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Efektivitas Regresi Kuantil dalam Mengatasi Pontential Pencilan The Effectiveness of 

Quantile Regression in Dealing with Potential Outliers Netti Herawati 1* 1 Department 
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Corresponding Author* Abstrak Regresi kuantil sebagai metode regresi robust dapat 

digunakan untuk mengatasi dampak kasus yang tidak biasa pada estimasi regresi 

seperti keberadaan pencilan pada data.  

 

Tujuan dari penelitian ini adalah untuk mengevaluasi efektivitas regresi kuantil untuk 

menangani pencilan potensial dalam regresi linear berganda dibandingkan dengan 

metode kuadrat terkecil (MKT). Penelitian ini menggunakan data simulasi pada model 

regresi berganda dengan jumlah variabel independen (p=3) pada ukuran sampel yang 

berbeda (n = 20, 40, 60, 100, 200) dan ?? 0 =0 and ?? 1 = ?? 2 = ?? 3 =1 diulang 1000 

kali. Efektivitas metode regresi kuantil dan MKT dalam pendugaan parameter ß diukur 

dengan Mean square error (MSE) dan model terbaik dipilih berdasarkan nilai Akaike 

Information Criterion (AIC) terkecil.  

 

Hasil penelitian menunjukkan bahwa berbeda dengan OLS, regresi kuantil mampu 

menangani potensial outlier dan memberikan estimator yang lebih baik dengan nilai 

MSE yang lebih kecil. Dibandingkan dengan MKT dan kuantil lainnya, studi ini juga 

memberikan hasil yang cukup untuk memastikan bahwa kuantil 0,5 memberikan 

estimasi parameter terbaik dan model terbaik berdasarkan nilai MSE dan AIC terkecil. 

Kata Kunci : AIC, MSE, pencilan, regresi kuantil Abstract Quantile regression as a robust 

regression method can be used to overcome the impact of unusual cases on regression 

estimates such as the presence of potential outliers in the data.  

 



The purpose of this study was to evaluate the effectiveness of quantile regression in 

dealing with potential outliers in multiple linear regression compared to ordinary least 

square (OLS). This study used simulation data in multiple regression model with the 

number of independent variables (p=3) for different sample sizes (n = 20, 40, 60, 100, 

200) and ?? 0 =0 and ?? 1 = ?? 2 = ?? 3 =1 repeated 1000 times. The effectiveness of the 

quantile regression method and OLS in estimating ß parameters was measured by Mean 

square error (MSE) and the best model is chosen based on the smallest Akaike 

Information Criterion (AIC) value.  

 

The results showed that in contrast to OLS, quantile regression was able to deal with 

potential outliers and provided a better estimator with a smaller mean mean square 

error. Compared to OLS and other quantiles, this study also provides sufficient results 

that quantile 0.5 provides the best parameter estimate and the best model based on the 

smallest MSE and AIC values. Keywords: AIC, MSE, outliers, quantile regression 

Submitted: 02nd April 2020 Accepted: 25th May 2020 This is an open access article 

under the CC–BY-SA license INTRODUCTION Classical linear regression estimates the 

mean response of the dependent variable dependent on the independent variables. The 

method usually use to estimates in classical linear regression is ordinary least square [1, 

2, 3].  

 

However, it is a parametric model and relies on assumptions of certain distribution in 

residuals that are often not met. There are many cases that the conditional mean 

behavior fails to entirely capture the patterns in the data when the data is skewed, 

multimodal, or contains outliers. In this condition, the residual distribution assumptions 

in the classical linear model will not be met, especially the normality distribution 

assumption. For this type of data is better estimated using methods that do not require 

any residual distribution.  

 

One such method is quantile regression. Quantile regression has been used in many 

studies [4, 5, 6]. Quantile regression method propose a technique for estimating models 

for the conditional median function and the full range of other conditional quantile 

function. Just like the least squares regression, quantile regression is interested in 

studying the linear relationship between a response variable and one or more 

independent or explanatory variables.  

 

However, the main purpose of the least squares regression is to determine the 

conditional mean of the response variable Y while the quantile regression models is 

related to the conditional t ((0,1) with t is quantile level of Y . In addition, quantile 

regression allows multiple quantiles to be modelled. Quantile regression is offering 

more comprehensive analysis of the data to be carried out compared to OLS where only 



the mean is considered. Quantile regression makes no assumptions about the 

distribution of the residuals [7, 8, 9]. It also lets you explore different aspects of the 

relationship between the dependent variable and the independent variables.  

