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Abstract.  The locating chromatic number of a graph is the minimal color required 

so that it qualifies for a locating coloring. In this paper we will discuss about the 

locating chromatic number of barbell graph; where both of them contain a complete 

graph Kn or Petersen graph Pn,1 for n ≥ 3. 

 

Keyword: locating chromatic number, barbell graph, complete graph, Petersen 

graph. 

 

 

1. Introduction 

 

The partition dimension was introduced by Chartrand et al. [5] as the development 

of the concept of metric dimension. The application of metric dimension plays a 

role in robotic navigation [11], the optimization of threat detecting sensors [10], 

chemical data classification [8]. The concept of locating chromatic number is a 

marriage between the partition dimension and coloring of a graph, first introduced  

by Chartrand et al in 2002 [6]. The locating chromatic number of a graph is a newly 

interesting topic to study because there is no general theorem for determining the 

locating chromatic number of any graph. 

 

Consider  as the given connected graph and  as the proper coloring of 

 using k colors  for some positive integer k. We denote  

as the partition of , where 𝐶𝑖 is the color class, i.e the set of vertices that given 

the i-th color, for . For an arbitrary vertex v  V(G), the color code  is 

defined as the ordered -tuple 

𝑐𝜋(𝑣) = (𝑑(𝑣, 𝐶1), 𝑑(𝑣, 𝐶2), … , 𝑑(𝑣, 𝐶𝑘)), 

 where for . If for every two vertices u,v  

V(G), their color codes are different, 𝑐𝜋(𝑢) ≠  𝑐𝜋(𝑣), then c is defined as the 

locating coloring of using k colors. The locating chromatic number of G, denoted 

by 𝜒𝐿(𝐺), is the minimum k such that G has a locating coloring.  

 

The following theorem is a basic theorem about the locating chromatic number of 

a graph, proven by Chartrand et al. [6]. The neighborhood of vertex s in a connected 

graph G, denoted by N(s), is the set of vertices adjacent to s. 

( , )G V E c

G 1,2, ,k
1 2{ , ,..., }kC C C 

( )V G

 1,i k ( )c v

k

( , ) min{ ( , ) | }i id v C d v x x C   1,i k

G
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Theorem 1.1 [6]   Let  be a locating coloring in a connected graph . If  and 

 are distinct vertices of  such that  for all , then 

. In particular, if  and  are non-adjacent vertices of  such that 

, then . 

 

The following corollary gives the lower bound of the locating chromatic number 

for every connected graph G.  

Corollary  1.1 [6] If  𝐺 is a connected graph and there is a vertex adjacent to 𝑘 

leaves, then  𝜒𝐿(𝐺) ≥ 𝑘 + 1. 

There are some interesting results related to the determination of the locating 

chromatic number of some graphs. The results are obtained by focusing on some 

certain graph classes. Chartrand et al. [7] has successed in constructing tree on n 

vertices, 𝑛 ≥ 5 with locating chromatic numbers varying from 3 to n, except for  

(𝑛 − 1). Then Behtoei and Omoomi [4] have obtained the locating chromatic 

number of the Kneser graph. Recently, Asmiati et al.[1] obtained the locating 

chromatic number of Petersen Graph, Pn,1, for n ≥ 3.   

 

There are some recent results for some special cases of trees as follows. Asmiati et 

al. [3] has successed in determining the locating chromatic number of homogeneous  

amalgamation of stars and their monotonicity properties and Asmiati et al. [2] for 

firecracker graphs. Next, Des Wellyyanti et al.[9] determined the locating 

chromatic number for complete n-ary tree.  

 

The following definition of Petersen graph is taken from [1]. Let {𝑢1, 𝑢2, … , 𝑢𝑛 } be 

the set of vertices in the outer cycle and {𝑣1, 𝑣2, … , 𝑣𝑛} be the set of vertices in the 

inner cycle, for n ≥ 3. From the definition, we have that the Petersen graph, denoted 

by 𝑃𝑛,𝑘 , for n ≥ 3 and 1 ≤ 𝑘 ≤ ⌊
𝑛−1

2
⌋, has 2𝑛 vertices and 3n edges.  

 

Theorem 1.2 and Theorem 1.3 gave the locating chromatic numbers for complete 

graph and Petersen graph.  

  

Theorem 1.2 [7] 

For n ≥ 2, the locating chromatic number of complete graph Kn is n.  

 

 

 

Theorem 1.3 [1] 

The locating chromatic number of Petersen Graph  𝑃𝑛,1 is 4 for odd 𝑛 ≥ 3 or 5 for 

even 𝑛 ≥ 4. 

 

The barbell graph is constructed by connecting two arbitrary connected graphs G 

and H by a bridge. In this paper, firstly we discuss the locating chromatic number 

of barbell graph Bm,n for  m,n ≥ 3, where G and H are two copies of complete graph 

on m and n vertices, Km and Kn, respectively. If m = n, we denote the barbell graph 

by Bn,n. Secondly, we obtain the locating chromatic number of barbell graph 𝐵𝑃𝑛,1
 

for  n ≥ 3, where G and H are two copies of Petersen graphs 𝑃𝑛,1 .  

c G s

t G ( , ) ( , )d s u d t u ( ) { , }u V G s t 

( ) ( )c s c t s t G

( ) ( )N s N t ( ) ( )c s c t



 

 

2. Results and Discussion 

 

Theorem 2.1 

The locating chromatic number of Barbell Graph Bn,n is  𝑛 + 1, for 𝑛 ≥ 3. 

 

Proof: 

First, we determine the lower bound of the locating chromatic number for barbell 

graph 𝐵𝑛,𝑛 for 𝑛 ≥ 3. Since the barbell graph 𝐵𝑛,𝑛 contains the complete graph 𝐾𝑛, 

then by Theorem 1.2, we have 
𝐿

(𝐵𝑛,𝑛) ≥ 𝑛. Next, suppose that 𝑐 is the locating 

coloring using 𝑛 colors. It is clear that there are two vertices have the same color 

codes, a contrary. Thus, we have that 
𝐿

(𝐵𝑛,𝑛) ≥ 𝑛 + 1. 

 

Next, we construct the upper bound of the locating chromatic number for barbell 

graph 𝐵𝑛,𝑛. The set of vertices of the first complete graph is denoted by 𝑉(𝐾𝑛
1) =

{ 𝑢𝑖;  𝑖 ∈ [1, 𝑛]}, whereas the set of vertices of the second complete graph is denoted 

by 𝑉(𝐾𝑛
2) = { 𝑣𝑖;  𝑖 ∈ [1, 𝑛]}. 

 

Let c be a coloring on 𝐵𝑛,𝑛  using 𝑛 + 1 colors. We assign the following colors 

of 𝑉(𝐵𝑛,𝑛): 

 

𝑐(𝑢𝑖) = 𝑖  ; 1 ≤ 𝑖 ≤ 𝑛 

 

 𝑖 , 2 ≤ 𝑖 ≤ 𝑛 − 1; 

𝑐(𝑣𝑖) = 𝑛 , 𝑖 = 1; 

 𝑛 + 1 , otherwise. 
 

By using this coloring, we obtain the color codes of  𝑉(𝐵𝑛,𝑛) as follows. 

 

 0 , (i)th − component for  1 ≤ 𝑖 ≤ 𝑛; 

𝑐Π(𝑢𝑖) = 2 , (n + 1)th − component  for  1 ≤ 𝑖 ≤ 𝑛 − 1; 

 1 , otherwise. 

 

 

 

 0 , (i)th −  component for  2 ≤ 𝑖 ≤ 𝑛 − 1, or 

    (n)th −  component for  𝑖 = 1, or 

    (𝑛 + 1) − component for  𝑖 = 𝑛; 

𝑐Π(𝑣𝑖) = 

 3 , (1)st − component for  1 ≤ 𝑖 ≤ 𝑛 − 1; 
 2 , (1)st − component for  𝑖 = 𝑛; 

 1 ,  otherwise. 

