce the production of IGF-1 by intestinal epithelial cells, which functioned as growth factor of 
multiple body tissues and resulted in improvement of linear growth as well as brain development.
Conclusion:  These properties of probiotics made it become the promising and feasible new 
treatment approach for stunting. But since most of the studies in this field are conducted in 
animal models, it is necessary to translate animal data into human models and do additional 
study to identify the numerous components in the MGB axis and the effect of probiotics on 
human.

Introduction

Stunting has been a major public health concern espe-
cially in under and developing countries since its dev-
astating physical and cognitive impairment on the 
individuals who are affected as well as socioeconomic 
decline. The 2020 report by UNICEF-WHO-World Bank 
Group Joint estimated that 149.2 million children 
under 5 years old are classified as stunting, and con-
tributes about 22.0% of total population of children 
under 5 globally. Most of these stunting children live 
in the lower-middle income countries in Asia and 
Africa [1]. Although there has been a decrease trend in 
the number of stunting cases, it did not meet the 
2030 target of stunting decline by 50%. The evaluation 
of this target in 2017 found a required annual average 
rate of reduction (AARR) of approximately 4% per year. 
Current global trends suggest that the AARR of 2.3% 

per year, which indicates insufficient progress [2]. 
According to the Global Nutrition Report (2020), 
Indonesia has the third highest prevalence of stunting 
in the world in children under the age of five [3]. The 
2018 Riskesdas data shows that the prevalence of 
stunting in Indonesia is 30.8%, higher than the preva-
lence of stunting globally. This indicates that an esti-
mated 1 in 3 children under 5 years in Indonesia is 
stunting. This number has decreased by 6.4% com-
pared to the number of cases in the previous 5 years 
(2013), but is not sufficient to meet global criteria [4,5].

Children who are stunting have shorter heights or 
body lengths than they should. A length or height 
that is less than minus two standard deviations from 
the WHO’s median child growth standard indicates the 
presence of this condition [6]. Early childhood or the 
early years of childhood are frequently referred to as 
The Golden Age (0–5 years), the time when all 
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advantages or privileges enjoyed at the time were not 
intended to be repeated. Early age periods are consid-
ered to be an age of gold during which rapid progress 
was made in all spheres of human development—
physical, intellectual, emotional, linguistic, and social. 
The development of skills, particularly the develop-
ment of the motor system, happens very quickly. 
Children begin to be able to accept skills like the fun-
damentals for knowledge formation and thought pro-
cesses in the early years of life, starting at the age of 
3 [7]. Stunting can have a negative impact on a per-
son’s physical growth, brain development, cognitive 
function, motor development, and motor activity [6]. 
According to Probosiwi et  al. (2017), it is found that 
children with and without stunting exhibit different 
developmental patterns, with a pvalue of 0.033. 
Following in order, social and interpersonal develop-
ment (87.5%), language (75%), gross motor skills (25%) 
and fine motor skills (12.5%) are developmental 
domains in stunting children that are suspicious [7]. 
Other study shows that although there is nonsignifi-
cant difference on cognitive aspects of stunting chil-
dren and undernourished children with normal stature, 
but there is a trend toward lower median score per-
centiles in the stunting group in the motor (median 
(range) 1 (0.1–75) vs. 4 (0–79); p 0.183), cognitive (12.5 
(0.1–75) vs. 16 (0.1–99.9); p 0.550), and adaptive behav-
ior (7 (0.1–75) vs. 12 (0.1–58); p 0.657) domains [8]. 
This decline on cognitive function leads to decreased 
productive capacity and poor health, and an increased 
risk of degenerative diseases such as diabetes, so that 
in long term could affect the economic growth [9].

