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Abstract: Partial discharge (PD) is a symptom of insulation defect or degradation in high-voltage equipment. Thus, PD detection
is an important diagnostic tool. Furthermore in practical situations, the PD can be generated from a single or multiple sources.
Being able to detect and classify such PD events will help to determine the necessary corrective action to prevent insulation
breakdown. To demonstrate, three different simulated discharge conditions in transformers were investigated: void, floating
metal and their combination. The PD signals were captured using an ultra-high frequency (UHF) sensor and denoised using
wavelet transform method by application of Matlab wavelet multi-variate denoising tool. Two types of mother wavelet, that
is, db and sym, were applied to decompose the signals and extract the signal features in terms of their skewness, kurtosis and
energy. These features were then used as input to train a neural network to analyse and determine the PD source type. Results
show this technique is able to classify and recognise single and multiple PD source types with a high degree of success.

1 Introduction

In power transformers, partial discharge (PD) is a symptom of
insulation defect or degradation, which if left untreated over
time will cause a catastrophic failure. To prevent
transformer failure and ensure reliable performance, it is
important to be able to determine accurately the condition
of the transformer through monitoring its PD activities.
Ultra-high frequency (UHF) sensors can be used to detect

the PD signals. The UHF detection method has a number of
advantages over other detection methods such as the
conventional electrical detection method in the lower range
of the frequency spectrum (up to ∼1 MHz) as defined in the
IEC-60270 Standard [1–3]. It is possible to achieve better
sensitivity by using the UHF detection method [4]. Also, it
gives better immunity against interference from air corona
which is a common problem associated with on-site
monitoring [5].
PDs can arise from a single or multiple defects within the

insulation structure. Since different types of defects usually
produce different PD waveforms [1], it is possible to
recognise the sources of the PD from its measured signal.
Various analysis techniques based on the UHF signals have
been investigated to recognise the PD sources. A wavelet
analysis method was proposed by [6, 7] to recognise
multiple PDs in power transformers. However, this method
requires substantial computation which slows down the
recognition process. To alleviate this problem, [8, 9]
proposed the use of envelope analysis to distinguish between
partial discharges. It was asserted that the envelope of the

PD signals can be utilised as a PD signature and hence a
similarity function is applied to distinguish the PD sources.
In another investigation [10], a method was proposed to
classify the PD events in GIS by extracting the PD features
from the UHF signals. Here, the signals were decomposed
by using wavelet transforms, and then the PD features were
extracted from the decomposed signal. This method gives a
fast and accurate classification of the GIS PD events, and
also it was able to separate air corona from the PD signals.
Further work was carried out using wavelet-based denoising
to combat the presence of embedded noise in the measured
signals [11]. In addition to removing the noise, the threshold
value method was also applied. This was intended to remove
the white noise that was not able to be eliminated by the
previous denoising step [11]. Although this denoising
method is able to remove the suspected white noise, the
process can also alter the PD signals. This resulted in further
investigations for other PD signal denoising methods [12–
14]; all these are based on univariate analysis.
In this paper, the multivariate approach to denoise multiple

signals by utilising the relationship between signals is applied
for recognition of single and multiple PD sources in
transformer insulation. The PD signals were recorded by
using a UHF sensor to capture the electromagnetic waves
emitted by the PD source. The obtained UHF signals were
denoised by applying the wavelet multivariate denoising
method [15]. After the signals are denoised, they are
decomposed into five levels by using wavelet. Then three
features, namely kurtosis, skewness and energy, are
extracted from the decomposed signal. The J criterion [10]
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is applied to determine the best features node composition.
Two types of mother wavelet are used for denoising and
decomposing the PD signals, that is, db and sym. The
extracted features are then used as inputs into a neural
network to classify and recognise the PD sources.