 

Since all vertices on 𝑉(𝐵𝑛,𝑛) have distinct color codes, then c is a locating coloring. 

Thus, 
𝐿

(𝐵𝑛,𝑛) ≤ 𝑛 + 1. 



 

 

The following figure is a minimum locating coloring of barbell graph 𝐵6,6. 

 

 

 

 

 

 

 

 

 

 

Figure 1.  A minimum locating coloring of barbell graph  𝐵6,6 

 

The following Corollary 2.2 is the direct consequence of Theorem 2.1. 

 

Corollary 2.2 

For 𝑛, 𝑚 ≥ 3 and 𝑚 ≠ 𝑛, the locating chromatic number of barbell graph 𝐵𝑚,𝑛 is  

𝜒𝐿(𝐵𝑚,𝑛) = 𝑚𝑎𝑥 {𝑛, 𝑚}. 

 

Theorem 2.3 

For 𝑛 ≥ 3, the locating chromatic number of barbell graph 𝐵𝑃𝑛,1
is  

𝜒𝐿(𝐵𝑃𝑛.1
) = {

4, 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛
5, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛

. 

 

Proof. To prove this theorem, we consider two cases as follows. 

Case 1.  
𝐿

(𝐵𝑃𝑛,1
) = 4, for odd  𝑛. 

Since the barbell graph 𝐵𝑃𝑛,1
 contains Petersen Graph 𝑃𝑛,1 for odd 𝑛, then by 

Theorem 1.3, we have  
𝐿

(𝐵𝑃𝑛,1
) ≥ 4. 

 

Next, we determine the upper bound of the locating chromatic number of 𝐵𝑃𝑛,1
.  For 

odd 𝑛,  let { 𝑢𝑖, 𝑢𝑛+𝑖 ;  𝑖 ∈ [1, 𝑛]} be the set of vertices of the first Petersen Graph 

and  {𝑤𝑖, 𝑤𝑛+𝑖 ;  𝑖 ∈ [1, 𝑛]} be the set of vertices of the second Petersen Graph. 

 

Let c be a coloring of  𝑉(𝐵𝑃𝑛,1 )  using 4 colors, defined as follows: 

 

 1 , 𝑖 = 1; 

𝑐(𝑢𝑖) = 3 , for even i, 𝑖 ≥ 2; 

 4 , for odd i, 𝑖 ≥ 3. 

 

 

 2 , 𝑖 = 1; 

𝑐(𝑢𝑛+𝑖) = 3 , 𝑓𝑜𝑟 odd 𝑖 ≥ 3; 

 4 , for even 𝑖 ≥ 2. 

 

1 

  

  

  

    

2 

3 

4 5 

6 7 

6 2 

3 

4 5 



 1 , odd 𝑖 < 𝑛 − 1; 

𝑐(𝑤𝑖) = 2 , even 𝑖 ≤ 𝑛 − 1; 

 3 , 𝑖 = n. 

 

 1 , even 𝑖 ≤ 𝑛 − 1; 

𝑐(𝑤𝑛+𝑖) = 2 , odd 𝑖 < 𝑛 − 1; 

 4 , 𝑖 = 𝑛. 

 

 

The color codes of  𝑉(𝐵𝑃𝑛,1
) for odd 𝑛  are: 

 

 𝑖 , (2)nd − component for  𝑖 ≤
𝑛+1

2
 ; 

 𝑖 − 1 , (1)st − component for 𝑖 ≤
𝑛+1

2
 ; 

 𝑛 − 𝑖 + 1 , (1)st − component for  𝑖 >
𝑛+1

2
 . 

𝑐Π(𝑢𝑖) = 

 𝑛 − 𝑖 + 2 , (2)nd − component  𝑖 >
𝑛+1

2
 ; 

 0 , (3)th − component for even  𝑖 ≥ 2 ; 

    (4)th − component for odd  𝑖 > 2 ; 

 1 ,  otherwise. 

 

 𝑖 , (1)st − component for 𝑖 ≤
𝑛+1

2
 ; 

 𝑖 − 1 , (2)nd − component for  𝑖 ≤
𝑛+1

2
 ; 

 𝑛 − 𝑖 + 1 , (2)nd − component for  𝑖 >
𝑛+1

2
 . 

𝑐Π(𝑢𝑛+𝑖) = 

 𝑛 − 𝑖 + 2 , (1)st − component for  𝑖 >
𝑛+1

2
 ; 

 0 , (4)th − component for  even  ≥ 2 ; 

    (3)th − component for odd  𝑖 ≥ 2 ; 

 1 ,  otherwise. 

 

 

 𝑖 , (3)th − component for  𝑖 ≤
𝑛−1

2
 ; 

 𝑖 + 1 , (4)th − component for  𝑖 ≤
𝑛−1

2
 ; 

 𝑛 − 𝑖 , (3)th − component for  𝑖 ≥
𝑛+1

2
 . 

𝑐Π(𝑤𝑖) = 

 𝑛 − 𝑖 + 1 , (4)th − component for 𝑖 ≥
𝑛+1

2
 ; 

 0 , (2)nd − component for even  𝑖 ≤ 𝑛 − 1; 

    (1)st − component for odd  𝑖 ≤ 𝑛 − 1; 

 1 , otherwise. 

 

 

 

 



 𝑖 , (4)th − component for  𝑖 ≤
𝑛−1

2
 ; 

 𝑖 + 1 , (3)th − component for 𝑖 ≤
𝑛−1

2
 ; 

 𝑛 − 𝑖 , (4)th − component for  𝑖 ≥
𝑛+1

2
 ; 

𝑐Π(𝑤𝑛+𝑖) = 

 𝑛 − 𝑖 + 1 , (3)th − component for  𝑖 ≥
𝑛+1

2
 ; 

 0 , (1)th − component for even  𝑖 ≤ 𝑛 − 1 ; 

    (2)th − component for odd  𝑖 ≤ 𝑛 − 1 ; 

 1 ; otherwise. 

 

Since all vertices on 𝑉(𝐵𝑃𝑛,1
) have distinct color codes, then c is a locating coloring.  

As the result, we have that 
𝐿

(𝐵𝑃𝑛,1
) ≤ 4. 

 

Case 2.  
𝐿

(𝐵𝑃𝑛,1
) = 5, for even 𝑛. 

Since the barbell graph 𝐵𝑃𝑛,1
 contains Petersen Graph 𝑃𝑛,1 for even 𝑛, then by 

Theorem 1.3, we have  
𝐿

(𝐵𝑃𝑛,1
) ≥ 5. 

 

Next, we determine the upper bound of the locating chromatic number of  𝐵𝑃𝑛,1
 for 

even n. Let c be a coloring of 𝐵𝑃𝑛,1
 using 5 colors as follows:  

 

 1 , 𝑖 = 1; 

 3 , even 2 ≤ 𝑖 ≤ 𝑛 − 1; 

𝑐(𝑢𝑖) = 

 4 , odd 2 < 𝑖 ≤ 𝑛 − 1; 

 5 , 𝑖 = 𝑛 . 

 

 2 , 𝑖 = 1; 

𝑐(𝑢𝑛+𝑖) = 3 , odd 𝑖 > 2 ; 

 4 , even 𝑖 ≥ 2 ; 

 

 

 1 , odd 𝑖 ≤ 𝑛 − 2 ; 

 2 , even 𝑖 ≤ 𝑛 − 2. 

𝑐(𝑤𝑖) = 

 3 , 𝑖 = 𝑛 − 1; 

 4 , 𝑖 = 𝑛. 

 

 1 , even 𝑖 ≤ 𝑛 − 1; 

𝑐(𝑤𝑛+𝑖) = 2 , odd 𝑖 ≤ 𝑛 − 1 ; 

 5 , 𝑖 = 𝑛. 