There are multiple attempts in order to reduce the 
number of stunting cases. The discovery of Microbiota- 
Gut Brain Axis (MGB Axis) which allows the bi-directional 
communication between gut and the brain has been 
bringing the new perspective in order to prevent, 
diagnose, and treat various health condition [10]. There 
is a difference of gut microbiota between stunting and 
healthy children. Even though the amount of food 
consumed is sufficient, changes in the composition 
and imbalance of the intestinal microbiota or the loss 
of one of the non-pathogenic microbiota results in  
the disruption of the process of food digestion and 
the production of different vitamins, thus can alter the 
MGB axis, causing serious problem [11]. One of condi-
tions causing this disruption of healthy gut microbiota 
in stunting called Environmental Enteric Dysfunction 
(EED) [12].

The complexity of the relationship between socio-
environmental and biomedical elements impacting 
cognition, especially throughout childhood, highlights 
the significance of an innovative method and plan to 

maximize cognitive development [13]. Among bio
medical elements (e. g. fatty acids, iron, and iodine), 
there is rising interest in how probiotics can optimize 
cognitive development. There are various way how 
probiotics are able to induce neuroplasticity and 
improve neurodevelopment and cognitive function. 
Probiotics supplementation may promote the growth 
of beneficial bacteria that can boost the production of 
short chain fatty acids (SCFAs) [14]. SCFAs have a vari-
ety of systemic effects, including as anti-inflammatory 
properties that help maintain the blood-brain barrier’s 
integrity, promotion of brain-derived neurotrophic  
factor (BDNF) and glial-derived neurotrophic factor 
(GDNF) production for neuronal and glial growth, neu-
roprotection, and modification of synaptic connections 
[15]. Another mechanism how probiotics could pro-
mote cognitive function through the activation of 
NOD2 in intestinal wall cells and production of IGF-1 
[16]. IGF-1 has beneficial properties toward neuroplas-
ticity and brain development through re-innervation, 
inducing potent augmentation of excitatory synaptic 
transmission, promoting dendritic growth and spine 
density, enhancing activation of high-voltage-activated 
calcium channels, and has acute effects on L and 
N-type calcium channel currents [17]. This article aimed 
to explore and summarize the effect of probiotics as 
neuroplasticity agent for neurodevelopment and cog-
nitive function in stunting, highlighting the biomedical 
mechanisms of this topic.

Impairment of neurodevelopment and 
cognitive function in stunting

Early cognitive development includes the growth of 
thinking, attention, memory, and problem-solving 
skills, all of which aid children in understanding their 
environment [18]. Different ages mark the develop-
ment of cognitive abilities, receptive and expressive 
language, and socioemotional skills. Early childhood is 
the time when the brain develops most quickly, with 
many skills continuing to develop in later years [19]. 
This development supports the acquisition of cogni-
tive, linguistic, and socioemotional skills. Because of 
the rapid progression of several neurologic processes, 
such as synapse formation and myelination, the devel-
oping brain is especially susceptible to nutrient defi-
ciency between 24 and 42 weeks of gestation. Rapid 
brain development in the first two years of life in 
healthy infants is well-documented; this time frame is 
also essential for long-term neurodevelopment [20]. 
Some studies demonstrated the negative impact of 
stunting towards brain development and cognitive 
function. Arini et  al. (2019) found that there is an 
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association between stunting and disorders of cogni-
tive and motor development. This was demonstrated 
by the values of the Spearman rho test for children’s 
fine motor development (sig = 0.006) and cognitive 
development (sig = 0.044) [21]. Another study con-
ducted in Ethiopia which assess the cognitive function 
of stunting children (5 and 8 year old) shows that 
stunting children scored 16.1% less in the Peabody 
Picture Vocabulary Test and 48.8% less in the 
Quantitative Assessment test at the age of eight, both 
statistically significant at p < 0.01 [22].

