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Abstract 

In this paper, we study a solution of a set of convective-diffusion 
equations arising from methane combustion in reverse flow reactor. 
Here, temperature and concentration of methane are dependent 
variables. By scaling process, a nonlinear reaction rate term can be 
approximated as a linear term, resulting in linear convective-diffusion 
equations. We consider the steady state regime for small ratio of the 
diffusion and convective terms. This leads to a singular perturbation 
problem. Using variable transformation, the problem can be converted 
into a regular perturbation-like problem. Asymptotic solution shows 
that, up to and including the second order of approximation, the 
solution is in agreement with numerical solutions of the boundary 
value problem. 



A. Nuryaman and A. Y. Gunawan 2070 

1. Introduction 

A reverse flow reactor (RFR) is a packed-bed reactor in which the        
flow direction is periodically reversed to trap a hot zone within the reactor. 
The common features of combustion process in an RFR were described by 
convective-diffusion equations with the corresponding boundary and initial 
conditions [7]. Many previous studies [1-6] mostly determined the features of 
the RFR dynamic with numerical approach. For example, Gupta and Bhatia 
[1] proposed a Newton’s technique to directly solve for the cyclic profiles. 
Salinger and Eigenberger (see [4] and [5]) studied periodic state profile by 
direct calculation. Garg et al. [9] used the direct computation approach that 
proposed Gupta and Bhatia [1] to observe the periodic state at which the 
temperature and concentration profiles at the beginning and end of a flow 
reversal period are mirror images. In steady state profile, simulation of 
Gosiewski and Warmuzinsky [6] showed that the heat recovery by hot gas 
withdrawal from the reactor guaranteed more favorable symmetry of the half-
cycle-temperature profile. 

In this paper, we study the behavior profile of temperature and 
concentration in methane combustion by analytical approach. As common 
convective-diffusion equation, some methods can be applied to this problem, 
for examples Green’s function method (see [12]), classical integral transform 
techniques [13], generalized and extended classical integral transform 
method [14, 3]. Nuryaman et al. [2] presented an asymptotic solution of a 
singular perturbation problem for steady state conversion of methane 
oxidation in reverse flow reactor. They considered a one-dimensional 
pseudo-homogeneous model with a certain reaction rate in which the       
whole process of the reactor was still workable and in one direction only 
from the left to the right end. These assumptions lead to an equation in       
terms of the conversion variable only. In this paper, we extend the problem 
by considering a complete equation as a system of convective-diffusion 
equations. Here, temperature and concentration of methane are dependent 
variables. We construct a singular perturbation problem with rescaling 
variable and solve it simultaneously. 



A Singular Perturbation Problem in Steady State … 2071 

This paper is organized as follows: In Section 2, mathematical models 
for steady state concentration and temperature of methane are described.          
In Section 3, the asymptotic analysis is presented to find the approximate 
solution of steady state concentration and temperature, by using asymptotic 
expansion technique. In Section 4, the numerical simulation is presented          
to confirm the asymptotic solution. The conclusions are written in the last 
section. 

2. Problem Formulation 

Consider a mathematical model of single phase cooled reverse flow 
reactor model described by 1-D pseudo-homogeneous model [7]: 
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Boundary conditions in direction from the left to the right end are written as 
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In order to facilitate the analysis, we introduce the following 
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temperature takes places as same as the feed gas temperature, thus .0TTc =  

Therefore, the dimensionless governing equations are 
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where ( ( )).expˆ 0RTEkak avc −η=ε ∞  The boundary conditions are now 
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In the present, we consider that ε̂  is very small ( )1ε̂  such that the 

function ( )θg  can be approximated by ( ) .1≈θg  Furthermore, we assume 

that the effect of diffusive term in temperature and concentration equations is 

very much smaller than the convective term, so ( ),11 ε== OPeLe  where 

.1ε  For the steady state, equations (4)-(5) now become 
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In the next section, we present an asymptotic expansion method for the 
system (9)-(10) (see [10] and [11]). 
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3. Asymptotic Solution 