2 UHF sensor

Electromagnetic waves are emitted from PD sources because
of very short current pulses generated during the discharge
process. They span a wide frequency spectrum including a
range from a few hundred MHz to a few thousand MHz,
otherwise known as the UHF band. Using
appropriately-designed UHF sensors (antennas), the
electromagnetic signals can be detected and recorded by a
measuring device connected to the sensor. As the signals
have to propagate through various physical media inside the
transformer tank, they are refracted and reflected by
complex interior obstacles such as windings, the core
structure and the transformer tank itself.
For power transformer monitoring, the UHF sensor is

inserted into the transformer tank to capture the
electromagnetic waves emitted by the PD source. There are
two ways of installing the sensor: via the oil drain valve
[16] or the dielectric window [17]. The size of the oil drain
valve imposes a constraint on the sensor dimension,
whereas the dielectric window can be created with an
appropriate size to accommodate the sensor. However, the
placement of a dielectric window sensor needs an additional
hole to be made on the transformer tank. As for the oil
valve sensor, this is not required because the sensor can be
easily retrofitted into the transformer via the existing
built-in oil drain valve [16].

For inserting via the oil drain valve, the size of the sensor is
limited by the diameter and length of the oil drain. The shape
of the sensor can be a short monopole [8, 16], plate, zigzag or
conical [16, 18] as long as it is able to be fitted through the
drain valve. The sensitivity of this kind of sensor is affected
by the depth of the sensor insertion [16]. The deeper the
sensor is inserted, the higher the magnitude of the PD
signals acquired. However, the sensor must not initiate
breakdown because of the high electric stress at the tip of
the sensor [17].
For a dielectric window, the sensors usually have a planar

shape [17]. The sensor can be a micro-strip sensor [19, 20],
log-spiral or spiral [17, 21]. This kind of sensor is usually
etched on the surface of a dielectric material, using the
same process as in making electronic printed circuit boards
(PCB). The sensor is etched on the PCB with dimensions
proportional to the working frequency of the sensor.
The planar shape sensors tend to have better frequency

response characteristic than the monopole [22], thus in this
paper a planar shape type which is a log-spiral sensor with
dual-arms was chosen and used in the experiment. The
sensor is a tapered log-spiral shape etched onto the surface
of a single layer PCB and a six-section balun is used for
bridging the sensor to the 50 Ω coaxial cable. The number
of turn of the log-spiral arm is 1.5 with a 10 cm diameter.

2.1 Log-spiral sensor

The log-spiral sensor arm is calculated using the pair
equations below

r1 = r0e
af (1)

Fig. 1 Fabricated sensor and its response to the step pulse and the frequency response of the sensor

a Dual arms log-spiral sensor
b Sensor response to a step pulse
c Frequency response
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r2 = r0e
a(f−f0) (2)

where r1 denotes outer radius of the spiral, r2 is inner radius of
the spiral, r0 is initial outer radius of spiral, a is the rate of
spiral growth and φ denotes the angular position. The
number of arms is set to 2, and for this reason it is called
dual-arms log-spiral sensor. The number of turns is 1.5
which produces an adequate radiation pattern [23]. The end
of the spiral arms is designed with tapered end. The size of
the sensor is 10 cm in diameter and it is constructed using
commercially available FR4 substrate (Fig. 1a).

2.2 Sensor pulse response

The sensor step pulse and frequency responses were evaluated
using a custom-made TEM cell. This cell was designed to
match the sensor impedance (i.e. 50 Ω) and simulate the
propagation mode of PD in the transformer. The input pulse

has rise-time of 0.5 ns and was maintained for a long duration
so the sensor response was only because of the changed input
voltage. Figs. 1a and b show the fabricated sensor and its
response to the step pulse. The frequency response of the
sensor, measured from 100 MHz up to 2 GHz, is shown in
Fig. 1c. Over this frequency range, the response is reasonably
stable and attenuation is mostly within 10 dB.

2.3 Sensor sensitivity to detect corona signals

To check the sensor ability to pick up electromagnetic signals,
corona produced by a needle to ground plane electrode
arrangement is chosen as the PD source. The resultant
discharges are very stable in magnitude. However, their
major frequency components are below 200 MHz, that is,
below the UHF range. Nevertheless, the sensor was still
able to detect the corona signals and all tested sensors
showed this ability.
Fig. 2 shows the phase-resolved patterns with the sensor

installed at varying distance from the corona source.