Stunting is one of the major risk factors for not 
reaching full developmental potential, along with 
inadequate cognitive stimulation, iodine deficiency, 
and iron-deficiency anemia. Stunting children have 
delayed behavioral maturation in infancy, are less 
likely to enroll in school or enroll later, tend to achieve 
lower academic standards, and have less cognitive 
ability than non-stunting children. Additionally, chil-
dren who are stunting are less exploratory, more apa-
thetic, and have altered physiological arousal [23]. 
Nutritional deficiency is linked to structural and func-
tional brain dysfunction, as well as a wide range of 
cognitive deficiencies. Chronic malnutrition, specifi-
cally protein malnutrition, in the CNS can cause tissue 
damage, disordered differentiation, a decrease in syn-
apses and synaptic neurotransmitters, a delay in 
myelination, and a general slowing of dendritic arbor-
ization development in the growing brain [24]. There 
are anomalies in the temporal sequences of brain 
growth, which disrupt the creation of neural networks. 
Long-term changes in brain function have been 
described, which may be related to long-term cogni-
tive impairments caused by malnutrition [25].

In the perspective of neuroimaging studies, it has 
been found that there are some differences between 
the healthy and malnourished children. The study 
using EEG by Taboada-Crispi and colleagues, found 
that when comparing the same previously malnour-
ished children to controls, there is significant differ-
ences in the z spectra. Increased theta (3.51, 4.68, 
and 5.07 Hz), alpha 2 (13.28 Hz), and beta (13.67- 
18.36 Hz), as well as a decrease in alpha 1 (8.98 Hz) 
wave, were among these differences [26]. One of the 
few controlled studies employing MRI to examine  
the neurological effects of early childhood malnutri-
tion in Chilean high school students found that  
both genders had substantial cerebral atrophy, or 
decreased brain volume, that persisted up to 18 years 
after malnutrition exposure [26]. In an RCT study in 
Guinea-Bissau, the cerebral blood flow of children 
with malnutrition was assessed using functional Near- 
Infrared Spectroscopy (fNIRS) as a biological sign of 

cognitive function impairment. The cerebral blood 
flow was significantly correlated with cognitive per-
formance, and children with malnutrition showing 
lower cerebral blood flow compared to control 
group [27].

The microbiota-gut brain axis

The huge population of bacteria (10–100 trillion) that 
inhabit the human body is referred as the microbiota. 
These bacteria commonly found in the gastrointestinal 
(GI) tract which contains the bulk of microbial colo-
nies, and also can be found in skin, upper respiratory 
tract, genitourinary tract, and other mucosal surfaces 
of the body [28]. The number of these bacteria exceeds 
the quantity of eukaryotic cells in the human body, 
roughly 10–100 times more [29]. Mammals’ gut become 
colonized by microbes very early in life, right after 
birth, primarily through the vaginal canal [30]. The 
microbiota in the human gut is balanced, with two 
main phyla, Bacteroidetes (including Bacteroides)  
and Firmicutes (e.g. Lactobacillus, Clostridium, and 
Enterococcus), composing 70–75% of the total phyla 
[31]. Less common phyla include Proteobacteria, 
Actinobacteria, Fusobacteria, and Verrucomicrobia. 
Several conditions early in life (especially the channel 
for delivery and as we mature) can have an impact on 
the composition of these bacteria. The host’s health, 
including the host’s food, genetics, environment, expo-
sure to medications and antibiotics, and other lifestyle 
factors, affects the gut microbiota [32]. The gastroin-
testinal microbiota plays a dynamic role in a variety of 
biological processes that take place inside the human 
body, including regulating the host’s neuroimmune 
system’s development and operation as well as 
strengthening the gastrointestinal epithelial barrier 
and preventing pathogen invasion [33]. Since the host 
and gut microbiota interact in a complicated way, if 
this interaction were to be disrupted, microbiota might 
either cause or contribute to disease [29].