 

The color codes of  𝑉(𝐵𝑃𝑛,1
) for even 𝑛  are: 

 

 



 𝑖 , (2)nd, (5)th − component for  𝑖 ≤
𝑛

2
 ; 

 𝑖 − 1 , (1)st − component for  𝑖 ≤
𝑛

2
 ; 

 𝑛 − 𝑖 , (5)th − component for  𝑖 >
𝑛

2
 ; 

 𝑛 − 𝑖 + 1 , (1)st − component for 𝑖 >
𝑛

2
 ; 

𝑐Π(𝑢𝑖) = 𝑛 − 𝑖 + 2 , (2)nd − component for 𝑖 >
𝑛

2
 ; 

 0 , (3)th − component for even 2 ≤ 𝑖 ≤ 𝑛 − 1; 

    (4)th − component for odd  2 < 𝑖 ≤ 𝑛 − 1; 

 2 , (4)th − component for 𝑖 = 1; 

    (3)th − component for 𝑖 = 𝑛; 

 1 , otherwise. 

 

 

 𝑖 , (1)st − component for  𝑖 ≤
𝑛

2
 ; 

 𝑖 − 1 , (2)nd − component for  𝑖 ≤
𝑛

2
 ; 

 𝑖 + 1 , (5)th − component for  𝑖 ≤
𝑛

2
 ; 

 𝑛 − 𝑖 + 1 , (2)nd and (5) − components for 𝑖 >
𝑛

2
 ; 

𝑐Π(𝑢𝑛+𝑖) = 

 𝑛 − 𝑖 + 2 , (1)th − component for  𝑖 >
𝑛

2
 ; 

 0 , (3)th − component for odd  2 ≤ 𝑖 ≤ 𝑛; 

    (4)th − component for even  2 ≤ 𝑖 ≤ 𝑛; 

 2 , (3)th − component for 𝑖 = 1; 

 1 ,  otherwise. 

 

 

 𝑖 , (4)th − component for  𝑖 ≤
𝑛

2
 ; 

 𝑖 + 1 , (5)th − component for  𝑖 ≤
𝑛

2
 ; 

    (3)th − component for  𝑖 ≤ (
𝑛

2
) − 1; 

 𝑛 − 𝑖 , (4)th − component for  𝑖 >
𝑛

2
 ; 

 𝑛 − 𝑖 + 1 , (5)th − component for  𝑖 >
𝑛

2
 . 

𝑐Π(𝑤𝑖) = 

 𝑛 − 𝑖 − 1 , (3)th − component for  
𝑛

2
≤ 𝑖 ≤ 𝑛 − 1; 

 0 , (1)st − component for odd 𝑖 ≤ 𝑛 − 2; 

    (2)nd − component for  odd  𝑖 ≤ 𝑛 − 2; 

 2 , (1)st − component for 𝑖 = 𝑛 − 1; 

    (2)nd − component for 𝑖 = 𝑛; 

 1 , otherwise. 

 

 

 

 

 



 𝑖 , (5)th − component for 𝑖 ≤
𝑛

2
 ; 

 𝑖 + 1 , (4)th − component for  𝑖 ≤
𝑛

2
 ; 

 𝑖 + 2 , (3)th − component for  𝑖 ≤ (
𝑛

2
) − 1; 

 𝑛 − 𝑖 , (3)th − component for   
𝑛

2
≤ 𝑖 ≤ 𝑛 − 1; 

𝑐Π(𝑤𝑛+𝑖) =    (5)th − component for 𝑖 >
𝑛

2
 ; 

 𝑛 − 𝑖 + 1 , (4)th − component for  𝑖 >
𝑛

2
 ; 

 0 , (1)th − component for even  𝑖 ≤ 𝑛 − 1; 

    (2)th − component for odd  𝑖 ≤ 𝑛 − 1; 

 2 ,  (1)st and  (3)th − component for  𝑖 = 𝑛; 

 1 , otherwise. 

 

Since all vertices have distinct color codes on 𝑉(𝐵𝑃𝑛,1
) for even 𝑛, then c is a 

locating coloring. Thus, we have that 
𝐿

(𝐵𝑃𝑛,1
) ≤ 5. 

 

The following figure is a minimum locating coloring of barbell graph  𝐵𝑃5,1
. 

 

 

 

 

 

 

 

 

Figure 2.  A minimum locating coloring of 𝐵𝑃5,1
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REFEREE’S REPORT

on the paper 5327504

Title : On the locating chromatic number of some barbell graphs

Authors: Asmiati, I Ketut Sadha Gunce Yana and Lyra Yulianti

The locating chromatic number of a graph G is defined as the cardinality of a
minimum resolving partition of the vertex set V (G) such that all vertices have
distinct coordinates with respect to this partition and every two adjacent vertices
in G are not contained in the same partition class. In this case, the coordinate
of a vertex v in G is expressed in terms of the distances of v to all partition
classes. This concept is a special case of the graph partition dimension notion.
In the present paper the authors investigate the locating chromatic number for
two families of barbell graphs.

The topic is actual and the results are interesting. Due to the fact that no general
theorem for determining the locating chromatic number of graphs is known, it
make sense to investigate the locating chromatic number for families of graphs.

The present version of the paper is not prepared carefully and contains several
incorrectness and formal mistakes.
Therefore I do not recommend the publication of the paper as it is. A revised
version of the paper prepared by the comments below can be accepted for pub-
lication.

Comments:

Page 1, title: write ”certain” instead ”some”

Page 1: Rewrite Abstract with using the definition on locating coloring.

Page 2, after Corollary 1.1: Complete information of the paper [Baskoro, E.T.,
Asmiati, Characterizing all trees with locating-chromatic number 3, Electronic
Journal of Graph Theory and Applications 1(2) (2013), pp. 109-117.], where are
characterized all trees with locating-chromatic number 3.

Page 2, Petersen graph: The Petersen graph contains only 10 vertices and 15
edges. You want to consider the generalized Petersen graph P (n,m) with 2n
vertices and 3n edges which was introduced in [Watkins, M.E., A theorem on
Tait colorings with an application to the generalized Petersen graphs, J. Combin.
Theory 6 (1969), pp. 152-164.]

Page 2, Theorem 1.3: complete ”generalized” before ”Petersen”
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Page 2, line -4: after m,n ≥ 3 write ”where G and H are complete graphs on m
and n vertices, respectively.”

Page 3, Proof of Theorem 2.1 start as follows: Let Bn,n, n ≥ 3, be the barbell
graph with the vertex set V (Bn,n) = {ui, vi : 1 ≤ i ≤ n} and the edge set

E(Bn,n) =
n−1⋃
i=1

{uiui+j : 1 ≤ j ≤ n− i} ∪
n−1⋃
i=1

{vivi+j : 1 ≤ j ≤ n− i} ∪ {unvn}.

Page 3, in the proof of Theorem 2.1 and also in the proof of Theorem 2.3: use
”ith” instead ”(i)th”

Page 4, Corollary 2.2: ”max{n,m}” should be ”max{n,m}+ 1”

Page 5, line 1 and line 5: ”i < n− 1” change for ”i ≤ n− 2”

Page 5, line 13: ”i > 2” change for ”i ≥ 3”

Page 5, line -2 and on page 6, lines 6 and 16: ”i ≤ n− 1” change for ”i ≤ n− 2”

Page 7, line 16: write ”3 ≤ i ≤ n− 1” instead ”2 ≤ i ≤ n”

Page 7, line -5: ”i ≤ n− 2” change for ”i ≤ n− 3”

Page 7, line -4: write ”for even i ≤ n− 2” instead ”for odd i ≤ n− 2”

Page 8, line 7: ”i ≤ n− 1” change for ”i ≤ n− 2”



REFEREE’S REPORT

on the revised version of the paper 5327504.v2

Title : On the locating chromatic number of certain barbell graphs

Authors: Asmiati, I Ketut Sadha Gunce Yana and Lyra Yulianti

Again the revised version of the paper is not prepared carefully and the authors
did not accept all suggestions and recommendations given in the referee’s report.
Therefore I do not recommend the publication of the paper as it is. A revised
version of the paper prepared by the comments below can be accepted for pub-
lication.

