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AbstractMany analytical methods can be utilized for multivariate time series modeling. One of the analytical models for modeling time seriesdata with multiple variables is the State Space Model. The data to be analyzed in this study is inflation data from expenditure groupssuch as processed foods, beverages, cigarettes, and tobacco; and housing inflation for water, electricity, gas, and fuel from January2001 to December 2021. The aim is to determine the best State Space Model that fits the data for forecasting. In this study, theState Space method will be utilized further with multivariate time series data and represent State Space in Vector Autoregressive(VAR) to determine the relationship between groups of observed variables.
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1. INTRODUCTION

Analysis of time series data that is univariate and multivariate
has been widely carried out in the field of economics and other
fields of science, such as in studies conducted by (Russel et al.,
2020; Russel et al., 2022; Warsono et al., 2019a; Warsono
et al., 2019b). The State Space Model is one of the mod-
els available for use in analyzing multivariate time series data
and was first introduced by (Kalman, 1960). The State Space
method is generally utilized for forecasting and modeling mul-
tivariate time series that interact dynamically. By considering
the autocorrelation among all variables, State Space Models can
provide more accurate forecasts than techniques that model
each variable separately. The State Space Model offers a stan-
dardized methodology for analyzing many problems in time
series data (Durbin and Koopman, 2012a) .

In the field of economics, Aoki and Havenner (1991) show
that for both stationary and non-stationary data, the State Space
Model and procedures are recommended. The State Space
Model in economics has been widely discussed over the last
decade. Books that discuss the State Space Model are provided
by (Harvey, 1990; Harvey, 1993; Hamilton, 1994; Kim and
Nelson, 1999; Shumway et al., 2000; Durbin, 2004; Gómez,

2016). According to Wei (2006) , the State Space Model is an
approach to simultaneously model and predict several interre-
lated time series data variables, where the variables in it have
dynamic interactions. The main purpose of the State Space
method is to infer relevant results from a series of vectors with
the obtained observations.

The State Space method is flexible because it can be repre-
sented in univariate and multivariate data. Usually, this State
Space method is applied to data with a single variable, which
does not require a relationship between the observed variables.
Therefore, this study will apply the State Space method with
multivariate data and represent State Space in VAR to ascer-
tain the group’s relationship with observed variables, where
the VAR model is an analytical method that can be applied to
explain the relationship between data variables.

When developing State Space Models for time series, Akaike
(1975) Akaike (1976) introduced state vectors as canonical vari-
ate vectors between data and future observations. Wei (2006)
discusses how to use canonical correlation to adjust the State
Space Model. According to Durbin and Koopman (2012b) ,
the analysis of time series can be performed effectively using
the State Space Models in many fields such as statistics, econo-
metrics, and others.
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The goal of this research is to obtain the best State Space
Model that fits the multivariate time series data used in this
study, namely inflation data from expenditure groups such
as processed foods, beverages, cigarettes, and tobacco, as well
as housing inflation for water, electricity, gas, and fuel from
January 2001 to December 2021. Moreover, the State Space
Model is also used to see the behavior of data over the following
12 months of forecasting.

2. EXPERIMENTAL SECTION

2.1 Statistical Modelling
The assumption of stationarity is the first condition of the data
to be checked before we analyse time series data. This assump-
tion is very basic in analysis of time series. The stationarity of
the data is checked by data plot and Augmented Dickey-Fuller
(ADF) test. Vector Autoregressive (VAR) Model According to
Tsay (2005) and Tsay (2014) VAR can be applied to multivari-
ate time series data. The following is the Vector Autoregressive
model with order p, VAR(p) model: Zt= 𝜙0+

∑p
i=1 +𝛼 t

Zt is n×1 time series vector, 𝜙0 is n×1 constant vector,
𝜙in×n is matrix parameters (for i>0, 𝜙p ≠0) and 𝛼 t is vector
shock with zero mean vector, and variance covariance

∑
a.