Recent studies demonstrated the relationship of 
microbiota in GI tract and human brain, known as the 
Microbiota-Gut Brain Axis (MGB Axis), a mechanism of 
bidirectional neurohormonal communication, connects 
the host’s brain and gut functions [34]. The gut-brain 
axis’ bidirectional relationship principally reveals how 
signals from the gut microbiota affect brain activity 
and how signals from the brain alter GI tract physiol-
ogy and gut bacteria activity [35]. Gut microbiota 
could affect central nervous system (CNS) through  
various pathways. Gut microbiota produces various 
byproducts and metabolites such as lipopolysaccha-
ride (LPS), peptidoglycan, and flagellin, are recognized 
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by pattern-recognition receptors (PRRs), such as 
Toll-like receptors (TLRs), NOD-like receptors (NLRs), or 
RIG-1-like receptors (RLRs), inducing production of 
cytokines and hormones by gut epithelial and immune 
cells and acting as a neurotransmitter in the CNS [36]. 
Traditionally, the recognized channels of communica-
tion include the neural pathway made up of intrinsic 
branches of the enteric nervous system (ENS), the 
extrinsic parasympathetic (primarily represented by the 
vagus nerve) and sympathetic branches of the auto-
nomic nervous system (ANS), as well as the immune, 
endocrine, and humoral pathways [33].

The human brain has a remarkable ability to rear-
range itself, a mechanism called neuroplasticity. The 
ability of the nervous system to alter its activity in 
response to intrinsic or external stimuli by changing its 
structure, functions, or connections is known as neural 
plasticity, also known as neuroplasticity or brain plas-
ticity [37]. Neurogenesis, cell migration, adjustments to 
neuronal excitability, and alterations to existing con-
nections are only a few of the basic mechanisms that 
contribute to neural plasticity [38]. Long-term potenti-
ation, or LTP, is an example of Hebbian plasticity in 
synaptic plasticity, which involves a change in synaptic 
strength mediated by changing neuronal activity after 
the start of stimulation. Homeostatic plasticity, on the 
other hand, is a negative feedback loop in response  
to increased neuronal activity. Homeostatic plasticity 
involves mechanisms like the control of neuronal excit-
ability or the stabilization of the total synaptic strength, 
whereas Hebbian plasticity involves lifetime modifica-
tions [39]. By training and rehabilitation, which can 
alter and improve these neural plasticity processes, 
brain plasticity can result in an extremely high degree 
of recovery. This neuroplasticity properties could also 
be promoted via MGB axis, in which the modification 
or restoration of healthy gut microbiota as the 
approach to improve various condition related to CNS 
disorder, including cognitive function [10].

EED in stunting cases

Stunting is a condition resulted from complicated 
interaction of multiple factors. It divided into 3 factors, 
1) basic factors (family income, parents’ education), 2) 
direct factors (maternal fertility, birth spacing, mother’s 
height, baby’s weight at birth, diversity of foods con-
sumed, and infectious diseases), as well as 3) indirect 
factors (poor sanitation, clean water, vaccination cover-
age, maternal antenatal visits, and suboptimal breast-
feeding) [11]. Poor sanitation is one theory for why 
this might be happening, as prolonged pathogen 
exposure causes a subclinical change in gut structure 

and function. Environmental enteropathy, tropical 
enteropathy, or more recently environmental enteric 
dysfunction are terms used to describe the ensuing 
condition (EED). EED commonly defined as disturbance 
marked by increased permeability, crypt hyperplasia, 
villous atrophy, and inflammatory cell infiltration in the 
gut [40]. The gut immune system is thought to be 
driven by T-cell-mediated hyperstimulation through a 
process that keeps it in an inflammatory, hyperim-
mune state after continuous exposure to enteric 
pathogens [41]. This normal immune response causes 
the structural changes in the gut discussed above as 
well as increased intestinal inflammation and permea-
bility, which disrupt the gut immune response, limit 
nutrient delivery, absorption, and utilization, and ulti-
mately result in nutritional deficiencies [12].

