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Abstract The locating chromatic number introduced by
Chartrand et al. in 2002 is the marriage of the partition
dimension and graph coloring. The locating chromatic number
depends on the minimum number of colors used in the locating
coloring and the different color codes in vertices on the graph.
There is no algorithm or theorem to determine the locating
chromatic number of any graph carried out for each graph
class or the resulting graph operation. This research is the
development of scientific theory with a focus of the study on
developing new ideas to determine the extent to which the
locating chromatic number of a graph increases when applied
to other operations. The locating chromatic number of the
origami graph was obtained. The next exciting thing to know
is locating chromatic number for certain operation of origami
graphs. This paper discusses locating chromatic number for
specific operation of origami graphs. The method used in
this study is to determine the upper and lower bound of the
locating chromatic number for certain operation of origami
graphs. The result obtained is an increase of one color in the
locating chromatic number of origami graphs.

Keywords Locating Coloring, Locating Chromatic Num-
ber, Origami Graph, Certain Operation of Origami Graphs

1 Introduction

The locating chromatic number was introduced by Char-
trand et al.[1] in 2002 combination of partition dimension [2]

and graph coloring. Partition dimension is developed from
metric dimension. Metric dimensions were first introduced by
Harary and Melter [3] in 1976. Many applications that can be
applied using the concept of metric dimensions include robotic
navigation [4], optimization of fire sensor placement [5], and
data classification of chemical compounds [6].

Chartrand et al. [1] defined the locating chromatic num-
ber of a graph like this. Let H = (V,E) be a finite and
connected graph. The distance between two of its vertices a
and b, denoted by d(a, b), is the length of the shortest path be-
tween them. Let IT = {R1, R, ..., Ry} be a partition of V (H)
which is induced by the coloring r with color {1,2,..., f}.
The color code of u, denoted by rp(u) is the ordered f-
tuple (d(u, R1),d(u, Rg),...,d(u, Rg))) where d(u, R;) =
min {d(u,w) : w € R;} forany i € {1,2,3,..., f}. If all
vertices of H have different color codes, then r is called a r-
locating coloring of H. The smallest f such that H has a lo-
cating f-coloring said the locating chromatic number (Icn, in
short) denoted by x,(H).

In general, determining the Icn of a graph is a complex prob-
lem because there is no algorithm to assess the Icn of any graph
[1]. The results obtained by Chartrand et al. [1] among others,
that the Icn of paths is 3, len of cycle graph C,,, where n > 3
vertices are 3 for odd n and 4 for even n. Next, the lcn of dou-
ble star graph S(a,b) forl <a <bandb > 2is b+1 and the lcn
of a complete multipartite graph is n. In 2011, Asmiati et al.
[7] have succeeded in obtaining the lcn of a uniform amalga-
mation of stars and Asmiati et al. [8] for general amalgamation
of stars. Furthermore, Syofyan et al. [9] are also interested
in studying the lcns of tree, especially for Lobster graphs in
2013. Then in 2016, Asmiati [10] obtained the lcns for general
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caterpillar and firecracker graphs.

Chartrand et al. [11] characterized graphs with Icns (n — 1)
or (n — 2). Furthermore, Asmiati and Baskoro [12] in 2012,
succeeded in characterizing some graphs containing cycles
with lcn 3. Next, Baskoro and Asmiati [13] determined to
characterize tree as having lcn 3. In 2017, Asmiati et al. [14]
obtained the classification of Petersen graphs with lcn 4 or 5.

The study of Icn and its variants is still exciting today, as ev-
idenced by the many research results on the lcn of graphs and
their variances. Welyyanti et al. [15] determined the Icn of dis-
connected graphs. Behtoei and Anbarloei [16] determined lcn
for joining the graphs. Asmiati et al. [17] have obtained the lcn
on a barbell graph containing a complete graph or Generalized
Petersen graph, then continued in 2019 by Asmiati et al. [18]
for its subdivisions. Ghanem et al. [19] obtained the lcn of
power paths and cycles. In 2021, Irawan et al. [20] obtained
the Icn on the origami graph and its barbell. Later in the same
year, Irawan et al. [21] obtained the Icn of the origami barbell
graph. Furthermore, Asmiati et al. [22] in 2021 succeeded in
determining the Icn of the path shadowgraph and its barbell.