2.2 Granger Causality Test
According to Lütkepohl (2005) , to detect short-term relation-
ships between observed variables in the form of reciprocity
the Granger Causality Test is used. Suppose we are going to
analyze the Granger Causality between variables X and Y and
the model for the Granger Causality Test is:

Xt =C1 + 𝛼Xt−1 + 𝛼2Xt−2 + ... + 𝛼Xt−p + 𝛽1Yt−1+
𝛽2Yt−2 + ... + 𝛽pYt−p + ut

The null hypothesis, according to the assumption of Ordi-
nary Least Squares (OLS), is as follows: H0: 𝛽 1=𝛽 2=...=𝛽=0 (Y
is not Granger Causality of X) with the alternative H1 𝛼t least
one of 𝛽 p≠0 (Y is Granger Causality of X). The test statistic:

FTest =
(RSS0 − RSS1)/P

RSS1/(T − 2P − 1)

RSSo denotes the sum of residual squares when the null
hypothesis Ho is true., RSS1 is the residuals sum of squares full
model, T is total observations, and p is number of parameters
related to variable Y. Reject Ho if F-Test > F(𝛼 ,p,T−2p−1) or if
p-value <0.05 (Hamilton, 1994) .

2.3 State Space Model
The State Space Model is a model approach and predicts si-
multaneously several interconnected time series data, where
the variables have dynamic interactions (Wei, 2006) . The rep-
resentation of the State Space Model is as follows:

Yt+1 = AYt +GXt+1

and the output equation is:

Zt = HYt

Yt is k×I state vector, A is a transition matrix k×k, G is k×n
input matrix, Xt is n×I vector input, Zt is m×I output vector,
and H is m× k matrix observation (Wei, 2006) .

2.4 Canonical Correlation Analysis
Canonical correlation analysis is a statistical analysis that is
applied to see the relationship between a group of dependent
variables and a group of independent variables. According to
(Wei, 2006) , state vectors are uniquely determined through
canonical correlation analysis between a series of current and
previous observations and a series of future and current ob-
servations. For a discussion of canonical correlation, see (Wei,
2006; Tsay, 2005).

2.5 Forecasting
The Kalman filter is the most common approach for prediction
in the State Space model, The Kalman filter can handle changes
to model parameters and variances. According to Welch et al.
(2001) at the forecasting stage, the estimated value is generated
for the current state and the covariance value is used as initial
predictive information for the next step. The Kalman filter is
a recursive updating procedure that begins with a prediction
of the initial state and then revises that prediction by adding
corrections to the initial prediction. The basic recursive for-
mula is used to update the mean and covariance matrices (Lai
and Bukkapatanam, 2013) . Forecast, when a new observation
becomes available, should be used and applied to update the
state vector and hence update the forecast. For this purpose,
the Kalman Filter method is available, which is a recursive
procedure used to conclude the state vector Yt (Wei, 2006) .

3. RESULT AND DISCUSSION

The data used are the inflation data from the expenditure
groups, namely inflation data for processed foods, beverages,
cigarettes, and tobacco (INF01), and housing inflation, water,
electricity, gas and fuel (INF02) from January 2001 to De-
cember 2021 sourced from the Ministry of Trade (Kemente-
rian Perdagangan, 2022, https://satudata.kemendag.go.id/data-
informasi/perdagangan-dalam-negeri/inflasi-2020). Table 1
and Figure 1 show that INF01 fluctuates around the number
0.5527 and does not show a trend in the data; INF02 fluctuates
around 0.46167 and there is no indication of a trend in the
data. From the behaviour of the data in Figures 1 (a) and (b)
which indicates that there is no trend, it is able to be concluded
that the INF01 and INF02 data are stationary. The INF01 and
INF02 data are stationary based on the behavior of the data in
Figures 1 (a) and (b), which shows that there is no trend.