The pathophysiology of EED consisted by five highly 
interconnected mechanism: increased intestinal per-
meability with the translocation of bacteria or anti-
gens, malabsorption, gut inflammation, hormonal 
disturbance, and disruption of the gut microbiome 
[42]. The gut lumen and the systemic circulation are 
physically separated from one another by a healthy 
intestine. It is possible for bacteria or their metabolites 
to enter the systemic circulation when the gut archi-
tecture is disrupted in EED and tight connections 
between cells are broken down [43]. This could result 
in a systemic inflammatory state and subsequent 
immunological activation, both of which could have 
negative implications on one’s health [44]. The dam-
aged of intestinal architecture also results in shorter 
and blunted villi and crypt hyperplasia, both of which 
reduce the absorptive intestinal surface area. A mis-
match between the availability and consumption of 
micronutrients and macronutrients could emerge from 
deficiencies in the absorption of vital nutrients caused 
by this reduction of surface area [45]. High C-reactive 
protein levels are linked to small intestinal inflamma-
tion in EED, which may also be accompanied by the 
release of cytokines that suppress appetite and food 
intake and prevent the generation and activity of 
chondrocyte growth factors [46]. EED may also be 
associated with the alteration of healthy gut microbi-
ota, also known as enteric microbiome dysbiosis. EED 
results in reduce of the surface area of the gut and 
causes severe enteric inflammation, which affects the 
ecological niches that support particular bacterial taxa. 
The prolonged exposure of pathogenic bacteria also 
contributes to this enteric dysbiosis [47]. Maintaining a 
balanced gut microbiota is essential for the proper 
operation of gut physiology and the intricate signal-
ling of the MGB axis, which affects the host’s general 
health. Dysbiosis could negatively affect CNS function, 
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neurodevelopment and cognitive function, which in 
turn, making the stunting children have a worse  
prognosis [10].

The therapy of EED is riddled with problems. First, 
it is challenging to diagnose EED in a specific child 
since the lack of reliable point-of-care biomarkers. 
Furthermore, there isn’t strong proof from clinical tri-
als that certain therapies can cure or lessen the symp-
toms and signs of EED [12]. The mainstay of preventing 
EED is to ‘clean’ the environment because the disorder 
has environmental roots. Several large interventional 
trials have focused on ways to reduce environmental 
contamination through water, sanitation, and hygiene 
(WASH) program [48]. Community-wide improvements 
in water and sanitation facilities are likely to lower the 
burden of EED. However, these findings imply that 
individual or household-level WASH interventions may 
not provide sufficient protection against environmen-
tal contamination to prevent or treat EED [49]. The 
inadequate resource in lower and middle income 
countries (LMICs) resulted in greater challenge in 
making a large scale community environmental pro-
gram, thus more feasible approach is needed in order 
to solve it. Due to the fact that obtaining 90% cover-
age with the top 10 nutrition-specific treatments will 
only result in a 20% reduction in stunting, current 
interventions, such as exclusive breastfeeding (EBF), 
have little effect on growth [50]. Since there is gut 
microbiome dysbiosis in EED, and microbiota coloni-
zation happens in childhood, focused intervention at 
this crucial moment may have an impact on linear 
growth [51]. Aside from linear growth, the dynamics 
of MGB axis also allows the restoration of healthy 
microbiota to have a positive implication toward 
short- and long-term neurodevelopment. The admin-
istration of probiotics as the robust intervention has 
been explored in several studies, resulting in promis-
ing effect for both linear growth and neurodevelop-
ment [52].

Probiotics: new approach to promote 
neuroplasticity

Probiotics are living microorganisms that, when given 
in sufficient quantities, boost the host’s health [53]. 
Probiotics, which are mostly found in human intes-
tines, can benefit the host by preserving the balance 
of intestinal microorganisms [54]. The initial probiotics 
that were readily available only contained one type of 
bacterium, often one from the Saccharomyces or 
Lactobacillus genera. The type and quantity of microbes 
in later probiotic formulations increased, ranging from 
108 to more than 1010 organisms [55].