The following definition of an origami graph is taken
from [23]. Let m € N with m > 3. An origami graph O,,
is a graph with V(O,,) = {u;,vj,w; : j € {1,..,m}}
and E(Op,) {ujw;, wjvj,vjw; : 7 € {1,..,m}} U
{ujujir,wijujpr = j € {1,...,m — 1}} U {upmur, wpnu }.
An subdivision of a origami graph O}, is a graph with

V(Or,) = {uj,vj,zj,w; : j € {1,..m}} and

E(07) = {ujwj,ujvj, vz, 2505 2§ € {L..mp} U
{ujujpr, wjnjpr + j € {1,...,m — 1}} U {umur, wmui }}.
Irawan et al.[20] discussed lcn for origami graphs and subdivi-
sion in the outer edge of origami graphs.

Theorem 1
Let O,, be an origami graph for m > 3. Then, the lcn of O,,
is 4 for 3 < m < 6 and 5 for otherwise.

Theorem 2
Len for subdivision outer edge of origami graphs for m > 3 is
4 for m = 3 and 5 for otherwise.

Based on two results, we are interested in more research
about another operation of origami graphs. We give a new
definition about certain operation of origami graphs. A cer-
tain operation of origami graphs, denoted by HO,,, is obtained
from two origami graphs linked a path, u; to u,,4;, for each
j€l,m].

2 Results and Discussions

In this section, we discuss the locating chromatic number of
a specific operation of origami graphs which we state in one
grand theorem.

Theorem 3

Let HO,, be a certain operation of origami graph for m > 3.
Then the locating-chromatic number of HO,,,, xr(HO,,), is
5 for m = 3 and 6 for otherwise.

The Locating Chromatic Number for Certain Operation of Origami Graphs

Proof : To prove this theorem, we divide two cases:
CASE1l.m =3

First, we determine the lower bound of xr(HO3). A certain
operation of origami graph HOj3 contains two cliques, then
by Theorem 1, we have x.(HO,,) > 4. Suppose c is a
4-locating coloring of HOs. Without loss of generality,

we assign {c(u;),c(v;), c(wy),c(ujin)} = {1,2,3,4}.
Since HOs3 containing two origami graphs Os. Then there
is c(u;) = c(wy) for j # 1, a contrary. As a result,
XL(HOm) >5

Next, we determine the upper bound of x1,(O3). We assign
coloring r using 5 colors like this,
4, forj=1;
3, forj =2
2, forj=3.
2, for j = 2;
forj =1,3.

r(u;) =

5, forj =1;
r(us4j) 1, forj=2;
3, forj =3.
{2, forj =1,3;
3, forj=2.
=4,7=1,2,3.

’U3+]

r(ws3y5)

The coloring r induces partition II and the color codes

of V(HOg) are: Tn(ul) = (171,1,0,1) TH(UQ) =
(1,1,0,1,2); rp(ug) = (1,0,1,1,2); rp(uqg) = (1,1,1,1,0);
rn(us) = (0,2,1,1,1); ro(us) = (1,1,0,1,1);
TH(vl) = (132707172); TH(U2) (1 0,1, 73)’ TH(UB) =
(1,1,0,2,3); rn(ve) = (2,0,2,1,1); ri(vs) = (1,3,0,1,2);
TH(’U(;) = (2,0,1,172); rn(wl) = (0,2,1,1,2);
ro(we) = (0,1,1,2,3); ro(ws) = (0,1,1,1,2);

= (1,2,1,0,2); rp(wg) =

7‘1‘1(11)4) = (1,1,2,0 1) T11 )
(2,1,1,0,1). Since the color codes of all vertices H Oj are dif-
ferent, thus  is a locating-chromatic coloring. So x . (HO3) <
5.

CASE2.m >4

First, we determine the lower bound for the lcn of cer-
tain operation origami graph HO,, for m > 4. The cer-
tain operation origami graph HO,, for m > 4 whose
two origami graphs O,,, then by Theorem 1, we have
XL(HO,,) > 5 for m > 4. Assume there is a 5-locating
coloring of HO,, for m > 4. Without loss of generality,
we assign {c(u;), c(vj), c(wy), c(ug1)), C(Umyjr)} =
{1,2,3,4,5}. Observe that HO,,, for m > 4 have m vertices
of degree 6, namely u;, j = 1,2,...,m. Then, at least two
vertices, u; and Ulm41) where [ # m + [ have the same color
code, a contrary. As aresults, x(HOg) > 6 for m > 4.