Comments:

Page 1, Abstract rewrite by the following way: The locating chromatic number
of a graph G is defined as the cardinality of a minimum resolving partition of
the vertex set V (G) such that all vertices have distinct coordinates with respect
to this partition and every two adjacent vertices in G are not contained in the
same partition class. In this case, the coordinate of a vertex v in G is expressed
in terms of the distances of v to all partition classes. This concept is a special
case of the graph partition dimension notion.
In this paper we investigate the locating chromatic number for two families of
barbell graphs.

Page 1, lines from -1 to -6 and on page 2 lines from 1 up to 7 - rewrite by the
following way: Let G = (V,E) be a connected graph. We define the distance as
the minimum length of path connecting vertices u and v in G, denoted by d(u, v).
A k-coloring of G is a function c : V (G) → {1, 2, . . . , k} where c(u) 6= c(v) for
any two adjacent vertices u and v in G. Thus, the coloring c induces a partition
Π of V (G) into k color classes (independent sets) C1, C2, . . . , Ck where Ci is the
set of all vertices colored by the color i for 1 ≤ i ≤ k. The color code cΠ(v) of
a vertex v in G is defined as the k-vector (d(v, C1), d(v, C2), . . . , d(v, Ck)) where
d(v, Ci) = min{d(v, x) : x ∈ Ci} for 1 ≤ i ≤ k. The k-coloring c of G such
that all vertices have different color codes is called a locating coloring of G. The
locating chromatic number of G, denoted by χL(G), is the minimum k such that
G has a locating coloring.
The following theorem is a basic theorem proved by Chartrand et al. in [8]. The
neighborhood of vertex s in a connected graph G, denoted by N(s), is the set of
vertices adjacent to s.

Page 2, the text after Corollary 1.1 until Theorem 1.2. rewrite by the follow-
ing way: There are some interesting results related to the determination of the
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locating chromatic number of some graphs. The results are obtained by focus-
ing on certain families of graphs. Chartrand, et al. in [8] have determined all
graphs of order n with locating chromatic number n, namely a complete mul-
tipartite graphs of n vertices. Moreover, Chartrand et al. [9] have succeeded
in constructing trees on n vertices, n ≥ 5, with locating chromatic numbers
varying from 3 to n, except for (n− 1). Then Behtoei and Omoomi [6] have ob-
tained the locating chromatic number of the Kneser graphs. Recently, Asmiati
et al. [1] obtained the locating chromatic number of the generalized Petersen
graph P (n, 1) for n ≥ 3. Baskoro and Asmiati [5] have characterized all trees
with locating-chromatic number 3. In [Syofyan, D.K., Baskoro, E.T., Assiyatun,
H., Trees with Certain Locating-Chromatic Number, J. Math. Fund. Sci. 48(1)
(2016), pp. 39-47] were characterized all trees of order n with locating chromatic
number n− t, for any integers n and t, where n > t+ 3 and 2 ≤ t < n

2 . Asmiati
et al. in [4] have succeeded in determining the locating chromatic number of
homogeneous amalgamation of stars and their monotonicity properties and in
[2] for firecracker graphs. Next, Wellyyanti et al. [11] determined the locating
chromatic number for complete n-ary trees.
The generalized Petersen graph P (n,m), n ≥ 3 and 1 ≤ m ≤ b(n− 1)/2c,
consists of an outer n-cycle y1, y2, . . . , yn, a set of n spokes yixi, 1 ≤ i ≤ n, and n
edges xixi+m, 1 ≤ i ≤ n, with indices taken modulo n. The generalized Petersen
graph was introduced by Watkins in [14]. Let us note that the generalized
Petersen graph P (n, 1) is a prism defined as Cartesian product of a cycle Cn

and a path P2.
Next theorems give the locating chromatic numbers for complete graph Kn and
generalized Petersen graph P (n, 1).

Page 2 and several times later: The generalized Petersen graph defined by
Watkins has notation P (n,m). Therefore change ”Pn,1” for ”P (n, 1)” or use
notation Dn = Pn�P2 as for prism.

Page 3, line 13: write ”of the generalized Petersen graph P (n, 1)” instead of ”of
generalized Petersen graphs Pn,1”

Page 3, Theorem 2.1. rewrite as follows: Next theorem proves the exact value
of the locating chromatic number for barbell graph Bn,n.
Theorem 2.1. Let Bn,n be a barbell graph for n ≥ 3. Then the locating
chromatic number of Bn,n is χL(Bn,n) = n+ 1.

Page 3, lines -10 and -11: The sentence ”Next, suppose that ...” replace by
”Next, suppose that c is a locating coloring using n colors. It is easy to see that
the barbell graph Bn,n contains two vertices with the same color codes, which
is a contradiction.”

Page 3, lines -2, -3 and -4: The labeling c(vi) and also all other labelings write



by the following way

c(vi) =


n, for i = 1

i, for 2 ≤ i ≤ n− 1

n+ 1, otherwise.

Page 4 lines from -1 to -4 and on page 5 lines from 1 to 5 replace as follows:
Proof Let BP (n,1), n ≥ 3, be the barbell graph with the vertex set V (BP (n,1)) =
{ui, un+i, wi, wn+i : 1 ≤ i ≤ n} and the edge set E(BP (n,1)) = {uiui+1, un+iun+i+1,
wiwi+1, wn+iwn+i+1 : 1 ≤ i ≤ n − 1} ∪ {unu1, u2nun+1, wnw1, w2nwn+1} ∪
{uiun+i, wiwn+i : 1 ≤ i ≤ n} ∪ {unwn}.
Let us distinguish two cases.
Case 1, n odd. According to Theorem 1.3 for n odd we have χL(BP (n,1)) ≥ 4. To
show that 4 is an upper bound for the locating chromatic number of the barbell
graph BP (n,1) we describe an locating coloring c using 4 colors as follows:

Page 6, lines from -8 to -12 rewrite by the following way:
Case 2, n even. In view of the lower bound from Theorem 1.3 it suffices to prove
the existence of a locating coloring c : V (BP (n,1)) → {1, 2, . . . , 5} such that all
vertices in BP (n,1) have distinct color codes. For n even, n ≥ 4, we describe the
locating coloring as follows:

Page 8, on the line 7 change ”even” for ”odd” and on the line 8 change ”odd”
for ”even”. It means

cΠ(wi) =



i, for 4th component, i ≤ n
2

i+ 1, for 5th component, i ≤ n
2

for 3th component, i ≤ n
2 − 1

n− i, for 4th component, i > n
2

n− i+ 1, for 5th component, i > n
2

n− i− 1, for 3th component, n
2 ≤ i ≤ n− 1

0, for 1st component, i odd, i ≤ n− 3

for 2nd component, i even, i ≤ n− 2

2, for 1st component, i = n− 1

for 2nd component, i = n

1, otherwise.

Page 9: insert the reference
Syofyan, D.K., Baskoro, E.T., Assiyatun, H., Trees with certain locating-chromatic
number, J. Math. Fund. Sci. 48(1) (2016), pp. 39-47.
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Response to  Referee’s Report on the paper 5327504 

 

We are thankful for the referee’s comments. We have revised the manuscript based on suggestions 

in referee’s report, except for  Corollary 2.2. The statement in the corollary is correct, that for case 

𝑛, 𝑚 ≥ 3 and 𝑚 ≠ 𝑛, the locating chromatic number of barbell graph 𝐵𝑚,𝑛 is  𝑚𝑎𝑥 {𝑛, 𝑚}. The 

following figure is a counter example for the case. 