Probiotics is a new promising approach for man
agement of stunting which focused on impact to  
neuroplasticity for neurodevelopment and cognitive 
function. This comprehensive review has shown that 
administration of probiotic is beneficial for neurodevel-
opment and cognitive function through several mech-
anisms following the principle of MGB axis and 
neuroplasticity [10, 15]. There are several mechanisms 
how probiotics exert beneficial effect to their host’s 
body. The intestinal epithelium, which is made up of a 
single layer of intestinal epithelial cells, arranged into 
villi and crypts, is the biggest mucosal surface on the 
human body [56]. Establishing a physical and chemical 
barrier between the external environment and the 
host immune system is one of the tasks of the intesti-
nal epithelium [57]. The mucosal barrier is made up of 
the mucus layer, the epithelium lining of the mucosal 
tissues, and the immune cells in the subepithelial layer. 
The study established that probiotics can improve the 
function of the barrier by encouraging mucus secre-
tion [58]. Probiotic L. plantarum BMCM12, for instance, 
can release extracellular proteins, reduce pathogen 
adherence, and shield the gut barrier [59]. It also  
has been discovered that the probiotic metabolite 
butyric acid encourages the intestinal epithelium to 
consume oxygen, enhancing the expression of barrier- 
protective hypoxia-inducible factor (HIF) target genes 
and preserving HIF stability [60]. Another study by 
Monteguade-Mera et  al. (2019) showed goblet cells 
can generate mucin when exposed to probiotics, pre-
venting pathogen adhesion [61]. Probiotics have been 
shown to protect the digestive tract by suppressing 
harmful bacteria in previous research. Probiotics can 
inhibit pathogenic microbes through a variety of ways, 
including the activation of epithelial barrier function, 
the production of antimicrobial compounds, prevent-
ing access to nutritional resources, and competitive 
exclusion through competition for binding sites [62]. 
On the other hand, probiotics also play a crucial role 
in the secretion of antimicrobial substances. Probiotics 
can release organic acids including butyric acid, acetic 
acid, and propionic acid during the fermentation of 
carbohydrates [63]. The primary antimicrobial sub-
stances thought to be in charge of their inhibitory 
activity against infections have been identified as 
organic acids [64]. Organic acids have a specific anti-
bacterial effect because of the drop in pH and the 
presence of undissociated acid [65].

Researchers discovered that the mice treated with 
probiotics had much higher amounts of Short-Chain 
Fatty Acids (SCFAs) and beneficial bacteria in their gut 
flora than the control group, including Oscillibacter 
and Prevotella [66]. SCFAs, the form of small organic 
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monocarboxylic acids, are the primary byproducts of 
the anaerobic fermentation of indigestible polysaccha-
rides, like dietary fiber and resistant starch, by the 
microbiota in the large intestine [67]. SCFAs are organic 
monocarboxylic acids with a chain length of up to six 
carbon atoms. Depending on the amount of fiber in 
the diet, the makeup of the microbiota, and the length 
of the gut transit, the gut produces 500–600 mmol of 
SCFAs every day, with the majority of these com-
pounds being acetate (C2), propionate (C3), and butyr-
ate (C4) [68]. Following the synthesis, colonocytes 
absorb SCFAs primarily through sodium dependent 
monocarboxylate transporters (SMCTs) or H+-dependent 
monocarboxylate transporters (MCTs) [69]. Although 
colon-derived SCFAs only reach a small portion of the 
systemic circulation and other tissues, their impacts on 
various organs and systems have lately been exten-
sively documented [70]. By encouraging the secretion 
of gut hormones like glucagon-like peptide 1 (GLP1) 
and peptide YY (PYY), as well as ɤ-aminobutyric acid 
(GABA), and serotonin, SCFA interaction with their 
receptors on enteroendocrine cells promotes indirect 
signaling to the brain via the systemic circulation or 
vagal pathways (5-HT) [71]. A crucial part in brain 
development and the maintenance of CNS homeosta-
sis appears to be played by SCFAs in maintaining BBB 
integrity, which is closely linked to the controlled tran-
sit of chemicals and nutrients from the circulation to 
the brain. Germ-free (GF) mice have decreased produc-
tion of tight junction proteins including claudin and 
occludin, which causes the BBB to be more permeable 
from intrauterine life to adulthood, providing evidence 
that SCFAs modulate the BBB function [72]. Additionally, 
monocolonization with SCFA-producing bacterial 
strains or recolonization of these adult animals with a 
complex microbiota restores the BBB’s integrity [73].

