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AbstractIn a weighted connected graph, the shortest total path length spanning tree problem is a problem when we need to discover thespanning tree with the lowest total cost of all pairwise distances between its vertices. This problem is also known as the minimumrouting cost spanning tree (MRCST). In this study, we will discuss the Modified Sollin and Modified Dijkstra Algorithms to solve thatproblem which implemented on 300 problems are complete graphs of orders 10 to 100 in increments of 10, where every orderconsists of 30 problems. The results show that the performance of the Modified Dijkstra and the Modified Sollin Algorithms areslightly similar. On orders 10, 20, 30, 60, and 80, the Modified Dijkstra Algorithm performs better than the Modified Sollin, howeveron orders 40, 50, 70, 90, and 100, the Modified Sollin performs better.
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1. INTRODUCTION

Graph theory is one of the mathematical branches that can be
used to represent problems in daily life. GrafG (V , E) ,V≠∅,
V is the set of vertices and E denotes the set of edges that con-
nect the vertices. Because of its flexible structure where there
is no specific rule in drawing a graph (where it is possible to
draw an edge as a curve, a line, etc.), a graph emerges as one of
the important tools for representing problems. A wide range of
sciences and technology employ graph theory for instance: in
computer science graphs are used in database designing, soft-
ware engineering, and network design (Elumalai, 2020; Singh,
2014). The graph structure plays a crucial role in database ar-
chitecture since it provides quick implementation using various
graph functionalities and features. The vertices indicate trans-
formations and the edges represent the data flows on the data
flow diagram during the requirements specification process.
A program’s control flow during testing uses directed graphs
to address the order of executed instructions, whereas, during
the design phase, graphical design is utilized to describe rela-
tionships between modules. In social science de Nooy (2009)
adapted the graph structure to do the social networks analysis,
where the social network is viewed as a graph in a graph theoret-

ical approach, which is made up of a collection of vertices that
represent social actors and a set of edges that reflect one or more
social links among them; while in life science, Nøjgaard (2020)
explored graph theoretical concepts, especially on formalizing
and addressing the issues raised, including self-assembling pro-
tein design, evolutionary biology, chemical compounds, etc. A
leaf-labeled tree was used in biology to illustrate a phylogeny
(Brandes and Cornelsen, 2009; Huson and Bryant, 2006). A
phylogeny or phylogenetic tree is a branching diagram that
depicts the paths of diverse species, organisms, or genes de-
scended from a common ancestor. In agriculture, Kannimuthu
et al. (2020) used the graph coloring algorithm to help farmers
decide what crops to grow while protecting their investment
in agricultural cultivation and balancing crop demand. In this
algorithm, the land region is represented by the vertices, and
crops are represented by the colors, and the first requirement
is to color the vertices so that there are no two adjacent ver-
tices that have the same color. Kawakura and Shibasaki (2018)
used a spanning tree, one of the useful graph theory concepts,
to create methods for both close and far agriculture laborers’
observations engaged in cropping tasks.
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2. CONSTRAINED SPANNING TREE PROBLEM

A connected graph containing no cycle is a tree, and a spanning
tree T of an undirected graphG is a subgraph ofG, a tree with
all of its vertices present. If graphG is a weighted graph, the
minimum spanning tree (MST) of graphG is a spanning tree
of graphG whose total weight/cost is minimum. Spanning tree
is a concept in graph theory that is used in many real-life appli-
cations, and MST is one concept in graph theory that is utilized
as a backbone in numerous network design issues (Sari et al.,
2022) . When Borůvka (1926) resolved the issue of building
Moravia’s electricity network in the Czech Republic, he pro-
posed the first algorithm to solve the MST. However, the two
popular algorithms for solving MST are Prim’s algorithm by
Prim (1957) and Kruskal’s algorithm by Kruskal (1956) . The
MST problem is frequently encountered in network design
applications when various graph criteria like diameter, distance,
degree, flow, connectedness, etc. must be fulfilled. For example,
the bounded diameter MST is a combinatorial optimization
problem that optimizes a tree weight while keeping the hop
diameter. This optimization challenge is useful for designing a
computer network with the lowest possible cost and the shortest
possible network delay to achieve service quality while decreas-
ing the likelihood of communication failure (Segal and Tzfaty,
2022) . The Degree Constrained MST occurs when designing
a network where the vertex/node has a maximum bound of the
number of interconnecting channels. If, besides degree, the
period is added as a constraint, the problem becomes a multi-
period degree-constrained MST. Kawatra (2002) solved this
problem for digraphs, while Wamiliana et al. (2020; 2015a;
2015b) solved it for an undirected graph. The period is added
as a restriction because in real-life problems it is possible that
developing or building a network is done stage by stage due to
some conditions such as weather, limited funds, and others.