 

 

2
3

1
2

4

3 1

 

Figure 1. A minimum locating coloring of barbell graph 𝐵4,3 
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Let G be a connected graph and c a proper coloring of G. For i = 1, 2, . . . , k define the
color class Ci as the set of vertices receiving color i. The color code cΠ(v) of a vertex v in
is the ordered k-tuple (d(v, C1), . . . , d(v, Ck)) where (d(v, C1) is the distance of v to Ci. If
all distinct vertices of G have distinct color codes, then c is called a locating-coloring of G
. The locating-chromatic number of graph G, denoted by χL(G) is the smallest k such that
G has a locating coloring with k colors. Let {u1, u2, . . . , un} be some vertices on the outer
cycle and {v1, v2, . . . , vn} be some vertices on the inner cycle, for n ≥ 3. The Petersen
graph, denoted by Pn,k, n ≥ 3, 1 ≤ k ≤ bn−1

2 c, 1 ≤ i ≤ n is a graph that has 2n vertices
{ui} ∪ {vi}, and edges {uiui+1}, {vivi+k}, and {uivi}. We determined that the locating
chromatic number of Petersen Graphs Pn,1 is 4 for odd n ≥ 3 or 5 for even n ≥ 4. In this
paper, we discuss the locating-chromatic number for certain operation of s Petersen Graphs
Pn,1.

1



Response to Referees Report on the paper 5327504

We are thankful for the referees comments. We have revised the manuscript based on sugges-
tions in referees report.

Page 1, abstract replaced by : The locating chromatic number of a graph G is defined as the
cardinality of a minimum resolving partition of the vertex set V (G) such that all vertices have
distinct coordinates with respect to this partition and every two adjacent vertices in G are not
contained in the same partition class. In this case, the coordinate of a vertex v in G is expressed
in terms of the distances of v to all partition classes. This concept is a special case of the graph
partition dimension notion. In this paper we investigate the locating chromatic number for two
families of barbell graphs.

Page 1, from 1 to 6 and on page 2 lines from 1 up to 7, replaced by : Let G = (V,E) be a
connected graph. We define the distance as the minimum length of path connecting vertices u
and v in G, denoted by d(u, v). A k-coloring of G is a function c : V (G) → {1, 2, . . . , k} where
c(u) 6= c(v) for any two adjacent vertices u and v in G. Thus, the coloring c induces a partition
Π of V (G) into k color classes (independent sets) C1, C2, . . . , Ck where Ci is the set of all vertices
colored by the color i for 1 ≤ i ≤ k. The color code cΠ(v) of a vertex v in G is defined as the
k-vector (d(v, C1), d(v, C2), . . . , d(v, Ck)) where d(v, Ci) = min{d(v, x) : x ∈ Ci} for 1 ≤ i ≤ k.
The k-coloring c of G such that all vertices have different color codes is called a locating coloring
of G. The locating chromatic number of G, denoted by χL(G), is the minimum k such that G
has a locating coloring.

The following theorem is a basic theorem proved by Chartrand et al. [6]. The neighborhood of
vertex u in a connected graph G, denoted by N(u), is the set of vertices adjacent to u.

Page 2, the text after Corollary 1.1 until Theorem 1.2., replaced by: There are some interesting
results related to the determination of the locating chromatic number of some graphs. The results
are obtained by focusing on certain families of graphs. Chartrand, et al. in [6] have determined
all graphs of order n with locating chromatic number n, namely a complete multipartite graph
of n vertices. Moreover, Chartrand et al. [7] have succeeded in constructing tree on n vertices,
n ≥ 5, with locating chromatic numbers varying from 3 to n, except for (n− 1). Then Behtoei
and Omoomi [5] have obtained the locating chromatic number of the Kneser graphs. Recently,
Asmiati et al. [3] obtained the locating chromatic number of the generalized Petersen graph
P (n, 1) for n ≥ 3. Baskoro and Asmiati [4] have characterized all trees with locating-chromatic
number 3. In [12] were characterized all trees of order n with locating chromatic number n− t,

1
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2

for any integers n and t, where n > t + 3 and 2 ≤ t < n
2 . Asmiati et al. in [1] have succeeded

in determining the locating chromatic number of homogeneous amalgamation of stars and their
monotonicity properties and in [2] for firecracker graphs. Next, Wellyyanti et al. [14] determined
the locating chromatic number for complete n-ary trees.
The generalized Petersen graph P (n,m), n ≥ 3 and 1 ≤ m ≤ b(n− 1)/2c, consists of an outer
n-cycle y1, y2, . . . , yn, a set of n spokes yixi, 1 ≤ i ≤ n, and n edges xixi+m, 1 ≤ i ≤ n, with
indices taken modulo n. The generalized Petersen graph was introduced by Watkins in [13]. Let
us note that the generalized Petersen graph P (n, 1) is a prism defined as Cartesian product of
a cycle Cn and a path P2.

Next theorems give the locating chromatic numbers for complete graph Kn and generalized Pe-
tersen graph P (n, 1).

Page 2 and several times later: Generalized Petersen graph Pn.1 is replaced by P (n, 1).

Page 3, Theorem 2.1. written by :Next theorem proves the exact value of the locating chromatic
number for barbell graph Bn,n.
Theorem 2.1 Let Bn,n be a barbell graph for n ≥ 3. Then the locating chromatic number of
Bn,n is χL(Bn,n) = n+ 1. .

Page 3, lines -10 and -11, replaced by:Next, suppose that c is a locating coloring using n colors.
It is easy to see that the barbell graph Bn,n contains two vertices with the same color codes,
which is a contradiction. Thus, we have that χL(Bn,n) ≥ n+ 1.

Page 3, lines -2, -3 and -4, replaced by: The labeling c(vi) and also all other labelings write by
the following way

c(vi) =


n, for i = 1

i, for 2 ≤ i ≤ n− 1

n+ 1, otherwise.

Page 4 lines from -1 to -4 and on page 5 lines from 1 to 5, replaced by : Let BP (n,1), n ≥ 3, be
the barbell graph with the vertex set V (BP (n,1)) = {ui, un+i, wi,
wn+i : 1 ≤ i ≤ n} and the edge set E(BP (n,1)) = {uiui+1, un+iun+i+1, wiwi+1, wn+iwn+i+1 : 1 ≤
i ≤ n− 1} ∪ {unu1, u2nun+1, wnw1, w2nwn+1} ∪ {uiun+i, wiwn+i : 1 ≤ i ≤ n} ∪ {unwn}.

Let us distinguish two cases.
Case 1, n odd. According to Theorem 1.3 for n odd we have χL(BP (n,1)) ≥ 4. To show that

4 is an upper bound for the locating chromatic number of the barbell graph BP (n,1) we describe
an locating coloring c using 4 colors as follows:

Page 6, lines from -8 to -12, replaced by : Case 2, n even. In view of the lower bound from
Theorem 1.3 it suffices to prove the existence of a locating coloring c : V (BP (n,1))→ {1, 2, . . . , 5}
such that all vertices in BP (n,1) have distinct color codes. For n even, n ≥ 4, we describe the
locating coloring in the following way:



3

Page 8, on the line 7, replaced by :

cΠ(wi) =



i, for 4th component, i ≤ n
2

i+ 1, for 5th component, i ≤ n
2

for 3th component, i ≤ n
2 − 1

n− i, for 4th component, i > n
2

n− i+ 1, for 5th component, i > n
2

n− i− 1, for 3th component, n
2 ≤ i ≤ n− 1

0, for 1st component, i odd, i ≤ n− 3

for 2nd component, i even, i ≤ n− 2

2, for 1st component, i = n− 1

for 2nd component, i = n

1, otherwise.

Page 9: we have revised references.
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Abstract

The locating chromatic number of a graph G is defined as the cardinality of a minimum
resolving partition of the vertex set V (G) such that all vertices have distinct coordinates
with respect to this partition and every two adjacent vertices in G are not contained in the
same partition class. In this case, the coordinate of a vertex v in G is expressed in terms of
the distances of v to all partition classes. This concept is a special case of the graph partition
dimension notion.

In this paper we investigate the locating chromatic number for two families of barbell
graphs.

Keywords: locating chromatic number, barbell graph, complete graph, generalized Petersen
graph

1 Introduction

The partition dimension was introduced by Chartrand et al. [8] as the development of the concept
of metric dimension. The application of metric dimension plays a role in robotic navigation [11],
the optimization of threat detecting sensors [10] and chemical data classification [9]. The concept
of locating chromatic number is a marriage between the partition dimension and coloring of a
graph, first introduced by Chartrand et al in 2002 [6]. The locating chromatic number of a
graph is a newly interesting topic to study because there is no general theorem for determining
the locating chromatic number of any graph.