Non-stationary data can be formally checked using the ADF
test with the null hypothesis is that the data are non-stationary.
Table 2 shows that the average value is zero and single with a
p-value <.0001 which is smaller than the level of significance =
0.05 for all data variables indicating that the data is stationary.
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Table 1. Summary Statistics

Variable Type N Mean Standard Deviation Min Max

INF01 Dependent 252 0.55270 0.49922 -0.86000 3.21000
INF02 Dependent 252 0.46167 0.61447 -0.45000 7.40000

Table 2. The ADF Test for Processed Foods, Beverages, Cigarettes and Tobacco Inflation Data (INF01) and Housing, Water,
Electricity, Gas and Fuel Inflation Data (INF02)

Variable Type Rho p-value Tau p-value

INF01 Zero Mean -43.99 <.0001 -4.57 <.0001
Single Mean -137.48 0.0001 -8.13 <.0001

Trend -169.68 0.0001 -8.90 <.0001
INF02 Zero Mean -60.12 <.0001 -5.49 <.0001

Single Mean -125.49 0.0001 -7.86 <.0001
Trend -191.93 0.0001 -9.73 <.0001

Figure 1. The Plot of Inflation Data by Expnditure Group: (a)
Inflation of Processed Foods, Beverages, Cigarettes and
Tobacco (INF01), (b) Inflation of Housing, Water, Electricity,
Gas and Fuel (INF02).

To get the best VAR(p) model, the step that must be done is
to ascertain the optimal order (length of the lag) p. To ascertain
the length of the lag (p), the Akaike’s Information Criterion
Corrected (AICC) is used. The optimal order of p selected
based on the minimum value of AICC is VAR (2) (Table 3
shows that the values of AICC for models VAR(1), VAR(2)
and VAR(3) are very closed ). In the parameter representation
scheme in the VAR(2) model, all parameters for INF01 and
INF02 have significant parameters on AR1 which are indicated
by the signs – (minus), and + (plus) (Table 4).

3.1 Model Vector Autoregressive (VAR (p))
The estimate Model VAR(2) is as follows:

[
INF01t
INF02t

]
=

[
0.28216
0.18711

]
+
[
0.52741 0.03460
0.28932 0.10681

]

+
[
−0.07792 0.01404
0.00737 0.13245

] [
INF01t − 2
INF02t − 2

]

Covariance of Innovation∑︁
=

[
0.18626 0.12228
0.12228 0.33139

]
3.2 Impulse Response
Figure 2(a) showed that if there is a shock in INF01 one unit
(or one unit changes in INF01), in the first month (lag1) INF01
and INF02 give a response of 0.52741 and 0.28932, respec-
tively. In the second month (lag2) the response of INF01 to a
change of one unit in INF01 was 0.21026, while the response
of INF02 was 0.19087. In the third month (lag3) the response
of INF01 to a change of one unit in INF01 was 0.08046, while
the response of INF02 was 0.12343. In the fourth month
(lag4) the responses of INF01 and INF02 to changes in the
impact of one unit on INF01 were 0.03301 and 0.06329, re-
spectively. The response effect lasted for six months in normal
conditions. From Figure 2(b), if there is a shock in INF02
one unit, in the first month (lag1) INF01 and INF02 give a
response of 0.03460 and 0.10681, respectively. In the sec-
ond month (lag2) the response of INF01 to a change of one
unit in INF01 was 0.03599, while the response of INF02 was
0.15387. In the third month (lag3) the response of INF01
to a change of one unit in INF01 was 0.02311, while the re-
sponse of INF02 was 0.04125. In the fourth month (lag4) the
responses of INF01 and INF02 to changes in the impact of
one unit on INF01 were 0.01297 and 0.03174, respectively.
The response effect lasted for six months in normal conditions.