Fig. 2 Phase-resolved patterns recorded using Log-spiral sensor

at varying distance from the source

Fig. 3 Experiment diagram of PD signals detection and recording

Fig. 4 PD models

a Electrodes and defects
b Void
c Floating metal
d Mixture of void and floating metal
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Discharges as low as 5 pC and at a distance up to 2 m can be
detected. This is well within the acceptance criterion of the
PD test for power transformers, that is, 500 pC according to
IEC 60076.3 Standard. Thus the sensor can provide a viable
means for detecting PDs in practical applications.

3 UHF PD signals

The UHF PD technique detects and measures the
electromagnetic pulses emitted by the PD sources. These
pulses have a very short duration, typically < 1 ns of rise
time and a few ns of pulse width. Thus in terms of
frequency, it is a broad band signal which contains
components well into the GHz range, that is, covering the
UHF frequency band (300 MHz–3 GHz). In this paper, a
log-spiral UHF sensor was constructed and used to capture
the PD signals. The sensor captures those frequency

components of the signal that fall within its working
frequency range. In addition, it will pick up other unwanted
noise/interference present in the same frequency band. This
will adversely affect the analysis result. Therefore it is
important to improve the signal-to-noise ratio (SNR) by
removing the noise as much as possible before doing
further analysis. The SNR in dB is given by

SNR = 10 log
Psignal

Pnoise

( )

(3)

where Psignal denotes the average power of the PD signal and
Pnoise is the average power of the noise. Owing to the
inherently stochastic behaviour of PDs, their signals will
have varying amplitudes. Furthermore, the PD level also
varies with different PD defect types. Consequently for a
given level of ambient noise background, the SNR will

Fig. 5 Full span spectra of

a Background noise
b Void defect PD
c Floating metal PD
d PD signals produced by combination of void and floating metal
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vary. In this paper, the SNR value of the PD signals obtained
from the laboratory experiment extends from as low as 0.44
dB to as high as 29.30 dB.

3.1 UHF PD detection

Three PD defect models were constructed to simulate
discharges because of a void, floating metal (FM) and a
combination of both. The PD defect models were built
using three layers of solid insulation material sandwiched
between two flat electrodes: two layers of pressboard and a
layer of Kraft paper on top. The middle layer of pressboard
was punctured to create a hole with diameter of 0.5 mm.
For floating metal sample, a metal plate was fitted into the
hole. Figs. 3 and 4 show the experiment diagram and the
PD defect models. All samples were immersed in oil inside
a fully covered distribution transformer tank in the laboratory.
A log spiral sensor (antenna) was fitted through a small

opening at the top of the transformer tank to capture the
electromagnetic signal emitted by the PD defect models.
The sensor output was connected to an oscilloscope to
digitise the signal, and the captured data were transferred to
a computer for processing and analysis. The sensor output
was also connected in parallel to a spectrum analyser for

recording the frequency spectra of the electromagnetic
signals. In order to capture the fast and wide frequency
range of the partial discharge, an oscilloscope with
bandwidth of 4 GHz and sampling rate up to 40 GS/s was
used. A spectrum analyser with frequency range from 9
kHz up to 3 GHz was also used to record the PD signals in
frequency domain.
The applied test voltage was set to 6.5 kV for void, 7 kV

for floating metal and 8 kV for a combination of void and
floating metal. A higher voltage was set for the mixed
model to ensure PD will occur in both defects. Also shown
in Fig. 3 is a conventional PD system (Mtronix), used as
the benchmark for verifying the occurrence of PDs and
their measurements. To confirm no discharges occurred
from other sources such as surface discharges from the test
sample itself, a ‘plain’ sample without void or floating
metal was used for checking. It was verified that the
inception for surface discharges was more than 11 kV, well
above the voltage levels used in testing the defect models.