To show the upper bound for the lcn of certain operation
origami graphs HO,,, for m > 4. Let us differentiate some
subcases.

SUBCASE 2.1 (odd m)
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First, for odd [%], m > 5.

Let r be a coloring of certain operation origami graph HOm,

odd f%] ,m > 5 we make the partition IT of V(HO,,,)
* Ry ={w;|1 <j <m}.

* Ry = {uy| 0odd 5,3 < j < m} U {vj|evenj,2 <j <
m—1} U {upm1]|even j,2 < j <m—1} U {vy,4,| odd
J,1<j<m}.

* Ry = {uj|levenj,2 < j<m—1}U{v;|0dd j, 1 <
§<myU {upmyr|oddj,1 <j < [2] =2} U {up]
evenj,{ 142<j<m—2}U{vpq loddj,2 <)<

~1.
© Ry ={u;} U{wmy |l <j<m}.
d R5 = {Ugm}.

PR = (g}
The color codes of this partitions are:

* Rl = {wj\l S] Sm}
We have color codes are rrj(wy) = (0,2,1,1,3,[%]);
rn(wz) = (0,1,1,1,4,[2] + 1); for 3 < i <
(2] -1,m>9,rn(w;) = (0,1,1,3,j+2, [ 2] —j+1);
for[ 1<j<m—2,m>5ro(w;) =(0,1,1,3,m—

j+1,2,1-[2 }+2) form—1 < j < m,m > 5,
Tn(w]‘):(07171,m—j—|—1727 ’72—‘4'2)
* Ry = {uy| odd 5,3 < j < m} U {v;] even

§,2<ji<m—1}U{umyi|evenj2<j<m-—1}U
{vmj] 0dd j,1 < j <m}.

For3 < j < [Z],m > 9, ru(u;) = (1,0,1,2,5 +
1[2] —j+1); for [Z] < j < m=—2m > 5,
r(u;) = (1,0,1,2,m — j + 1,5 — [2] + 1); for
j=m ru(y) = (1,0,1,1,1,j — [%1 +1); for j = 2,
ru(vy) = (1,0,1,2,4, [2]); ford < j < [2] —1,m >
9, ru(v;)) = (1,0,1,3,5 + 2,[Z] — 1 + 2); for
(2] +1<j<m-—1,m>5ru(y)=(1,0,1,35—
1+2,5—[2]+ )for2<j<{g]—1m>5
r(um+j) = (2,0,1,1,4, [2] = 1);for [2] +1<j <
m—1,m > 5,rq(tums;) = (2011m—j]—|—ﬂ]);
for 1 < j < [Z] —2m > 5 ru(vms;) =
(3,0,1,1, 541, [2] —j+1);for [2] <j<m,m>5,

r(Umgj) = (3,0,1,1,m — j+ 1,1 — [2]).

* Ry = {uj| even 5,2 < j < m — 1} U {v;] odd
4,1 < j <m}U {umyr]|odd j,1 <j < [Z] -2} U
{tmy1] even j, [2] +2 < j < m — 2} U {vy4,] odd
172§J§m—1}

For j = 2, ru(u;) = (1,1,0,1,3,[2] — j + 1); for
4<j< 2 -1m =09 ro(u) = (1,1,0,2,5 +
] - J+1)for{%]+1§jgm—1m>5

i) = (1,1,0,2,m — j + 1,5 — [Z] +

(1,2,0,1,3,[%]—]'—&-2)fr3§]§

5h
S

(
1, ri(u;) =

[%W —-2,m > 9,rp(v;) = (1,1,0,3,5+2, (%W —j+2);
for [%W < j < m-2m > 5rmvy) =
(1,1,0,3,m — j + 2,j - [Z] +2); for j = m,
rn(v;) = (1,1,0,2 —[2]+2); for1 < j <
[%W 2,m =5, TH(Um-&-J) = (2,1,0,1,7, [*] J)s
for[ ]+2 <j<m-=-2m > 9 ru(tmt;) =
(2,1,0,1,m—j,j— [ ])for2§ S[%]fl,m>5,
ri(Umys) = (3,1,0,1,5 + 1,[2] — j 4+ 1); for
[%—‘4’1 < j < m-—1m > 5 ra(tmyj) =
(3,1,0,1,m—j+1,j—[Z]+1).