 

The study of handling outliers has been done by many researches [10, 11, 12, 13]. In this 

study we will investigate the behavior of quantile regression in handling outliers 

compare to OLS using simulated data based on MSE and AIC. METHOD The quantile 

regression is an extension of ordinary quantiles ideas. Classical linear regression method 

is based on minimizing the sum of squared residuals to model the conditional mean of 

the target variable against the covariates. On the other hand, quantile regression 

provides estimates of a range of conditional quantiles to model conditional percentiles 

of the target variable against the covariates.  

 

It is a useful tool for estimating not only upper or lower tail but also the center of the 

conditional distribution of interest [4, 8, 9, 14, 15]. Consider a general regression 

function with y is the response variable and ??= ( ?? 1 , ?? 2 ,…, ?? ?? ) ?? is a set of 

predictors. To obtain the sample mean, least square regression model solve min ???R 

??=1 ?? ?? ?? -?? 2 (1) as an estimate of the unconditional population mean, EY.  

 

By replacing the scalar µ with a parametric function µ (x, ß), we can solve min ???R?? 

??=1 ?? ?? ?? -??( ?? ?? ,??) 2 (2) to find the estimate of the conditional expectation 

function ?? ?? ?? . The least square estimate for (2) is given by ?? = ?? ' ?? -1 ?? ' ?? [16]. 

In term of quantile regression, consider a continuous real valued random variable Y 

characterized by the following distribution function in the ordinary quantile ?? ?? ?? 

=??(??=??) (3) The ??-th quantile of Y for any ???(0,1) is defined as ?? ?? =inf?(??: ?? ?? ?? 

=??) (4) When Q(1/2), it is equal to median [17, 18]. Just like the distribution function F, 

the quantiles function provides a complete characterization of the random variable Y [8].  

 

When estimating quantiles, the value of y in the sample data corresponding to a given 

probability ?? has to be determined. The ?? ??h quantile in a sample of data refers to the 

probability of ?? for a value y, such that ?? ?? ?? ?? =??. It can also write as ?? ?? = ?? ?? 

-1 (??)where ?? ?? is such that an inverse of the function ?? ?? (??) for a probability ??. 

The 100 ??% quantile (say ?? =0.5) of the conditional distribution of the response (y) 

given covariates (x) based on independent observations ( ?? ?? , ?? ?? ) ??=1 ?? , the 

conditional ??-quantile is estimated by minimizing ??=1 ?? ?? ?? ?? ?? - ?? 0 - ?? ?? ?? ?? 

(5) Where ?? ?? ?? =?? ?? + +(1-??)??_ is the check function with subscript s ‘+’ and ‘-‘ 

stand for the positive and negative parts, respectively [9]. The estimation of selected 

significant predictors in quantile regression use ?? 1 [8].  

 

The ?? 1 quantile regression model is estimated by ?? ( ?? 1 ????????)= arg min ?? 0 ?? 



??=1 ?? ?? ?? ?? ?? - ?? 0 - ?? ?? ?? ?? +?? ?? 1 (6) where ?? 1 = ??=1 ?? ?? ?? is the ?? 1 

-norm penalty (or lasso penalty) on ??. When ?? is chosen appropriately, some 

components of ?? will be shrunk to exact zero. Since the check loss function is piecewise 

linear, the quantile regression estimator is inherently robust in handling extreme value 

point and outliers. To get a measure of how close the regression line was to a set of 

points, the Mean Square Error (MSE) of the regression coefficient ?? was examined.  

 

The MSE is defined by ?????? ?? = 1 ?? ??=1 ?? ?? (??) -?? 2 where ?? (??) is the estimated 

parameter in the l-th simulation. The slope and intercept are correctly estimated when 

MSE approaches to zero. To determine the performance of the proposed estimate, the 

Akaike Information Criterion (AIC) was used. AIC can be written as ?????? ?? =2??-2ln?( 

?? ) where ?? =?? ?? ?? ,?? , ?? is the value that maximize the likelihood function, n = 

sample size, and k = the number of parameters [19, 20]. A good estimation model was 

indicated by the lowest AIC value.  