3.2 PD signal spectrum

The frequency range of emitted PD signals is influenced by
the physical nature of the PD source [24] and the applied

Fig. 6 Typical example of the denoising process

a Original signal
b Denoised using multivariate thresholding
c Result after retaining PCA component
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voltage level [25]. Fig. 5 shows the typical spectra of PD
signals for each type of defect models. These were recorded
by operating the spectrum analyser under full span mode to
capture the signals spectra over the maximum frequency
range. The presence of the PD signals can be discovered by
comparing the background noise spectrum (Fig. 5a) against
that with the defect present [26].
The experiment was conducted using an enclosed

transformer tank. However, some external noise can still
enter the tank and be picked up by the sensor. The
background spectrum (i.e. without any PD source) shows
that there are two distinct groups of interference that can be
easily spotted, that is, at around 900 MHz and under 100
MHz. Other signals associated with communication
broadcast also can be noted at around 400–500 MHz,
although not as high as the two groups mentioned earlier.
Fig. 5a shows the spectrum of background noise, captured

using a spectrum analyser set to full-span recording mode.
Figs. 5b–d show the typical spectra of various PD defect
models used in the experiment which also include the
background noise. The spectra of the PD signals can be
extracted by subtracting the noise components. It can be
seen that the void defect emits EM signals mainly below
500 MHz while the floating metal can generate frequency
components up to 750 MHz. Note that for the combination
of void and floating metal, the applied voltage was set
higher to ensure discharges in both defects. This results in
higher discharges as evident in the magnitude of the
observed spectrum in Fig. 5d.

3.3 Multivariate denoising

The UHF detection method is targeted to capture the fast
electromagnetic transient signals emitted by PD events.
However, the pick-up signals are very small even for a
well-designed UHF sensor. This situation is further
exacerbated by the interference from unwanted signals or
noise. Typical interferences in the UHF range consist of
digital radio, television and telecommunication signals,
thermal noise in the detection system and periodic pulses
from switching operations [12–14]. In order to improve the
detection sensitivity, it is necessary to denoise the PD
signals to remove the unwanted signals. In this paper, this
is done by using multivariate denoising tool.
Multivariate wavelet denoising deals with the regression

models of the form

X t( ) = f t( ) + 1 t( ), t = 1, ...., n (4)

where (X(t))1≤ t≤ n denotes the observed signals, ɛ(t)1≤ t≤ n

represents the centred Gaussian white noise of unknown
variance σ

2 and f (t) denotes the unknown function to be
recovered.
The multivariate denosing method is a useful tool to

denoise multiple signals as it exploits the relationships
between the signals to provide additional denoising effect
[15]. The multivariate denoising procedure can be carried
out in four steps as follows:

1. Perform wavelet transform at level J for all columns of X.
This step produces matrices D1,…, DJ which contain detail of
coefficient at level 1 to J of the p signals, and approximation
coefficients Aj of the p signals.
2. Remove noise by a simple multivariate thresholding after
a change of basis. The noise covariance estimator is
calculated using minimum covariance determinant of the

matrices DJ and defined as Ŝ1 = MCD(D1) and is used
to compute matrix V such that Ŝ1 = VLVT where Λ =
diag(λi, 1≤ i≤ p). Apply to each detail after change of
basis, the p univariate thresholding using threshold q for
each ith column. Fig. 6a shows a typical example of a raw
signal with a SNR of 1.03 dB and Fig. 6b is the output of
this step. The denoised signal using a simple multivariate
thresholding shows a satisfactory result. However, it can
still be further improved.
3. Improve the obtained result by applying principal
component analysis (PCA) and retaining fewer principal
components. Perform PCA of the matrix AJ and select
the appropriate number pJ+1 of useful principal
components.
4. Reconstruct the denoised matrix X̆ from the simplified
detail by inverting the wavelet transform. Fig. 6c shows a
typical result of this step.