© Ry ={u;} U{wmi |l <j<m}.
For j = 1, ru(u;) = (1,1,1,0,2, [2]); for 1 < j <
[2] —1,m >5,ru(u;) = (3,1,1,0,5 + 1, [ 2] — 1);
fOI‘j - %]’ rn(wm-ﬁ-j) = (3,1,2,0,771 - jvl);
for [2] +1 < j < m—1m > 05,

I
.] =m, TH(wm-‘r]) (3a171a0a15j - {%

* Ry = {uam}

ri(usm) = (2,1,1,1,0,1,m — [ 2] +1).
. R6 = {'U/"H_"%"}

r(uzm) = (2,1,1,1,0,1,m — [2],0).

Next, for even (%1 m > 7.

Let r be a coloring of certain operation origami graph HO,,,,
even [ 2], m > 7 we make the partition IT of V/(HO,,):

® R1 Z{w]|1§j§m}

* Ry = {uj] 0odd j,3 < j < m} U {v;| even j,2 < j <
m— 1} U{um—i-1| €VCI1j,2 g ] S (%W *2} U {Um+l|
evenj, [2]4+2<j<m—1}U{vmyyl0ddj,1 <)<

* Ry = {u;|even j,2 < j < m —1} U {vj] odd j,1 <
J<m}U{umyjloddj,1 < j<m—2}U{vmq ] even
1<j<m—1}

hd R4 = {ul} U {wm+j|1 < j < m}

hd R5 = {UQm}.

° R6 = {um+[%-| }

The color codes of partitions are:

* Ry ={w;|1 <j<m}.
We have color codes are rrj(wy) = (0,2,1,1,3, [ 2] —
g+ Diforj =2 rm(ws) = (0,1,1,1,4,[ 5] —j+ 1)
for3<j<[Z]—1,m>7 ro(w;) =(0,1,1,3,5 +
2,[2] —j+Difor [2] < j<m-2m>T7,

TH(wj) = (0,171,3,77% - j + 17] - ’V%—I + 2)9
for m —j < j < mm > 7, rp(w;) =
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Ry = {uj| odd 5,3 < j < m} U {v;] even
§,2<j<m—1}U{ums1]|evenj, 2 <j < [%W—Q}
U {um+1| even .j’ [%-‘ +2 SJ <m-— 1} U {U7n+j| odd
J,1<j <mj.

For3<j<[2]-1,m>7ru(u)=(1,0,1,2,j+
L2l —j+Difor [Z]+1<j<m-2m>T,
rn(u;) = (1,0,1,2,m — j + 1,j — [2] + 1); for

j=m,ru(u;) = (1,0,1,1,1,5 — [2] + L)ifor j = 2,
rn(v;) = (1,0,1,2,4[2]); ford < j < [2] —2,m >
11, ru(v;) = (1,013]+2[%]—j+2); for

(Bl +1 < i < m—1m > 7, () =
(17071737m_j+2aj_ ’V%—I +2), for 2 S _] S

(2] —2,m > 7, ro(umyy) = (27071’1’j7 [%] N

TH(Uerj) = (3a0a1717j +
for{m]—i—l < 7 < mym 2

2

R3 = {uj] even 5,2 < j < m — 1} U {v;] odd
4,1 < j < m} U{umy | odd j,1 < j < m—2}U
{Vm4jlevenj, 1 <j<m—1}.