 

Simulated data was carried out in this study with five different sample sizes (n=20, 40, 

60, 100, 200) for three independent variables (p=3) using a package for quantile 

regression developed by [21]. Dependent variable (??) for each ?? independent variables 

was from ??=????+?? with xi~N(0, 1) and e~N(0, 1) contaminated with various number 

of outliers (10%, 15%, 20%). ß parameters were chosen with ß 0 =0, and ß 1 , ß 2 , ß 3 

=1. After simulating each data, we fitted the OLS and quantile regression and measured 

the efficiency of both methods in estimating the regression coefficient and determined 

the best estimation model using AIC.  

 

RESULTS AND DISCUSSION The simulation results for identifying the effectiveness of 

quantile regression presented in Table 1 in terms of standard error of parameter 

estimates. It shows that for n=20, 40, 60, 100, 200 with 10% outliers, standard error of 

estimates using quantile regression was lower than OLS. Similar results were obtained 

for n= 20, 40, 60, 100, 200 with 20% and 30% outliers. It indicates that quantile 

regression provides better parameter estimates than OLS for all sample sizes and 

various number of outliers being studied. We can also see that quantile 0.5  

 

gives the lowest standard error of parameter estimates compare to quantile 0.25 and 

quantile 0.75 for n=20, 40, 60, 100, 200 with various number of outliers. It proves that 

the quantile 0.5 is the most accurate parameter estimates than quantile 0.25 and 

quantile 0.75. Table 1. ?? and SE ( ?? ?? ) for different sample sizes and various number 

of outliers Sample size _Method _10% outliers _20% outliers _30% outliers _ _ _ _SE ( ?? 1 

) _SE ( ?? 2 ) _SE ( ?? 3 ) _SE ( ?? 1 ) _SE ( ?? 2 ) _SE ( ?? 3 ) _SE ( ?? 1 ) _SE ( ?? 2 ) _SE ( ?? 3 

) _ _n=20 _OLS _2.8046 _2.3233 _2.4495 _2.3998 _3.3882 _4.0557 _4.8388 _2.8077 _4.2070 

_ _ _QR 0.25 _2.1241 _2.1766 _2.0195 _3.1991 _3.1465 _3.1412 _3.6997 _3.7711 _3.8961 _ 



_ _QR 0.50 _2.0933 _2.1944 _2.0252 _3.1989 _3.1462 _3.1402 _3.6990 _3.7710 _3.8961 _ _ 

_QR 0.75 _2.1241 _2.1766 _2.0195 _3.3116 _3.3660 _3.3260 _3.9607 _3.7982 _4.0457 _ _ _ 

_ _ _ _ _ _ _ _ _ _ _n=40 _OLS _1.9844 _1.2343 _1.8596 _2.3226 _2.4937 _2.9881 _3.0259 

_3.2395 _2.0931 _ _ _QR 0.25 _1.6162 _1.6174 _1.6894 _2.2147 _2.2566 _2.2404 _2.7026 

_2.7457 _2.7248 _ _ _QR 0.50 _1.6160 _1.6170 _1.6894 _2.2140 _2.2489 _2.2400 _2.7020 

_2.7455 _2.7240 _ _ _QR 0.75 _1.7222 _1.7072 _1.7262 _2.2405 _2.2566 _2.2610 _2.7287 

_2.7476 _2.7589 _ _ _ _ _ _ _ _ _ _ _ _ _ _n=60 _OLS _1.3450 _1.2208 _1.1639 _1.7725 

_1.8507 _1.77421 _2.3037 _2.3443 _1.9384 _ _ _QR 0.25 _1.2146 _1.2215 _1.1880 _1.7267 

_1.7341 _1.7091 _2.0941 _2.1605 _2.0852 _ _ _QR 0.50 _1.2144 _1.2210 _1.1880 _1.7266 

_1.7339 _1.7081 _2.0931 _2.1600 _2.0850 _ _ _QR 0.75 _1.2387 _1.2343 _1.2070 _1.7623 

_1.7585 _1.7591 _2.1920 _2.2037 _2.1573 _ _ _ _ _ _ _ _ _ _ _ _ _ _n=100 _OLS _1.0329 