4 Signal features extraction and recognition

Fig. 7 shows the flowchart diagram for the signal processing
and recognition of PD sources. The process is divided into
five stages: signal denoising, signal decomposition, feature
extraction, features evaluation/selection to choose the most
separable features, and classification. Signal denoising is
done by applying the multivariate denoising method. Each
group of PD data was denoised by using Matlab wavelet
multivariate denoising software tool. The processed data
were then decomposed to five levels, and thus producing a
total of 63 nodes. Fig. 8 shows a typical decomposition of a
floating metal denoised signal and its data for node (2, 1),
(5, 0) and (5, 26) together with the denoised signal. For
both processes of denoising and decomposing, two different
mother wavelets were used, that is, db and sym. The mother
wavelet of order 2 was chosen based on its effectiveness in
removing noise encountered in this work [15]. Choosing a
higher order will consume substantially more computing time.
Feature extraction is applied to reduce the number of inputs

for the neural network training. In this paper, three features
were extracted from each node: skewness, kurtosis and

Fig. 7 Flowchart of the data processing
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energy. Skewness is a parameter expressing the asymmetry of
the data around the sample mean. Kurtosis shows how sharp
the distribution of the data is. Energy indicates the percentage
of the signal energy of each node.
The skewness and kurtosis are formulated as follows [10]

S j, n =

∑

k

(4 j, k, n − m j, n)
3

(N j, n − 1)s3
j, n

(5)

K j, n =

∑

k

(4 j, k, n − m j, n)
4

(N j, n − 1)s4
j, n

− 3 (6)

where ϖj,k,n is the kth coefficient of node ( j, n), μj,n is the
mean deviation value, Nj,n is the length of the coefficient
array ϖj,n and σj,n is the standard deviation value.
The energy value of each node is calculated as

Fig. 8 Signal decomposition

a Original FM signal
b Denoised signal
c Node (2,1)
d Node (5,0)
e Node (5,26)
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e j, n = 4 j, n

∣

∣

∣

∣

∣

∣

2

(7)

where ϖj,n is the wavelet packet coefficient of node ( j, n)
The total number of signals acquired from the experiment

is 600, that is, 200 data records for each PD defect type and
from which 150 data were used as the training input and 50
for testing of the neural network scheme. Altogether, 450
data were used for training and 150 data were used for
testing. From each node three features were extracted, and
thus produced a total of 3 × 63 × 450 = 85 050 training data.
This is a fairly large amount of data for use as neural
network training input. Besides, the inclusion of undesirable
data features can make the classification process more
difficult. Therefore the number of data must be reduced by
using only the features that preserve maximum separability.
To determine the node with the feature that has the most

separable value, a criterion known as J criterion is used
[10]. J criterion compares the extent of scattering of feature
values for between-class and within-class. The best node
with the largest J value is selected as the input for the
neural network. The criterion is defined as

J (j, n) =
Sb(j, n)

Sw(j, n)
=

∑L
c=1

Nc

N
(mc(j, n)− m(j, n))2

∑L
c=1

Nc

N
s2
c (j, n)

(8)

where Sb denotes between-class scatter value, Sw is
within-class scatter value, Nc is number of samples belong
to class c, N is number of total samples, mc( j, n) is mean
values of feature at node ( j, n) for class c, m( j, n) is mean
values of feature at node ( j, n) for all samples and σc ( j, n)
is variance of the features at node ( j, n).
After the best node was selected, the features from its node

were input into a feed-forward neural network to train the
back-propagation learning rule for PD recognition. Fig. 9
shows the structure of the multi-level perceptron neural
network.
The feed-forward neural network used has three inputs.

The output as shown in the figure has 1 layer – a linear
type which is associated with void as 1, floating metal as 2
and mix of void and FM as 3.