Let G = (V,E) be a connected graph. We define the distance as the minimum length of path
connecting vertices u and v in G, denoted by d(u, v). A k-coloring of G is a function c : V (G)→
{1, 2, . . . , k} where c(u) 6= c(v) for any two adjacent vertices u and v in G. Thus, the coloring c
induces a partition Π of V (G) into k color classes (independent sets) C1, C2, . . . , Ck where Ci is
the set of all vertices colored by the color i for 1 ≤ i ≤ k. The color code cΠ(v) of a vertex v in G
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2

is defined as the k-vector (d(v, C1), d(v, C2), . . . , d(v, Ck)) where d(v, Ci) = min{d(v, x) : x ∈ Ci}
for 1 ≤ i ≤ k. The k-coloring c of G such that all vertices have different color codes is called a
locating coloring of G. The locating chromatic number of G, denoted by χL(G), is the minimum
k such that G has a locating coloring.

The following theorem is a basic theorem proved by Chartrand et al. [6]. The neighborhood
of vertex u in a connected graph G, denoted by N(u), is the set of vertices adjacent to u.

Theorem 1.1. [6] Let c be a locating coloring in a connected graph G. If u and v are distinct
vertices of G such that d(u, t) = d(v, t) for all t ∈ V (G)−{u, v}, then c(u) 6= c(v). In particular,
if u and v are non-adjacent vertices of G such that N(u) = N(v), then c(u) 6= c(v).

The following corollary gives the lower bound of the locating chromatic number for every
connected graph G.

Corollary 1.1. [6] If G is a connected graph and there is a vertex adjacent to k leaves, then
χL(G) ≥ k + 1.

There are some interesting results related to the determination of the locating chromatic
number of some graphs. The results are obtained by focusing on certain families of graphs.
Chartrand, et al. in [6] have determined all graphs of order n with locating chromatic number
n, namely a complete multipartite graph of n vertices. Moreover, Chartrand et al. [7] have
succeeded in constructing tree on n vertices, n ≥ 5, with locating chromatic numbers varying
from 3 to n, except for (n − 1). Then Behtoei and Omoomi [5] have obtained the locating
chromatic number of the Kneser graphs. Recently, Asmiati et al. [3] obtained the locating
chromatic number of the generalized Petersen graph P (n, 1) for n ≥ 3. Baskoro and Asmiati
[4] have characterized all trees with locating-chromatic number 3. In [12] were characterized all
trees of order n with locating chromatic number n− t, for any integers n and t, where n > t+ 3
and 2 ≤ t < n

2 . Asmiati et al. in [1] have succeeded in determining the locating chromatic
number of homogeneous amalgamation of stars and their monotonicity properties and in [2] for
firecracker graphs. Next, Wellyyanti et al. [14] determined the locating chromatic number for
complete n-ary trees.

The generalized Petersen graph P (n,m), n ≥ 3 and 1 ≤ m ≤ b(n− 1)/2c, consists of an
outer n-cycle y1, y2, . . . , yn, a set of n spokes yixi, 1 ≤ i ≤ n, and n edges xixi+m, 1 ≤ i ≤ n,
with indices taken modulo n. The generalized Petersen graph was introduced by Watkins in
[13]. Let us note that the generalized Petersen graph P (n, 1) is a prism defined as Cartesian
product of a cycle Cn and a path P2.

Next theorems give the locating chromatic numbers for complete graph Kn and generalized
Petersen graph P (n, 1).

Theorem 1.2. [7] For n ≥ 2, the locating chromatic number of complete graph Kn is n.

Theorem 1.3. [3] The locating chromatic number of generalized Petersen Graph P (n, 1) is 4
for odd n ≥ 3 or 5 for even n ≥ 4.

The barbell graph is constructed by connecting two arbitrary connected graphs G and H by
a bridge. In this paper, firstly we discuss the locating chromatic number for barbell graph Bm,n

for m,n ≥ 3, where G and H are complete graphs on m and n vertices, respectively. Secondly,
we determine the locating chromatic number of barbell graph BP (n,1) for n ≥ 3, where G and
H are two isomorphic copies of the generalized Petersen graph P (n, 1).
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3

2 Results and Discussion

Next theorem proves the exact value of the locating chromatic number for barbell graph Bn,n.

Theorem 2.1. Let Bn,n be a barbell graph for n ≥ 3. Then the locating chromatic number of
Bn,n is χL(Bn,n) = n+ 1.

Proof Let Bn,n, n ≥ 3, be the barbell graph with the vertex set V (Bn,n) = {ui, vi : 1 ≤ i ≤

n} and the edge set E(Bn,n) =
n−1⋃
i=1
{uiui+j : 1 ≤ j ≤ n−i}∪

n−1⋃
i=1
{vivi+j : 1 ≤ j ≤ n−i}∪{unvn}.

First, we determine the lower bound of the locating chromatic number for barbell graph Bn,n

for n ≥ 3. Since the barbell graph Bn,n contains two isomorphic copies of a complete graph Kn,
then with respect to Theorem 1.2 we have that χL(Bn,n) ≥ n. Next, suppose that c is a locating
coloring using n colors. It is easy to see that the barbell graph Bn,n contains two vertices with
the same color codes, which is a contradiction. Thus, we have that χL(Bn,n) ≥ n+ 1.

To show that n+1 is an upper bound for the locating chromatic number of barbell graph Bn,n

it suffices to prove the existence of an optimal locating coloring c : V (Bn,n)→ {1, 2, . . . , n+ 1}.
For n ≥ 3 we construct the function c in the following way:

c(ui) = i, 1 ≤ i ≤ n

c(vi) =


n, for i = 1

i, for 2 ≤ i ≤ n− 1

n+ 1, otherwise.

By using the coloring c, we obtain the color codes of V (Bn,n) as follows:

cΠ(ui) =


0, for ith component, 1 ≤ i ≤ n
2, for (n+ 1)th component, 1 ≤ i ≤ n− 1

1, otherwise,

cΠ(vi) =



0, for ith component, 2 ≤ i ≤ n− 1

for nth component, i = 1, and

for (n+ 1)th component, i = n,

3, for 1st component, 1 ≤ i ≤ n− 1

2, for 1st component, i = n

1, otherwise.

Since all vertices in V (Bn,n) have distinct color codes, then the coloring c is desired locating
coloring. Thus, χL(Bn,n) = n+ 1. 2

Corollary 2.1. For n,m ≥ 3 and m 6= n, the locating chromatic number of barbell graph Bm,n

is
χL(Bm,n) = max{m,n}.
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Next theorem provides the exact value of the locating chromatic number for barbell graph
BP (n,1).

Theorem 2.2. Let BP (n,1) be a barbell graph for n ≥ 3. Then the locating chromatic number of
BP (n,1) is

χL(BP (n,1)) =

{
4, for odd n

5, for even n.

Proof Let BP (n,1), n ≥ 3, be the barbell graph with the vertex set V (BP (n,1)) = {ui, un+i, wi,
wn+i : 1 ≤ i ≤ n} and the edge set E(BP (n,1)) = {uiui+1, un+iun+i+1, wiwi+1, wn+iwn+i+1 : 1 ≤
i ≤ n− 1} ∪ {unu1, u2nun+1, wnw1, w2nwn+1} ∪ {uiun+i, wiwn+i : 1 ≤ i ≤ n} ∪ {unwn}.

Let us distinguish two cases.
Case 1, n odd. According to Theorem 1.3 for n odd we have χL(BP (n,1)) ≥ 4. To show that

4 is an upper bound for the locating chromatic number of the barbell graph BP (n,1) we describe
an locating coloring c using 4 colors as follows:

c(ui) =


1, for i = 1

3, for even i, i ≥ 2

4, for odd i, i ≥ 3.

c(un+i) =


2, for i = 1

3, for odd i, i ≥ 3

4, for even i, i ≥ 2.

c(wi) =


1, for odd i, i ≤ n− 2

2, for even i, i ≤ n− 1

3, for i = n.

c(wn+i) =


1, for even i, i ≤ n− 1

2, for odd i, i ≤ n− 2

4, for i = n.