3.3 Granger Causality Test
From Table 6, Test 2 showed a significant value (p-value <0.05),
but Test 1 did not show a significant value (p value> 0.05). Test
2 shows that the p-value = 0.0066 is smaller than the 0.05 level
of significance. Thus the null hypothesis (H−0), namely INF02
is influenced by itself and is not influenced by INF01, thus the
hypothesis is rejected, which means that future INF02 data is
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Table 3. Akaike’s Information Criteria AICC for Model VAR(1), VAR(2), and VAR(3)

VAR(0) VAR (1) VAR (2) VAR (3)

-2.74 -3.02 -3.02 -3.01

Table 4. Schematic Representation of Parameter Estimates VAR(1)

Variable/Lag C AR1 AR2

INF01 + +. ..
INF02 + +. ..

+ is > 2*std error,- is < -2*std error,. is between,* is N/A

Figure 2. Impulse Response for (a) INF01 and (b) INF02

Based on Table 6., Granger Causality Can be Depicted as
Follows:

Figure 3. Granger Causality Model Based on the Results of
Table 6

influenced by past and future INF01 data and is influenced by
past INF02 data.

3.4 Canonical Correlation Analysis
This study found the length of the lag order (p) for the best
Vector Autoregressive model, namely for p = 2. So the model
chosen was VAR (2). Now to build a state space model, the
first step to do is to select a state vector. The process of se-
lecting a state vector follows the method given by Durbin and
Koopman (2012b) by using canonical correlation. The state
vector is determined by the Information Criterion (IC) value,
where the IC value is negative <0, then the minimum canonical
correlation (𝜌min) is taken as zero Wei (2006) otherwise, it
is considered greater than zero. From Table 7, for the first
step, we will consider the set of state vectors INF01t , INF02t
, INF01t+1 |t and for this set of state vectors, the value of IC
is negative (-2.63729) therefore INF01t+1 |t is excluded from
the state vector. In the second step, we consider the set of state

vectors INF01t , INF02t , INF02t+1 |t , and for this set of state
vectors, the IC value is positive (1.520112). Therefore, the
variable INF02t+1 | t is entered into the state vector. In the
second step, we also consider the set of state vectors INF01t ,
INF02t , INF02t+1 |t , INF02t+2 |t , and for this set of state vectors,
the IC value is negative (-4.47121). Therefore, the variable
INF02t+1 | t is excluded from the state vector.

Based on canonical correlation analysis the components of
the state vector are as follows:

Yt =


INF01t
INF02t

INF02t + 1|t


3.5 Model State Space
Based on the parameter estimates in Table 6, then the State
Space Model is as follows: Yt+1=AYt+GXt+1

Where:

Yt + 1 =


INF01t+1 |t
INF02t+1 |t
INF02t+2 |t

Yt =

INF01t |t
INF02tt |t
INF02t+1 |t


A =


0.480325 0.040279 0

0 0 1
−0.05574 0.025091 0.847525


G =


1 0
0 1 1

0.284043 0.066229

 X =

[
𝜐t + 1
𝛿t + 1

]

V AR(X) =V AR
[
𝜐t + 1
𝛿t + 1

] [
0.184444 0.116403
0.116403 0.312132

]
3.6 Forecasting
In this study, the forecasting is performed using the Kalman
filter technique and is based on State Space Models. Data for
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Table 5. Estimation Parameter of Model VAR(2)

Equation Parameter Estimate Standard Error tValue p-value Variable

CONST1 0.28216 0.04429 6.37 0.0001 1
AR1_1_1 0.52741 0.07404 7.12 0.0001 INF01(t-1)

INF01 AR1_1_2 0.03460 0.05467 0.63 0.5274 INF02(t-1)
AR2_1_1 -0.07792 0.07439 -1.05 0.2960 INF01(t-2)
AR2_1_2 0.01404 0.05472 0.26 0.7977 INF02(t-2)
CONST2 0.18711 0.05908 3.17 0.0017 1
AR1_2_1 0.28932 0.09876 2.93 0.0037 INF01(t-1)

INF02 AR1_2_2 0.10681 0.07292 1.46 0.1443 INF02(t-1)
AR2_2_1 0.00737 0.09923 0.07 0.9408 INF01(t-2)
AR2_2_2 0.13245 0.07299 1.81 0.0708 INF02(t-2)