The other problem that uses a spanning tree as the back-
bone is the shortest total path length spanning tree (STPL)
problem. This problem occurs when we must determine the
tree with the lowest communication costs i.e., the tree that has
the smallest total distance for all pairs of vertices computed
across the whole network. A STPL or MRCST problem rep-
resents a spanning tree T , one of all spanning trees of G so
that Cr (T )∗ = ∑n

i=1
∑n
j=1 ci j , i≠ j, where ci j is the cost of vertex

(i , j), andT ∗ is the spanning tree whose the minimal routing
cost is the minimal among all spanning tree in G (Campos
and Ricardo, 2008) . For more precise, the STPL problem is
defined as follows: given G (V , E), V ={v1 , v2 , v3 , · · · , vn}, G
undirected,V≠∅, E is the set of edges that connect the vertices
inV ,G is connected, and for every ei j∈E there is a nonnega-
tive cost ci j associated with it, d(i , j) is the distance between
the vertices i and j in G, the STPL or MRCST problem is
to find a spanning tree T* so that Cr (T ∗)= ∑n

i=1
∑n
j=1 di j , i≠ j

T* is the spanning tree in G that produces the shortest total
distance between every two vertices. Figure 1 below illustrates
the STPL problem.

Suppose that we have a graph G and one of its spanning

Figure 1. Example of GraphG and One of its Spanning Trees
T

treeT as shown in Figure 2. The STPL ofT is the total length
of the distance of every two vertices. The distances of ev-
ery pair of vertices are: d(v1 , v2)= 7, d(v1 , v3)= 13, d(v1 , v4)=
22, d(v1 , v5)= 17, d(v1 , v6)= 15, d(v2 , v3)= 6, d(v2 , v4)= 15,
d(v2 , v5)= 10, d(v2 , v6)= 8, d(v3 , v4)= 9, d(v3 , v5)= 16, d(v3 ,
v6)= 14, d(v4 , v5)= 25, d(v4 , v6)=23, d(v5 , v6)=18. Since Cr
=
∑n
i=1

∑n
j=1 di j , i≠ j, then the value of Cr is double the sum of

the distance of every pair of vertices. Thus, the value of STPL
in the example in Figure 1 is Cr = 2 × (7 + 13 + 22 + 17 + 15 +
6 + 15 + 10 + 8 + 9 + 16 + 14 + 25 + 23 + 18) = 2 × 218 = 436.

Some researchers already investigated the shortest total
distance spanning tree, and since this problem is an NP-hard
problem the heuristics are more proposed. The bee colony
algorithm was investigated by Singh (2008) , Tan (2012b) , and
Singh and Sundar (2011) , while Hieu et al. (2011) investigated
the ant colony algorithm. Julstrom (2001; 2005), and Tan
(2012a) proposed a genetic algorithm to tackle the problem.
Julstrom (2005) , also coded the tree in Blob code and demon-
strated that in genetic algorithms, the tree represented in Blob
code performed better than the tree coded as an edge-set, as
proposed by Raidl and Julstrom (2003) . Fischetti et al. (2002)
showed that in addition to network design, trees with low rout-
ing costs are important in biological computation, where they
can be used to find acceptable genomic sequence alignments.
Masone et al. (2019) offered a broad and thorough under-
standing of the topic while also laying the groundwork for the
next research activities such as the evolution of the proposed
heuristic’s evolution inside a framework for metaheuristics.

3. RESULTS AND DISCUSSION

3.1 The Modified Dijkstra Algorithm
Before starting the Modified Dijkstra Algorithm, we need to
do preprocessing. The preprocessing process runs the Dijkstra
Algorithm to determine the shortest path for every two vertices
so that the number of trees obtained is n (n−1)

2 where the order
of the graph is n. Next, construct a table that gives the list of
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Figure 2. Flowchart Modified Dijkstra Algorithm