5 Result and discussion

A total of 600 UHF signals were recorded in the experiment
for the three PD types. Thus, there are 200 records for each
PD source. The measured signals were denoised by
applying the multivariate denoising method through a
Matlab function. A typical denoising result is shown in
Fig. 10. It can be seen that the irregular spikes have been

removed. This is particularly evident over the time period
prior to the arrival of the PD signals. However, it was noted
that there is a slight reduction in the PD magnitude.
The denoised signals are then decomposed to five levels

and produced 63 nodes. From each node three features were
extracted, that is, kurtosis, skewness and energy. The J
criterion is used to determine the node that will be used as
the neural network input. The same mother wavelet was
used to denoise and decompose the signals. Both db2 and
sym2 wavelets resulted in the same total J values and
nodes. These are summarised in Table 1.
Fig. 11 shows the features plot of the best nodes using db2

and sym2 wavelets. Both wavelets resulted in the same best
nodes, determined by applying the J criterion formula. It
can also be seen that by using the J criterion, the features
can be clustered together for each PD source. For floating
metal and void, all the feature values are totally separated.
As for the combination of both defects, some feature values
are very close to those associated with the single defects.
A feed-forward neural network with back propagation was

used to classify the source of the PDs. The network had two
hidden layers, where each hidden layer has 20 neurons of
sigmoid type, and the training error was set to 0.01. The
data set (600 in total) was divided into two groups: 450
data for use as training input to train the neural network,
and 150 data as testing input using the trained network to
classify the PD sources. Classification was done for both

Fig. 10 Denoised PD signals using db2 wavelets

a FM
b Void
c Mix of FM and void

Table 1 Largest J values of the three features

Feature Node,
db2

Node,
sym2

J max,
db2

J max,
sym2

kurtosis (5,0) (5,0) 2.7611 2.7611
skewness (2,1) (2,1) 3.0516 3.0516
energy (5,26) (5,26) 2.0104 2.0104

Fig. 9 Three-layer neural network
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features that were obtained using db2 and sym2 wavelets as
shown in Fig. 7. The results, summarised in Table 2, show
that the single and multiple PD sources can be classified
and thus recognised with high success rate.

5.1 PD signals denoising effect

The denoising process is one of the most time-consuming
steps in this recognition process. In addition, denoising
might remove some useful parts of the PD signals and
cause incorrect recognition. Thus it is important to verify
that the denoising process was of benefit to the recognition
results.
By using a similar recognition process as shown in the

flowchart in Fig. 6, except that the denoising process was
excluded, the results now show different nodes as the best
ones: nodes (5, 0), (2, 1) and (5, 16) for kurtosis, skewness
and energy, respectively. The same best nodes were
produced by both mother wavelet types. The features plot
of the best nodes after decomposition is shown in Fig. 12.

It shows poorer separation as compared with the ‘original
one’, evident by the overlapping value of each feature of
the mixed and the floating metal. This poor separation
causes the recognition result of the un-denoised case to be
lower whereas for the denoised one, the result as shown in
Table 2 shows significant increase of the correct recognition

Fig. 11 Features plot of the best nodes using different wavelets, denoised using

a db2
b sym2

Fig. 12 Features plot of best nodes without denoising using different wavelets

a db2
b sym2

Table 2 Percentage of correct classification using feed-forward
neural network

PD type Number of
sample

Correct classification

Denoised Un-denoised

db2 sym2

void 50 50 50 50
FM 50 45 45 22
mix of void &
FM

50 48 48 41

correctness (%) 95.3 95.3 75.3
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for both types of mother wavelet. The mix of void and FM
type shows the most significant improvement, from 22
correct (undenoised) to 45 correct (denoised). The overall
percentage correctness without the denoising process is
75.3% but it increases to 95.3% after applying the
multivariate denoising tool.
It should be stressed that this work was developed in the

laboratory environment. For proof-of-concept, further field
testing is needed in order to prove the proposed algorithm
is viable for practical applications. In terms of hardware
requirement, the components to build the system are readily
available. UHF sensors for PD measurement in transformers
are already available commercially. It is expected such
sensors can also be used in this particular application for
PD defect recognition. The PD waveforms can be
accurately captured using either high-end digital
oscilloscopes or digitiser unit with built-in computer
(bandwidth of 4 GHz and sampling rate of 40 Gs/s).