For j = 2, ro(u;) = (1,1,0,1,3,[%] — j + 1);
for 4 < j < (%w - 2,m > 11, rm(y;) =

Toro(u;) = (1,1,0,2,m — j + 1,5 — [2] + 1); for
i = 1 ra(v;) = (1,2,0,1,3,[2] — j + 2; for
3<i< 2 -1,m>7ruly) = (1,103, +
2,[Z2] —j+2for [Z]+1<i<m-2m2>7,
rn(v;) = (1,1,0,3,m — j+2,j — [2] + 2; for j =m
rn(v;) = (1,1,0,2,2,5 — [2] + 2, for 1 < j g
(2] - Lom > 7 ra(umyy) = (2,1,0,1,5, [2] = 4);
for {%]—l—l <j<m-=2m > 7 rm(umyj) =
(2,1,0,1,m—j,j—[2]);for2 < j < [Z]-2,m >7,
rn(vmys) = (3,1,0,1,5 + 1,[Z] — j + 1)
for [2] < j < m—1m > 7, ru(vmyy) =
(3,1,0,1,m—j+1,5—[Z]+1).

Ry = {ur} U{wpy 1 <j<m}

for j = 1, rn(u;) = (1,1,1,0,2,[2]); for 1 < j <
(2] =1,m > T u(wmyy) = (3,1,1,0,j+1, [2] =)
for j = [2], en(wms;) = (3,1,2,0,m — 3,1);
for [2] +1 < j < m—1m > T,
TH(wWth) = (3,1,1,077’)1 - ]7.7 - {%] + 1), for
j=m,ra(wnty) = (3,1,1,0,1,5 — [2] +1)

bl

R5 = {'LLQm}.
ro(uzm) = (2,1,1,1,0,n — [2]).

Fo = {mrg1h

(2,1,2,1,m — [%2],0).

(i [g) =

SUBCASE 2.2 (even m)

Forodd [2],m > 4.
Let 7 be a coloring of certain operation origami graph HO,,,,

odd

(%W , m > 4 we make the partition IT of V(HO,,) and

color codes:

Ry =A{w;[2<j <m}.

for 2 < j < gl,m > 6, ro(w;)) =
(0,1,1,3,5, % — 1+ 2); for +1<]<mm>6
Tn(wj):(O,l,l,?),m—j—i—Q] T 1)

Ry
7,2
U {tmy1| even j, 3

{ujl odd j, 1 < j < m — 1} U {v;] even
j < m} U {tmga| even j,1 < j < 3 —1}
+3 < i < m} U {vpy ] odd

IA I

for j = 1, ro(y;) = (1,0,1,2,1,% + 1); for
3<j<F,m>6,rn(u;) =(1,0,1,2, j—l,% 1+2);
for @ +2 < j < m—1m > 6, ru(u;) =
(1,0,1,2,m—j+2,j—5);for2 <j <% —1,m>6,
rn(vy) = (1,0,1,3,5, % —m +3); for F +1 < j <
m,m > 6, rn(v;) = (1,0,1,3, m7]+3’]7%+1);
for 2 < j < B —1m > 6, rn(umyj) =
(2,0,1,1,5,% — j + 1); for m+3<j§n,n26,
ern(unti) =(2,0,1,1,n —i+3,i — j);forj =1,
cr(Vm+j) = (3,0,1,1,3, 5 +1); f0r3<j< ,m > 6,
i1 (Umgs) = (3,0,1, 1,41, —j+2); for 243 < j <
m—1,m>6,rn(vm+;) = (3,0,1,1,m— ]+4 J—%).
Rs = {uj|l even j, 2 < j < m} U {v;| odd

j71 Sjgm*l}u{um+l|0dd]’7]— S]SM*].}U
{Um+j even j,2 < j < m}.

For 2 < j < % —1m > 6, ru(uy;) =
(1,1,0,2,5 —1,% — j +2); for——|—1<j<mm>6
ro(u;) = (1,1,0,2,m —j—|—2j——) for j 1,

(u; -
TH(UJ'):(ZLa 1%+2) for3 <j <m-— 1m2
(] (’70777m ]+3)f0r7n+2§]§
m_-lvaGer(v])—(7 03m—jj—%+)
for j = 1, ro(um+,) = (2,

Zrom > 6, ri(Umgs) = (2
FH+2<jij<m—-1,m>6,7 n(um+j)
J+3]———1)
1 (Vmaj) =

—_

R4:{’w]|1§j§m}

For j = 1, r(wms;) = (3,1,1
2,m > 6, Tn(wm_;,_]) = (3,1,1
for j = 5 + 1, rn(wm+s) =
for%—i—? < 7 < mm >
(3,1,1,00m —1+3,5 — F).
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d R5 = {wl}
TH(wl) = (2717 133507 % + 1)

® R6 = {wm+%+1}.
Tn(w7n+%+1) = (2, 2,1,1, % + 1,0).