Table 6. Granger Causality Test

Test and Group Variables DF Chi-Squares p-value

Test 1: Group 1: INF01 2 0.50 0.7782
Test 1: Group 2: INF02
Test 2: Group 1: INF02 2 10.03 0.0066
Test 2: Group 2: INF01

Table 7. Analysis Canonical Correlation

State Vector Canonical Correlation IC Chi-Square DF

INF01t , INF02t , INF01t+1 |t 1, 1, 0.145106 -2.63729 5.320152 4
INF01t , INF02t , INF02t+1 |t 1, 1, 0.192545 1.520112 9.444555 4

INF01t , INF02t , INF02t+1 |t , INF02t+2 |t 1, 1, 0.245818, 0.077771 -4.47121 1.519691 3

Table 8. Parameter Estimate of the State Space Model

Parameter Estimate Standard Error tValue

F(1,1) 0.480325 0.065723 7.31**
F(1,2) 0.040279 0.053397 0.75
F(3,1) -0.05574 0.064247 -0.87
F(3,2) 0.025091 0.072659 0.35
F(3,3) 0.847525 0.129645 6.54**
G(3,1) 0.284043 0.087226 3.26**
G(3,2) 0.066229 0.071324 0.93

Note : ** significant at alpha=0.01
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Table 9. Forecasting For INF01 and INF02 For the Next 12 Months

Month INF01 Std INF02 Std

Jan 2022 1.04598 0.42947 0.56891 0.55869
Feb 2022 0.79395 0.48167 0.48455 0.57685
Mar 2022 0.66950 0.49418 0.45626 0.58705
Apr 2022 0.60858 0.49749 0.44421 0.59307
May 2022 0.57884 0.49845 0.44022 0.59699
Jun 2022 0.56439 0.49875 0.43994 0.59971
July 2022 0.55744 0.49886 0.44126 0.60165
Augt 2022 0.55415 0.49891 0.44317 0.60308
Sept 2022 0.55265 0.49894 0.44522 0.60414
Oct 2022 0.55201 0.49895 0.60414 0.60494
Nov 2022 0.55179 0.49896 0.44898 0.60553
Dec 2022 0.55175 0.49897 0.45059 0.60598

Figure 4. Forecasting for (a) INF01 and (b) INF02 For the
Following 12 Months

the next 12 months period are forecasted using the State Space
Model. The results given in Table 7 show that for INF01 data,
the following 12 months’ forecasting is flat (Table 9 and Figure
4) in the range between 0.55175 to 1.04598 and the standard
deviation is in the range between 0.42947 and 0.49897; for
INF02 data, the following 12 months forecasting is flat (Table
9 and Figure 4) in the range between 0.43994 and 0.56891
and the standard deviation in the range between 0.55869 and
0.60598.

4. CONCLUSION

Based on the AICC value, the VAR(2) model is selected as the
best VAR model, while based on the VAR(2) model, Granger
Causality concludes that INF01 is Granger Causality to INF02,
while INF02 is not Granger Causality to INF01. According to
the Granger Causality analysis results, INF02 is not Granger
Causality to INF01, which means that INF01 is only influenced
by itself and not by INF02, and it is known from the param-
eters estimation and test of the VAR(2) model that INF01
was significantly influenced by INF01 information one month
earlier. INF01 is Granger Causality to INF02, which means
that INF02 is influenced not only by itself but also by past
information of INF01, and the results of the parameters es-
timation and test of the VAR(2) model show that INF02 is
significantly influenced by INF01’s information one month

earlier and INF02’s information two months earlier. From the
results of forecasting using the State Space approach, it can
be concluded that for the next 12 months of forecasting, for
the INF01 data, inflation tends to decrease from 1.05498 in
January 2022 and 0.55175 in December 2022; Meanwhile,
the forecasting values for INF02 data for the next 12 months
tend to be stable and fluctuates around 0.44000.
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