Table 1. The Solutions for STPL for Graphs of Order 10 to 100

Vertex order
Data 10 20 30 40 50 60 70 80 90 100

Mod-
Dijkstra

Mod-
Sollin

Mod-
Dijkstra

Mod-
Sollin

Mod-
Dijkstra

Mod-
Sollin

Mod-
Dijkstra

Mod-
Sollin

Mod-
Dijkstra

Mod-
Sollin

Mod-
Dijkstra

Mod-
Sollin

Mod-
Dijkstra

Mod-
Sollin

Mod-
Dijkstra

Mod-
Sollin

Mod-
Dijkstra

Mod-
Sollin

Mod-
Dijkstra

Mod-
Sollin

1 27022 28948 77870 77870 116482 116482 201060 201060 285712 285712 385978 385978 559070 521956 636448 617738 822052 661388 748488 770046
2 23092 23092 92032 92796 144080 144080 259132 235020 280408 280408 511416 421188 623082 573232 673364 709768 838642 867600 902720 819444
3 20540 20540 77204 77732 166512 166512 203146 203146 352090 365060 477242 452894 440202 450988 674122 645122 723342 786342 882802 888782
4 22600 22114 91800 91800 120390 120390 284214 287686 283752 318320 428058 419770 614922 540916 545598 508722 760322 693226 628752 669664
5 35340 39510 106544 122026 206064 206064 212686 216646 518696 484656 459334 473506 573924 577014 609294 627612 814180 736448 720184 777474
6 35986 35414 75642 75642 158754 158754 205122 205122 258174 259284 455502 368744 587122 584454 515190 510126 800502 668144 806528 719346
7 48704 46728 101674 102282 178348 178348 238180 245802 313790 313790 286154 286154 584566 524698 823254 686218 818210 644096 980394 940732
8 12026 13162 106150 106150 149858 149858 207390 222230 352694 352694 423884 423558 497186 490728 573062 605304 647482 627394 851142 756896
9 37476 37476 85436 88098 143762 143762 146928 146928 371072 354200 464898 414108 538534 544446 567586 522486 879640 820846 749792 714808
10 45764 39256 73562 73562 107582 107582 197738 195164 345380 343848 426814 449242 563248 604214 699462 678724 675588 687814 1037660 975554
11 32020 28582 160460 147744 245300 245300 287366 317254 424632 371968 355454 344324 658662 653834 656826 1E+06 941972 810270 799976 746296
12 37346 36860 55784 55784 157466 157466 281146 267008 326126 338084 432526 432526 618406 531714 677138 706334 653890 666754 627048 631288
13 23874 22654 56960 56960 168918 168918 354416 363826 212538 212538 414328 549848 455524 458488 718138 743334 680378 745014 838848 786742
14 32860 36172 118204 118204 145506 139794 282942 287998 336664 371222 410520 410520 343608 382022 598206 689240 736914 638414 943618 1144920
15 22012 24318 101166 101166 150590 150590 266264 231254 259772 259772 464980 534192 590984 575756 753234 805328 678166 826772 902922 841240
16 26842 25436 98630 98630 137014 137014 192776 192776 406898 364294 448976 499070 378840 411246 633072 507992 609758 638252 744106 830120
17 19216 19216 98420 98420 193226 193226 273200 252824 375632 387040 422182 401356 591346 673252 720814 740600 785716 766008 1032946 1155440
18 34860 33292 122780 122780 106788 106788 153918 153918 323112 323112 542238 482618 411758 408686 910110 800522 761484 681182 883976 838610
19 20764 26546 62030 62030 186818 186818 191516 191516 330794 385694 351594 351594 416220 477522 690150 674272 825238 834760 901362 963428
20 39862 38574 62032 62032 99420 99420 208154 194534 367154 354358 649786 544056 386030 370450 708840 702624 584904 657652 847242 946388
21 43582 50272 75110 75110 126188 128708 207668 207668 269264 256280 445250 488962 549366 432988 697378 706884 688244 637150 815934 776358
22 52806 54146 87326 87326 86076 86076 237722 240582 433004 426520 557206 627036 569088 524190 667798 562070 742332 708266 716202 710374
23 25728 25728 91910 91910 161204 161204 236680 241608 314234 276386 360716 347738 562784 511320 471356 530264 589922 547594 975550 1142624
24 28666 25800 101416 101416 177962 178922 365618 376336 327320 327320 500606 496030 455776 394260 659974 622510 988832 851342 993688 804198
25 38494 34446 79828 79828 207992 207992 248148 248148 459718 478848 268640 307616 612572 564190 530236 511530 521726 558406 692108 885458
26 33050 33050 104714 96320 139612 139612 225690 225690 477278 408514 245266 246328 381848 376068 658658 615944 673610 481314 978396 936704
27 22476 28700 92708 96164 152152 152152 289596 289596 392982 434880 383018 376768 511146 457814 561088 538818 1050126 871776 886498 755906
28 38834 39634 77006 77006 128628 128628 262102 262102 385208 346840 435228 404244 598462 484364 641380 526682 740194 601562 580488 570504
29 23696 23524 62838 62838 209498 252940 266966 266966 209272 209272 449848 526842 511894 589884 524166 537120 844990 787390 986820 930190
30 25986 24520 74212 74212 129936 129936 204362 204362 389022 379014 444572 439814 544574 660288 542526 530668 560962 553738 815596 753386