Next, for even [2], m > 4.
Let 7 be a coloring of certain operation origami graph HO,,,,
even [2], m > 4 we make the partition II of V(HO,,) and

color codes:

°R1:{wj\2§]§m}

for 2 < j < Bm > 4, ro(w,) =
(0,1,1,3,7,2 —j+2,)i for 2 +1 < j < m,m > 4,
rn(w;) = (0,1,1,3,m — 7,5 +1).

* Ry = {uj| odd j,1 < j < m — 1} U {v;| even
7,2 < i <m} U {ums1|even ,2 < j < m} U {vmjl
forodd j,1 <j<m—1}.
For j = 1, ro(y;) = (1,0,1,2,1,% + 1); for
3<j<g,m28rn(y)=(1,012,j-1%5 ;
forj =2+ 1, ru(u;) = (1,0,1,2, 2, 1); for 2 +3 <

jgm—l,mz&rn(uj):(1,0,1,227m—1+2, LOR
for2 <j <% ,m>4,rn(vy) =(2,0,1,1,5, F—j+1);
for % + 2 < J < m,m > 47 Tﬂ(um-&-]) =
(2,0,1,1,m—j+3,j—F —1);forj = 1, rn(vmj) =
(3,0,1,1,3,% +1); for 3 < j < B —1,m > 8,
1 (Vmaj) = (3,0, 1, 1,5+ 1, % —j+2);forj = F +1,
i (Umes) = (3,0,1,1,% 4 2,1); for F +3 < j <

« Ry = {uj| even j,2 < j < m} U {v;] odd

G 1<j<m—1} U {umsr]odd j,1 < j <2 -1}
U {tmi1] odd 7,2 +3 < 5 <™ — 1} U {v,4;| even

7,2 <j<n}h

For2 < j < %,m > 4, TH(U’J) = (1,1,0,2,5
B -+ 2y for B 4+2 < 5 < mm > 4,
ru(u;) = (1,1,0,2,m — j + 2,5 — &); for j = 1,
r(v;) = (2,1,0,3,1,242); for3 < j < Z—1,m > 8,
rn(v;) = (1,1,0,3,5,% — j 4+ 3); for j = 2 +1,
ru(v;) = (1,1,0,3,% + 1,2); for B +3 < j <
m—1,m > 8,rn(v;) = (1,1,0,3,m—j+3,j— 5 +1);
for j = 1, ri(um4;) = (2,1,0,1,2,2); for 3 < j <
T —=1m > 8 ru(uny) = (2,1,0,1,5,% —j+1);
for & +3 < j < m—1m > 8 ru(umys) =
(2,1,0,1,m—j+3,j— % —1);for2 < j < T ,m>4,
r(vmes) = (3,1,0,1,j +1,% — 1+ 2); for 2 +2 <
jg<m,m>4,rq(vmyj) = (3,1,0,1,m—j+4,5—-3).

* R4 = {wm+j|1 S] S m}
for j = 1, rn(wm4j) = (3,1,1,0,3, % <
%7m > 4, TH(wm+j) = (37171a0»j + lvm _j +1);
for j = 3+ 1, rn(wmy;) = (3,1 + 2,1
for 42 < j < mm > 4, ran(Wnyj

(3717170am_j+37j_%)'

* R5 = {wl}.
ru(wr) = (2,1,1,3,0, % + 2).

* Rg = {umtmi1}.
Tn(um+%+1) = (2, 1,2, 1, % + 2,0)

Since for m even all vertices have different color codes, r
is a locating coloring for certain operation of origami graphs
HO,y,, so that x.(HO,,) < 6, for % even, m > 4. The proof
of this theorem is complete. [

Figure 1 shows an example of locating chromatic number
for certain operations of origami graph H 03 using five colors.

5N 475

]

Figure 1. A minimum locating coloring of HO3

3 Conclusions

The result obtained from this discussion is x1(HO,,) =
XL(Om) + 1. The result is such because HO,, contains
two origami graphs O,,. Therefore, research to determine
the effects of other operations of origami graphs is interesting
follow-up research.
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