For n odd the color codes of V (BP (n,1)) are:

cΠ(ui) =



i, for 2nd component, i ≤ n+1
2

i− 1, for 1st component, i ≤ n+1
2

n− i+ 1, for 1st component, i > n+1
2

n− i+ 2, for 2nd component, i > n+1
2

0, for 3th component, i even, i ≥ 2

for 4th component, i odd, i ≥ 3

1, otherwise.
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cΠ(un+i) =



i, for 1st component, i ≤ n+1
2

i− 1, for 2nd component, i ≤ n+1
2

n− i+ 1, for 2nd component, i > n+1
2

n− i+ 2, for 1st component, i > n+1
2

0, for 4th component, i even, i ≥ 2

for 3th component, i odd, i ≥ 3

1, otherwise.

cΠ(wi) =



i, for 3th component, i ≤ n−1
2

i+ 1, for 4th component, i ≤ n−1
2

n− i, for 3th component, i ≥ n+1
2

n− i+ 1, for 4th component, i ≥ n+1
2

0, for 2nd component, i even, i ≤ n− 1

for 1st component, i odd, i ≤ n− 2

1, otherwise.

cΠ(wn+i) =



i, for 4th component, i ≤ n−1
2

i+ 1, for 3th component, i ≤ n−1
2

n− i, for 4th component, i ≥ n+1
2

n− i+ 1, for 3th component, i ≥ n+1
2

0, for 1st component, i even, i ≤ n− 1

for 2nd component, i odd, i ≤ n− 2

1, otherwise.

Since all vertices in BP (n,1) have distinct color codes, then the coloring c with 4 colors is an
optimal locating coloring and it proves that χL(BP (n,1)) ≤ 4.

Case 2, n even. In view of the lower bound from Theorem 2.2 it suffices to prove the existence
of a locating coloring c : V (BP (n,1))→ {1, 2, . . . , 5} such that all vertices in BP (n,1) have distinct
color codes. For n even, n ≥ 4, we describe the locating coloring in the following way:

c(ui) =


1, for i = 1

3, for even i, 2 ≤ i ≤ n− 2

4, for odd i, 3 ≤ i ≤ n− 1

5, for i = n.

c(un+i) =


2, for i = 1

3, for odd i, i ≥ 3

4, for even i, i ≥ 2.
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c(wi) =


1, for odd i, i ≤ n− 3

2, for even i, i ≤ n− 2

3, for i = n− 1

4, for i = n.

c(wn+i) =


1, for even i, i ≤ n− 2

2, for odd i, i ≤ n− 1

5, for i = n.

In fact, our locating coloring of BP (n,1), n even, has been chosen in such a way that the color
codes are:

cΠ(ui) =



i, for 2nd and 5th components, i ≤ n
2

i− 1, for 1st component, i ≤ n
2

n− i, for 5th component, i > n
2

n− i+ 1, for 1st component, i > n
2

n− i+ 2, for 2nd component, i > n
2

0, for 3th component, i even, 2 ≤ i ≤ n− 2

for 4th component, i odd, 3 ≤ i ≤ n− 1

2, for 4th component, i = 1

for 3th component, i = n

1, otherwise.

cΠ(un+i) =



i, for 1st component, i ≤ n
2

i− 1, for 2nd component, i ≤ n
2

n+ i, for 5th component, i ≤ n
2

n− i+ 1, for 2nd and 5th components, i > n
2

n− i+ 2, for 1th component, i > n
2

0, for 3th component, i odd, 3 ≤ i ≤ n− 1

for 4th component, i even, 2 ≤ i ≤ n
2, for 3th component, i = 1

1, otherwise.
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cΠ(wi) =



i, for 4th component, i ≤ n
2

i+ 1, for 5th component, i ≤ n
2

for 3th component, i ≤ n
2 − 1

n− i, for 4th component, i > n
2

n− i+ 1, for 5th component, i > n
2

n− i− 1, for 3th component, n
2 ≤ i ≤ n− 1

0, for 1st component, i odd, i ≤ n− 3

for 2nd component, i even, i ≤ n− 2

2, for 1st component, i = n− 1

for 2nd component, i = n

1, otherwise.

cΠ(wn+i) =



i, for 5th component, i ≤ n
2

i+ 1, for 4th component, i ≤ n
2

i+ 2 for 3th component, i ≤ n
2 − 1

n− i, for 3th component, n
2 ≤ i ≤ n− 1

for 5th component, i > n
2

n− i+ 1, for 4th component, i > n
2

0, for 1st component, i even, i ≤ n− 2

for 2nd component, i odd, i ≤ n− 1

2, for 1st and 3th components, i = n

1, otherwise.

Since for n even all vertices of BP (n,1) have distinct color codes then our locating coloring has
the required properties and χL(BP (n,1)) ≤ 5. This concludes the proof. 2
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The locating chromatic number of a graph 𝐺 is defined as the cardinality of a minimum resolving partition of the vertex set 𝑉(𝐺)
such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in 𝐺 are not contained
in the same partition class. In this case, the coordinate of a vertex V in 𝐺 is expressed in terms of the distances of V to all partition
classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic
number for two families of barbell graphs.

1. Introduction


The partition dimension was introduced by Chartrand et al.
[1] as the development of the concept of metric dimension.
The application of metric dimension plays a role in robotic
navigation [2], the optimization of threat detecting sensors
[3], and chemical data classification [4]. The concept of
locating chromatic number is a marriage between the parti-
tion dimension and coloring of a graph, first introduced by
Chartrand et al in 2002 [5]. The locating chromatic number
of a graph is a newly interesting topic to study because there
is no general theorem for determining the locating chromatic
number of any graph.

Let 𝐺 = (𝑉, 𝐸) be a connected graph. We define the
distance as theminimum length of path connecting vertices 𝑢
and V in𝐺, denoted by 𝑑(𝑢, V). A 𝑘-coloring of𝐺 is a function
𝑐 : 𝑉(𝐺) 󳨀→ {1, 2, . . . , 𝑘}, where 𝑐(𝑢) ̸= 𝑐(V) for any two
adjacent vertices 𝑢 and V in 𝐺. Thus, the coloring 𝑐 induces
a partition Π of 𝑉(𝐺) into 𝑘 color classes (independent sets)
𝐶1, 𝐶2, . . . , 𝐶𝑘, where 𝐶𝑖 is the set of all vertices colored by
the color 𝑖 for 1 ≤ 𝑖 ≤ 𝑘. The color code 𝑐Π(V) of a vertex V in
𝐺 is defined as the 𝑘-vector (𝑑(V, 𝐶1), 𝑑(V, 𝐶2), . . . , 𝑑(V, 𝐶𝑘)),
where 𝑑(V, 𝐶𝑖) = min{𝑑(V, 𝑥) : 𝑥 ∈ 𝐶𝑖} for 1 ≤ 𝑖 ≤ 𝑘. The
𝑘-coloring 𝑐 of 𝐺 such that all vertices have different color
codes is called a locating coloring of 𝐺. The locating chromatic

number of 𝐺, denoted by 𝜒𝐿(𝐺), is the minimum 𝑘 such that
𝐺 has a locating coloring.

The following theorem is a basic theorem proved by
Chartrand et al. [5]. The neighborhood of vertex 𝑢 in a
connected graph 𝐺, denoted by 𝑁(𝑢), is the set of vertices
adjacent to 𝑢.

Theorem 1 (see [5]). Let 𝑐 be a locating coloring in a connected
graph 𝐺. If 𝑢 and V are distinct vertices of 𝐺 such that 𝑑(𝑢, 𝑡) =
𝑑(V, 𝑡) for all 𝑡 ∈ 𝑉(𝐺)−{𝑢, V}, then 𝑐(𝑢) ̸= 𝑐(V). In particular, if
𝑢 and V are non-adjacent vertices of 𝐺 such that𝑁(𝑢) = 𝑁(V),
then 𝑐(𝑢) ̸= 𝑐(V).