SCFAs produced by probiotic also known to have an 
impact on microglia. Although how the SCFAs regulate 
the development and function of microglia are yet 
unknown, the activation of FFAR2 is possible because 
FFAR2-deficient mice showed microglia that were sim-
ilar to those reported in GF mice [74]. It has been 
demonstrated that antibiotic-induced changes to the 
variety of gut bacteria have an impact on neuroinflam-
mation with altered microglial morphology [75]. 
Moreover, butyrate administration produces morpho-
logical and functional alterations in the microglia 
toward a homeostatic profile and suppresses 
LPS-induced proinflammatory modifications and 
depressive-like behaviour in both vitro and in vivo [76]. 
Similar to this, it has been demonstrated that acetate 
treatment of microglia primary culture reduces inflam-
matory signaling by IL-1β, IL-6, and TNF-α expression 

and p38 MAPK, JNK, and NF-κB phosphorylation [77]. 
It has also been demonstrated that SCFAs can influ-
ence neurotrophic factors, including nerve growth fac-
tor (NGF), glial cell line-derived neurotrophic factor 
(GDNF), and BDNF, which control the growth, survival, 
and differentiation of neurons and synapses in the 
CNS and are crucial for learning and memory as well 
as a variety of brain illnesses [78,79]. BDNF expression, 
neurogenesis, and neuronal proliferation in mice, as 
well as facilitation of long-term memory consolidation, 
were enhanced by sodium butyrate [80]. The mecha-
nism of probiotic effect on CNS summarized in 
Figure 1.