6 Conclusions

PD sources caused by different types of single or multiple
defects generate different signal patterns. This paper
discussed the recognition of single and multiple PD sources
in transformer insulation. The PD signals were captured
using an UHF sensor and recorded using both a spectrum
analyser and an oscilloscope. The presence of noise/
interference will adversely affect the analysis result. Thus it
is important to denoise the recorded signals before further
analysis can be carried out. As compared with other
published techniques, the approach in this paper is different
in that wavelet multivariate denoising is utilised to clean up
the PD signals before the features are extracted for
classification. This will improve the correct classification
rate of the PD source.
Three features were extracted from the PD signals, and

used as inputs into a neural network to recognise the PD
sources. The features were extracted from the decomposed
signal components. The J criterion was applied to
determine the best nodes, that is, those that give the most
separability of the features. For both the de-noising and
decomposing steps, similar wavelets were applied (db2 and
sym2) and resulted in similar J values and nodes.
Using a feed-forward neural network, it was demonstrated

that single and multiple PD events can be classified and thus
recognised by the proposed method. It was also shown that
the overall percentage correctness is significantly improved
with the application of signal denoising prior to classification.

7 References

1 Bartnikas, R.: ‘Partial discharges – their mechanism, detection, and
measurement’, IEEE Trans. Dielectr. Electr. Insul., 2002, 9, (5),
pp. 763–808

2 Stone, G.C.: ‘Partial discharge diagnostics and electrical equipment
insulation condition assessment’, IEEE Trans. Trans. Dielectr. Electr.
Insul., 2005, 12, (5), pp. 891–904

3 Judd, M.D., Yang, L., Hunter, I.B.B.: ‘Partial discharge monitoring for
power transformers using UHF sensors part 1: sensors and signal
interpretation’, IEEE Electr. Insul. Mag., 2005, 21, (2), pp. 5–14

4 Raja, K., Floribert, T.: ‘Comparative investigations on UHF and acoustic
PD detection sensitivity in transformers’. Proc. ISEI, Boston, MA, USA,
April 2002, pp. 150–153

5 Judd, M.D., Yang, L., Hunter, I.B.B.: ‘Partial discharge monitoring for
power transformers using UHF sensors part 2: field experience’, IEEE
Electr. Insul. Mag., 2005, 21, (3), pp. 5–13

6 Yang, L., Judd, M.D.: ‘Recognising multiple partial discharge sources in
power transformers by wavelet analysis of UHF signals’, IEE Proc. Sci.
Meas. Technol., 2003, 150, (3), pp. 119–127

7 Lupò, G., Petrarca, C., Vitelli, M., Angrisani, L., Daponte, M.: ‘Analysis
of ultrawide-band detected partial discharges by means of a
multiresolution digital signal-processing Method’, Meas. – J. Int.
Meas. Confederation, 2000, 27, (3), pp. 207–221

8 Pinpart, T., Judd, M.D.: ‘Differentiating between partial discharge
sources using envelope comparison of ultra-high-frequency signals’,
IET Sci. Meas. Technol., 2010, 4, (5), pp. 256–267

9 Pinpart, T., Fletcher, J.E., Judd, M.D.: ‘Methods for distinguishing
between partial discharges based on the UHF detection technique’.
Int. Conf. Condition Monitoring and Diagnosis (CMD), Beijing,
China, April 2008, pp. 1060–1064

10 Chang, C.S., Jin, J., Chang, C., Hoshino, T., Hanai, M., Kobayashi, N.:
‘Separation of corona using wavelet packet transform and neural
network for detection of partial discharge in gas-insulated substations’,
IEEE Trans. Power Deliv., 2005, 20, (2), Part: 2, pp. 1363–1369

11 Jin, J., Chang, C.S., Chang, C., Hoshino, T., Hanai, M., Kobayashi, N.:
‘Classification of partial discharge events in gas insulated substations
using wavelet packet transform and neural network approaches’, IEE
Proc. Sci. Meas. Technol., 2006, 153, (2), pp. 55–63

12 Yang, L., Judd, M.D., Bennoch, C.J.: ‘Denoising UHF signal for PD
detection in transformers based on wavelet technique’. Proc. Conf.
Electrical Insulation and Dielectric Phenomena, Colorado, USA,
October 2004, pp. 166–169