_1.0482 _1.1334 _1.2240 _1.4546 _1.3552 _1.6024 _1.7452 _1.7047 _ _ _QR 0.25 _1.0125 

_1.0382 _1.0609 _1.3018 _1.3199 _1.3123 _1.6564 _1.6474 _1.6322 _ _ _QR 0.50 _1.0125 

_1.0272 _1.0125 _1.3011 _1.3189 _1.3120 _1.6562 _1.6470 _1.6321 _ _ _QR 0.75 _1.0382 

_1.0480 _1.0468 _1.3314 _1.3636 _1.3405 _1.6763 _1.6894 _1.6728 _ _ _ _ _ _ _ _ _ _ _ _ _ 

_n=200 _OLS _0.6429 _0.7979 _0.6867 _0.9394 _0.9394 _0.9394 _1.1853 _1.3932 _1.1794 _ 

_ _QR 0.25 _0.6835 _0.6978 _0.6921 _0.9826 _0.9826 _0.9826 _1.1404 _1.1552 _1.1425 _ _ 

_QR 0.50 _0.6825 _0.6970 _0.6911 _0.9394 _0.9394 _0.9394 _1.1400 _1.1542 _1.1422 _ _ 

_QR 0.75 _0.7075 _0.7111 _0.7156 _0.9826 _0.9826 _0.9826 _1.1799 _1.1748 _1.1776 _ _ 

The results of analyzing the effectiveness of quantile regression compares to OLS in 

estimating parameter ß using simulated data for n=20, 40, 60, 100, 200 and 

contaminated by 10%, 20%, 30% outliers repeated 1000 times in terms of MSE are given 

in Table 2. Table 2. MSE of OLS and QR for different sample sizes and various number of 

outliers Sample size _Method _MSE _ _ _ _10% outliers _20% outliers _30% outliers _ 

_n-20 n=40 n=60 n=100 n=200 _OLS QR 0.25 QR 0.50 QR 0.75 OLS QR 0.25 QR 0.50 QR 

0.75 OLS QR 0.25 QR 0.50 QR 0.75 OLS QR 0.25 QR 0.50 QR 0.75 OLS QR 0.25 QR 0.50 

QR 0.75 _0.1531 0.0738 0.0067 0.0103 0.5280 0.0042 0.0005 0.0309 0.0288 0.0088 0.0032 

0.0123 0.0850 0.0019 0.0006 0.0145 0.1095 0.0153 0.0005 0.0012 _0.5307 0.0153 0.0061 

0.0133 0.1199 0.0052 0.0008 0.0034 0.0191 0.0085 0.0008 0.0108 0.0603 0.0245 0.0022 

0.0034 0.1366 0.0157 0.0001 0.0013 _0.5175 0.0086 0.0067 0.0142 0.4259 0.0052 0.0015 

0.0048 0.0731 0.0422 0.0004 0.0150 0.0167 0.0063 0.0001 0.0046 0.2466 0.0336 0.0008 

0.0047 _ _ It can be seen from Table 2 that for 10 % outliers, OLS gives MSE =0.1531 for 

n=20, MSE= 0.5280, for n=40, MSE= 0.0288, for n=60, MSE= 0.0850, for n=100 and 

MSE= 0.1095, for n=200, respectively.  

 

These values are much higher than the MSE of quantile 0.25, 0.50, and 0.75. Similarly, 

when there is 20% and 30% outliers in the data, the MSE of OLS all sample sizes being 

studied is much higher than MSE of quantile regression. The MSE of OLS appears to be 

increasing due to the increasing of the outliers in smaller sample sizes (n=20, 40, 60). 

However, it reverse for larger sample sizes (n=100, 200). Whereas MSE of quantile 0.25, 



0.5 and 0.75 decreased as the number of samples increased. When there are potential 

outliers, quantile regression does not appear to be affected. This phenomenon occurs in 

all number of outliers studied. Among all quantiles, the MSE value for quantile 0.5  

 

is the smallest compared to MSE for quantile 0.25 and quantile 0.75 for all sample sizes 

and various number of outliers. As it shows in Table 2, for 10% outliers, quantile 0.5 has 

MSE =0.0067 for n=20, MSE= 0.0005, for n=40, MSE= 0.0032, for n=60, MSE= 0.0006, 

for n=100 and MSE= 0.0005, for n=200, respectively. The MSE values at quantile 0.5 are 

also the smallest in all sample sizes containing 20% ??and 30% outliers compared to 

quantile 0.25 and quantile 0.75 as shown in Table 2. To present a more comprehensive 

result, the MSE values ??of both methods and each quantile are displayed in Figure 1-5. 