Aside from being facilitated by SCFAs action, probi-
otics also promoted positive impact on CNS through 
inducing production of Insulin-Like Growth Factor 1 
(IGF-1). Recent study by Schwarzer et  al. (2023) found 
that chronic malnutrition causes a state of GH resis-
tance characterized by low levels of circulating IGF-1, 
which causes stunting. Upon administration of strain 
of Lactiplantibacillus plantarum (strain LpWJL) in 
diet-induced stunting mice model which then recog-
nized by NOD2 pattern recognition receptor induces 
the proliferation of intestinal crypt cells, induction of 
type I interferon-regulated genes, synthesis of IGF-1, 
and enhancement of postnatal growth in conventional 
mice with malnutrition [16]. The other species of pro-
biotics which has been known to have similar promot-
ing IGF-1 production is Lactobacillus rhamnosus. The 
administration of L. rhamnosus increases the serum 
IGF-1 3-5 times [81]. IGF-1, one of the Insulin-Like 
Peptide (ILP) family members, is a powerful growth 
factor in the central nervous system (CNS) having 
pleiotrophic effects on all major cell types [17]. IGF-1 
is largely produced in the liver, where it is controlled 
by growth hormone (GH) production from the pitu-
itary. It plays a crucial role in the somatrotropic axis, 
working after GH to support anabolic processes and 
tissue growth all through life [82]. Moreover, IGF1 is 
produced locally in numerous organs, including the 
brain. It acts in practically every tissue in the body to 
stimulate tissue development and maturation by acti-
vating both the mitogen-activated protein (MAP) 
kinase and PI3K signaling pathways [83]. IGF-1 admin-
istration in cerebellar de-afferentation models causes 
reinnervation and restoration of olivo-cerebellar path-
ways in both young and adult rats. Moreover, IGF-1 
administration restores the levels of various synaptic 
proteins that are impacted by de-afferentation, includ-
ing calbindin, glutamate receptor 1 (GluR1), GABA, and 
glutamic acid [17]. One study found that acute IGF-1 
administration significantly increased excitatory synap-
tic transmission, with the excitatory post-synaptic 
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potential (EPSP) in the CA1 area of the hippocampus 
increasing by 40%. Such electrophysiological tech-
niques provide additional proof of the crucial func-
tions IGF-1 plays in regulating synaptic effectiveness 
and neuroplasticity in the central nervous system [84]. 
IGF-1 is necessary for dendritic growth, as shown by 
the shorter dendrites, decreased dendritic spine den-
sity, and aberrant synaptotagmin and synaptophysin 
levels and distribution seen in IGF-1-/- knockout mice. 
These investigations suggest that an aberrant synaptic 
pattern in the developing brain is caused by a lack of 
physiological IGF-1 signaling in the CNS [17]. While 
animal studies have shown the positive effect of IGF-1 
on CNS, human studies are still lacking. A large-scale 
cohort from UK, with more than 300.000 participants 
showed that both low and high concentrations of 
IGF-1 are correlated with elevated risks of dementia 
and stroke, while heightened IGF-1 levels are linked to 
an increased risk of PD, with the lowest risks observed 
at 18 nmol/L and 26 nmol/L, respectively. This under-
scores the potential of IGF-1 as a biomarker for cate-
gorizing the risk of brain health. Additionally, 
neuroimaging analyses revealed that increased IGF-1 
concentrations are associated with larger volumes of 
white matter (β = 2.98 × 10–4, p < 0.001) and the hippo-
campus (β = 3.37 × 10–4, p = 0.002) [85]. A study in 
China showed that the patients with pituitary adeno-
mas that secrete growth hormone (GH) exhibit a 

noteworthy rise in both gray matter volume (GMV) 
and white matter volume (WMV), accompanied by a 
decrease in cerebrospinal fluid volume (CSFV). This 
suggests a connection between serum GH/IGF-1 and 
increased brain growth, offering a potential avenue for 
treating neurodegenerative disorders and brain injuries 
in humans [86].

Conclusion

This review indicated that there are promising effects 
linked between the neurodevelopment, cognitive func-
tion improvement in stunting and the administration 
of probiotic regarding MGB axis and neuroplasticity 
property of the brain through various mechanisms as 
explained above. Hence, altering the MBG axis as a 
therapeutic target for disorders marked by cognitive 
impairment coupled with stunting is an alluring poten-
tial, especially in the setting of a neurodevelopmental 
disease. Until this becomes a feasible treatment strat-
egy, however, there is still much to be done. Most of 
the studies in this field are conducted in animal mod-
els. It is necessary to translate animal data into human 
models and do additional study to identify the numer-
ous components in the MGB axis. It should also be 
noted that due to difference in brain structure, the 
human MGB axis differs greatly from the rodent axis. 
The long-term effects studies of many of these 

Figure 1. T he probiotics effect to the CNS.
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probiotic agents in human populations are currently 
very limited. The fact that probiotics are such a diverse 
family of substances with different quality control and 
efficacy makes research into them even more difficult. 
The time and dosage of probiotic and additional 
dietary interventions are another thing to consider. 
Despite this, the discipline has advanced significantly 
over the past ten years, and significant advances in 
science and technology should eventually bring us 
closer to a treatment pathway. It will be very helpful 
to increase our understanding of a potential area of 
research if longitudinal clinical studies are carefully 
planned to examine the microbiological profiles of 
phenotyped patients over the course of their lives and 
the long-term consequences of factors affecting its 
composition.
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