Average 31050.8 31257 89048.3 89127.933 153404.2 154777.87 239728.2 239159 346080 342330.93 430074 430221 524358 511699 644616 647550.3 747977 701897.1 842392.87 839430.67

the edges used in preprocessing (edges that formed the trees on
preprocessing). Sort the edges from the most utilized (occurs

in almost every tree) to less utilized (only occurs in one tree).
The Modified Dijkstra Algorithm starts by selecting the two
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Figure 3. Flowchart Modified Sollin Algorithm

smallest costs in the table list and putting them in setT (T can
be a tree or forest), and the vertices adjacent to those edges in
the setV . If the number of components inT is more than one,
then choose the next utilized edge in the table, and put inT ,
and corresponding adjacent vertices inV . Check if |T | = n-1.
If yes, stop, otherwise continue the step. The next step is giving
labels to components inT (there are two labels, one is 0 and the
other is 1), then searching for the smallest edge. Check if both
adjacent vertices in the smallest edge are inV . If yes, connect
component 0 and component 1 by adding the smallest edge
(i , j) so that the components 0 and 1 are connected. Relabeled
the component as 0. If only one vertex is adjacent to (i , j) in
V (suppose i is already in V ), then put j in V , edge (i , j) in

T , and label edge (i , j) with the same label as its connected
component. Do those steps until |T | = n-1 and the component
has only one label. Figure 2 illustrates the procedure of the
Modified Dijkstra Algorithm.

3.2 The Modified Sollin Algorithm
Before starting the Modified Sollin Algorithm, we run the
Sollin Algorithm to determine the MST as preprocessing. Thus,
the preprocessing in the Modified Sollin is to find the MST. Us-
ing the MST gained in the preprocessing, the algorithm starts
by checking the path length for every pair of vertices. Note that
the path length in this case is the number of edges connecting
every two vertices, not the total cost of the path. The value of
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Figure 4. The Comparison of the Solution of Modified Dijkstra and Modified Sollin Algorithms for Vertex Order 10 to 100

dmax for graphs of orders 10, 20, and 30 is n
2 , while for orders

40 to 100 is 15. If the path length is >dmax , then the path
revision must be done to reduce the path length. The idea of
reducing path length is due to the longer the path the higher the
cost. If the path length is >dmax , then the algorithm will check
the highest degree vertices, denote it as the primary vertex,
and put in setV . If not, then there are no modifications made.
To do the path revision, remove the highest cost edge that is
farthest from the primary vertex, and add the new edge that
connects the adjacent leaf on that farthest edge to the smallest
edge connecting to the secondary vertex. If there is more than
one primary vertex, then denote also as primary and put it in
V . Next, check the secondary vertices which are the vertices
that are adjacent to the primary vertex/vertices, and choose the
smallest edges connecting every primary or secondary vertex,
and put the edges that connect them inT . If all vertices already
in primary or secondary, then check ifT = |n-1|. If yes, then
stop, otherwise determine the unconnected vertices. Calculate

the smallest cost d(u , v) from the primary vertex u to every
unconnected vertices v, d(u , v) = min

{cuv
w (Puv ) , where cuv is the

cost of edge (u , v), and w(Puv) is the cost of the shortest path
that connects primary vertex u to vertex v. Choose the smallest
edge in the calculation and connect. Do that step until every
unconnected vertex is connected andT = |n-1|. Figure 3 shows
the flowchart of the Modified Sollin algorithm.

We implement both algorithms on complete graphs of
orders 10 to 100. There are thirty problems for each vertex
order.

Table 1 shows the result of implementing 300 problems.
It shows that the average solutions gained from the Modified
Dijsktra Algorithm perform better than the Modified Sollin on
orders 10, 20, 30, 60, and 80, while the Modified Sollin per-
forms better than the Modified Dijkstra on orders 40, 50, 70,
90, and 100. Figure 4 shows the comparative solutions of both
algorithms for vertex order 10 to 100. From the comparative
solutions for orders 20 and 30, it can be seen that the perfor-

© 2023 The Authors. Page 688 of 690



Wamiliana et. al. Science and Technology Indonesia, 8 (2023) 684-690

mance of those two algorithms is quite similar where the line
showing solutions gained by the Modified Dijkstra Algorithm
(blue line), and solutions gained by the Modified Sollin (orange
line) almost collide in every problem.

4. CONCLUSION

Based on the discussion above, we conclude that implemented
on the data problems, the performance of the Modified Dijkstra
and the Modified Sollin Algorithms are slightly similar. On
orders 10, 20, 30, 60, and 80, the Modified Dijkstra Algorithm
performs better than the Modified Sollin, however on orders
40, 50, 70, 90, and 100, the Modified Sollin performs better.
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