/ Figure 1. MSE for n=20 contain various number of outliers / Figure 2. MSE for n=40 

contain various number of outliers / Figure 3.  

 

MSE for n=60 contain various number of outliers / Figure 4. MSE for n=100 contain 

various number of outliers / Figure 5. MSE for n=200 contain various number of outliers 

In the clear view of Figure 1-5, we can see that the MSE of quantile regression 0.25, 0.5, 

and 0.75 are significantly lower than OLS for all sample sizes (n=20, 40, 60, 100, 200) and 

various number of outliers (10%, 20%, 30%). It is clear that MSE of quantile regression 

does not to be affected by outliers. This indicates that quantile regression is able to 

handle potential outliers very well and robust to potential outliers up to 30% of the data. 

Moreover, if we compare the quantiles it becomes clear that the quantile 0.5  

 

gives the lowest MSE value compared to the quantile 0.25 and quantile 0.75. This 

provides evidence that quantile 0.5 gives better parameter estimates than quantile 0.25 

and quantile 0.75. To find the best estimation model, the AIC value for OLS and quantile 

regression in each number of sample sizes contaminated by outliers was measured. 

Table 3 shows the AIC values ??for n = 20, 40, 60, 100, 200 and were contaminated by 

10%, 20%, 30% outliers which were repeated 1000 times. Table 3.  

 

AIC of OLS and QR contain various number of potential outliers Sample size _Method 

_AIC _ _ _ _10% outliers _20% outliers _30% outliers _ _n=20 n=40 n=60 n=100 n=200 

_OLS QR 0.25 QR 0.50 QR 0.75 OLS QR 0.25 QR 0.50 QR 0.75 OLS QR 0.25 QR 0.50 QR 

0.75 OLS QR 0.25 QR 0.50 QR 0.75 OLS QR 0.25 QR 0.50 QR 0.75 _-1.5767 -2.3064 

-4.7075 -4.2701 -0.4884 -5.3203 -7.3308 -3.3266 -3.4450 -4.6247 -5.6176 -4.2980 

-2.4040 -6.1631 -7.3252 -4.1727 -2.1814 -4.1446 -9.8145 -4.3161 _-0.3334 -3.8767 

-4.7910 -4.0184 -1.9706 -5.0946 -6.9583 -5.5247 -3.8574 -4.6674 -7.0122 -4.4191 

-2.7482 -3.6482 -6.0498 -5.6019 -1.9603 -4.1241 -10.8246 -4.2661 _-0.3586 -4.4456 

-4.7027 -3.9476 -0.7035 -5.0946 -6.2911 -5.1728 -2.5154 -3.0630 -7.5020 -4.0996 

-4.0269 -4.9946 -8.7135 -5.3185 -1.3696 -3.3624 -7.0512 -5.3121 _ _ From Table 3 it is 



visible that there is a significant difference between OLS and quantile regression in the 

AIC value. Quantile regression produces AIC value much lower than OLS in all sample 

sizes and number of outliers.  

 

That is, compared to OLS, quantile regression provides a better regression model if 

there are potential outliers. It proves that quantile regression model is robust to 

potential outliers than OLS. The study also shows that quantile regression 0.5 gives the 

best estimates than other quantiles. That is one of the advantages of using quantile 

regression where one can estimate parameters using different quantiles which are not 

provided in OLS. In this study, quantile 0.5 provided the best parameter estimate and 

the best model compared to OLS and the other quantiles for all sample sizes and 

various number of outliers.  

 

CONCLUSION The study showed that quantile regression performanced far better than 

OLS based on MSE and AIC for n=20, 40, 60, 100, 200 and number of potential outliers 

10%, 20%, 30%. We concluded that in contrast to OLS, quantile regression model was 

more effective in dealing with potential outliers for different sample sizes and various 

number of potential outliers. In addition, quantile 0.5 gives the best parameter estimate 

and the best model based on the smallest MSE and AIC values ??compared to quantile 
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