13 Florkowski, M., Florkowska, B.: ‘Wavelet-based partial discharge
image denoising’, IET Gener. Transm. Distrib., 2007, 1, (2),
pp. 340–347

14 Zhou, C., Hepburn, D.M., Song, X., Michel, M.: ‘Application of
denoising techniques to PD measurement utilising UHF, HFCT,
acoustic sensors and IEC60270’. Int. Conf. Electricity Distribution –

Part 1, Prague, Czech, June 2009, pp. 1–4
15 Aminghafari, M., Cheze, N., Poggi, J.M.: ‘Multivariate de-noising using

wavelets and principal component analysis’, Comput. Stat. Data Anal.,
2006, 50, pp. 2381–2398

16 Lopez-Roldan, J., Tang, T., Gaskin, M.: ‘Optimisation of a sensor for
onsite detection of partial discharges in power transformers by the
UHF method’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (6),
pp. 1634–1639

17 Kemp, I.J.: ‘Partial discharges and their measurement’, in Warne, D.F.
(Ed.): ‘Advance in high voltage engineering’ (IEEE Press, 2004, 1st
edn.), pp. 139–190

18 Agoris, P., Meijer, S., Smit, J.J.: ‘Sensitivity check of an internal VHF/
UHF sensor for transformer partial discharge measurements’. The
Powertech’07 Conf., Lausanne, France, July 2007, pp. 2065–2069

19 Ando, A., Kagoshima, K., Kondo, A., Kubota, S.: ‘Novel microstrip
antenna with rotatable patch fed by coaxial line for personal
handy-phone system units’, IEEE Trans. Antennas Propag., 2008, 56,
(8), pp. 2747–2751

20 Ju, T., Zhongrong, X., Xiaoxing, Z., Caixin, S.: ‘GIS partial discharge
quantitative measurements using UHF microstrip antenna sensors’.
Conf. Electrical Insulation and Dielectric Phenomena (CEIDP),
Vancouver, Canada, October 2007, pp. 116–119

21 Roy, A., Ghosh, S., Chakrabarty, A.: ‘Wideband performance of
dielectric loaded monopole trans-receive antenna system’. Int. Conf.
Industrial and Information Systems (ICIIS), Colombo, Sri Lanka,
August 2007, pp. 181–185

22 Sinaga, H.H., Phung, B.T., Blackburn, T.R.: ‘Design of ultra high
frequency sensors for detection of partial discharges’. Proc. Int. Symp.
High Voltage Engineering, Cape Town, South Africa, October 2009,
pp. 892–896

23 Chen, E., Chou, S.Y.: ‘Characteristics of coplanar transmission lines on
multilayer substrates: modeling and experiments’, IEEE Trans. Microw.
Theory Tech., 1997, 45, (6), pp. 939–945

24 Katsuse, T., Kirishima, T., Morita, A., Ohtsuka, S., Hikita, M.: ‘Partial
discharge characteristics in UHF-band of composite insulation system
including various artificial defects in transformer’. Int. Conf.
Condition Monitoring and Diagnosis (CMD), Beijing, China, April
2008, pp. 68–73

25 Raja, K., Devaux, F., Lelaidier, S.: ‘Recognition of discharge sources
using UHF PD signatures’, IEEE Electr. Insul. Mag., 2002, 18, (5),
pp. 8–14

26 Denissov, D., Köhler, W., Tenbohlen, S., Grund, R., Klein, T.: ‘Wide
and narrow band PD detection in plug-in cable connectors in the UHF
range’. Int. Conf. Condition Monitoring and Diagnosis, Beijing,
China, April 2008, pp. 1056–1059

www.ietdl.org

IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 1, pp. 160–169

doi: 10.1049/iet-gtd.2013.0131

169

& The Institution of Engineering and Technology 2013


	1 Introduction
	2 UHF sensor
	3 UHF PD signals
	4 Signal features extraction and recognition
	5 Result and discussion
	6 Conclusions
	7 References