For ,0=ε  equations (9)-(10) become a first order differential equation 
with two boundary conditions for each. Thus, (9)-(10) lead to singular 
perturbation problems. To solve this problem, we introduce a new variable 

.
ε

= zr  Using the chain rule, in the new variable r, equations (9)-(10) 

become 
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 ( ) ( ) ( ) ( ) ,01,00,054 =εθθ=θ=χ−θε−θ−θ kk  (12) 

where 2
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d χ=χ  and .dr

dχ=χ  Let us assume that the solutions of system 

(11)-(12) can be expanded in power of ε as follows: 
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Substituting (13)-(14) into (11)-(12), we obtain 
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The ( )1O  equations of (15)-(16) are 
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The solutions of these boundary value problems are 

 ( ) ,10 =ru  (19) 

 ( ) .00 =rv  (20) 
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Next, the ( )εO  equations of (15) and (16) are 

( ) ( ) ( ) ,01,00,0 111211 =ε==−− uuukuu  (21) 

 ( ) ( ) ( ) .01,00,0 1110511 =ε==+− vvvukvv  (22) 

The solution of (21) is 
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By substituting equation (19) into equation (22), we get the solution of (22) 
given by 
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Therefore, the solutions of system (15)-(16) up to and including the first 
order are 
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or in variable z, 
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If we extend the solutions of system (15)-(16) up to and including the second 
order, then the solutions are 
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4. Numerical Simulation 

In comparison, we compare our asymptotic solution with numerical 
solution of system (15)-(16) as a boundary value problem. If we substitute 

( ) ( ),1 zz χ=ψ  ( ) ( ),2 zz χ′=ψ  ( ) ( )zz β=ψ3  and ( ) ( ),4 zz θ′=ψ  then we 

get a system of first order ordinary differential equations as follows: 
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,43 ψ=ψ′  

 ( )153444
1 ψ−ψ+ψ
ε

=ψ′ kk  (35) 

with the boundary conditions 

 ( ) ( ) ( ) ( ) ( )00,01,100 34212 ψ=εψ=ψ−ψ=εψ    and   ( ) .014 =ψ  (36) 

We solve the boundary problem (35)-(36) using the boundary value 
problem toolbox in Matlab. 

In illustration, plots of the asymptotic solution up to and including first 

order and the numerical solution of (15)-(16), for ,10 6−=ε  ;156.02 =k  

,13925.04 =k  1275.05 =k  are shown in Figure 1. While, Figure 2 shows 

plots of the asymptotic solution up to and including second order and the 
numerical solution of (15)-(16). The results show that the asymptotic solution 
up to and including the second order is quite in agreement with the numerical 
solutions. In addition, we also confirm our asymptotic solution of methane 
concentration and the analytical solution of (9) proposed by Guerrero et al. 
[3], as shown in Figure 3. The result shows that the asymptotic solution up to 
and including the second order coincides with the analytical solution. 

 

(a) (b) 

Figure 1. Plot of methane concentration (a) and methane temperature (b) as a 
function of z where the dashed line represents the asymptotic solution up to 
and including first order and the solid line represents the numerical solution. 
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(a) (b) 

Figure 2. Plot of methane concentration (a) and methane temperature (b) as a 
function of z where the dashed line represents the asymptotic solution up        
to and including second order and the solid line represents the numerical 
solution. 

 

Figure 3. Plot of methane concentration as a function of z where the dashed 
line represents the asymptotic solution up to and including the second order 
and the circle symbol represents the analytical solution that proposed in [3]. 

5. Conclusion 

In this paper, we have constructed singular perturbation problems for       
the steady state concentration and temperature of feed gas in the methane 
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combustion process using a reverse flow reactor. The small parameter in        
our problem took place in front of the diffusive terms. Using the variable 
transformation and asymptotic expansion method, we solved the equations 
up to and including the second order approximation. The present asymptotic 
solutions were quite in agreement with the numerical solutions. 
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