The following corollary gives the lower bound of the
locating chromatic number for every connected graph 𝐺.

Corollary 2 (see [5]). If 𝐺 is a connected graph and there is a
vertex adjacent to 𝑘 leaves, then 𝜒𝐿(𝐺) ≥ 𝑘 + 1.

There are some interesting results related to the determi-
nation of the locating chromatic number of some graphs.The
results are obtained by focusing on certain families of graphs.
Chartrand et al. in [5] have determined all graphs of order
𝑛 with locating chromatic number 𝑛, namely, a complete
multipartite graph of 𝑛 vertices. Moreover, Chartrand et al.
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[6] have succeeded in constructing tree on 𝑛 vertices, 𝑛 ≥ 5,
with locating chromatic numbers varying from 3 to 𝑛, except
for (𝑛 − 1). Then Behtoei and Omoomi [7] have obtained the
locating chromatic number of the Kneser graphs. Recently,
Asmiati et al. [8] obtained the locating chromatic number of
the generalized Petersen graph 𝑃(𝑛, 1) for 𝑛 ≥ 3. Baskoro
and Asmiati [9] have characterized all trees with locating
chromatic number 3. In [10] were characterized all trees of
order 𝑛with locating chromatic number 𝑛−𝑡, for any integers
𝑛 and 𝑡, where 𝑛 > 𝑡 + 3 and 2 ≤ 𝑡 < 𝑛/2. Asmiati et al.
in [11] have succeeded in determining the locating chromatic
number of homogeneous amalgamation of stars and their
monotonicity properties and in [12] for firecracker graphs.
Next,Wellyyanti et al. [13] determined the locating chromatic
number for complete 𝑛-ary trees.

The generalized Petersen graph 𝑃(𝑛,𝑚), 𝑛 ≥ 3 and 1 ≤
𝑚 ≤ ⌊(𝑛 − 1)/2⌋, consists of an outer 𝑛-cycle 𝑦1, 𝑦2, . . . , 𝑦𝑛,
a set of 𝑛 spokes 𝑦𝑖𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, and 𝑛 edges 𝑥𝑖𝑥𝑖+𝑚,
1 ≤ 𝑖 ≤ 𝑛, with indices taken modulo 𝑛. The generalized
Petersen graphwas introduced byWatkins in [14]. Let us note
that the generalized Petersen graph 𝑃(𝑛, 1) is a prism defined
as Cartesian product of a cycle 𝐶𝑛 and a path 𝑃2.

Next theorems give the locating chromatic numbers for
complete graph 𝐾𝑛 and generalized Petersen graph 𝑃(𝑛, 1).

Theorem3 (see [6]). For 𝑛 ≥ 2, the locating chromatic number
of complete graph 𝐾𝑛 is 𝑛.

Theorem 4 (see [8]). The locating chromatic number of
generalized Petersen graph 𝑃(𝑛, 1) is 4 for odd 𝑛 ≥ 3 or 5 for
even 𝑛 ≥ 4.

The barbell graph is constructed by connecting two
arbitrary connected graphs𝐺 and𝐻 by a bridge. In this paper,
firstly we discuss the locating chromatic number for barbell
graph 𝐵𝑚,𝑛 for 𝑚, 𝑛 ≥ 3, where 𝐺 and 𝐻 are complete graphs
on𝑚 and 𝑛 vertices, respectively. Secondly, we determine the
locating chromatic number of barbell graph 𝐵𝑃(𝑛,1) for 𝑛 ≥ 3,
where 𝐺 and𝐻 are two isomorphic copies of the generalized
Petersen graph 𝑃(𝑛, 1).

2. Results and Discussion

Next theoremproves the exact value of the locating chromatic
number for barbell graph 𝐵𝑛,𝑛.

Theorem 5. Let 𝐵𝑛,𝑛 be a barbell graph for 𝑛 ≥ 3. Then the
locating chromatic number of 𝐵𝑛,𝑛 is 𝜒𝐿(𝐵𝑛,𝑛) = 𝑛 + 1.

Proof. Let 𝐵𝑛,𝑛, 𝑛 ≥ 3, be the barbell graph with the vertex
set 𝑉(𝐵𝑛,𝑛) = {𝑢𝑖, V𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set 𝐸(𝐵𝑛,𝑛)
= ⋃𝑛−1𝑖=1 {𝑢𝑖𝑢𝑖+𝑗 : 1 ≤ 𝑗 ≤ 𝑛 − 𝑖} ∪ ⋃𝑛−1𝑖=1 {V𝑖V𝑖+𝑗 : 1 ≤ 𝑗 ≤
𝑛 − 𝑖} ∪ {𝑢𝑛V𝑛}.

First, we determine the lower bound of the locating
chromatic number for barbell graph 𝐵𝑛,𝑛 for 𝑛 ≥ 3. Since
the barbell graph 𝐵𝑛,𝑛 contains two isomorphic copies of a
complete graph 𝐾𝑛, then with respect to Theorem 3 we have
𝜒𝐿(𝐵𝑛,𝑛) ≥ 𝑛. Next, suppose that 𝑐 is a locating coloring
using 𝑛 colors. It is easy to see that the barbell graph 𝐵𝑛,𝑛

contains two vertices with the same color codes, which is a
contradiction. Thus, we have that 𝜒𝐿(𝐵𝑛,𝑛) ≥ 𝑛 + 1.

To show that 𝑛 + 1 is an upper bound for the locating
chromatic number of barbell graph 𝐵𝑛,𝑛 it suffices to prove
the existence of an optimal locating coloring 𝑐 : 𝑉(𝐵𝑛,𝑛) 󳨀→
{1, 2, . . . , 𝑛 + 1}. For 𝑛 ≥ 3 we construct the function 𝑐 in the
following way:

𝑐 (𝑢𝑖) = 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑐 (V𝑖) =
{{{{
{{{{
{

𝑛, for 𝑖 = 1

𝑖, for 2 ≤ 𝑖 ≤ 𝑛 − 1

𝑛 + 1, otherwise.

(1)

By using the coloring 𝑐, we obtain the color codes of 𝑉(𝐵𝑛,𝑛)
as follows:

𝑐Π (𝑢𝑖)

=
{{{{
{{{{
{

0, for 𝑖𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛

2, for (𝑛 + 1)𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛 − 1

1, otherwise,

𝑐Π (V𝑖) =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

0, for 𝑖𝑡ℎ component, 2 ≤ 𝑖 ≤ 𝑛 − 1

for 𝑛𝑡ℎ component, 𝑖 = 1, and

for (𝑛 + 1)𝑡ℎ component, 𝑖 = 𝑛,

3, for 1𝑠𝑡 component, 1 ≤ 𝑖 ≤ 𝑛 − 1

2, for 1𝑠𝑡 component, 𝑖 = 𝑛

1, otherwise.

(2)

Since all vertices in 𝑉(𝐵𝑛,𝑛) have distinct color codes, then
the coloring 𝑐 is desired locating coloring. Thus, 𝜒𝐿(𝐵𝑛,𝑛) =
𝑛 + 1.

Corollary 6. For 𝑛,𝑚 ≥ 3, and 𝑚 ̸= 𝑛, the locating chromatic
number of barbell graph 𝐵𝑚,𝑛 is

𝜒𝐿 (𝐵𝑚,𝑛) = max {𝑚, 𝑛} . (3)

Next theorem provides the exact value of the locating
chromatic number for barbell graph 𝐵𝑃(𝑛,1).

Theorem 7. Let 𝐵𝑃(𝑛,1) be a barbell graph for 𝑛 ≥ 3. Then the
locating chromatic number of 𝐵𝑃(𝑛,1) is

𝜒𝐿 (𝐵𝑃(𝑛,1)) =
{
{
{

4, for odd 𝑛

5, for even 𝑛.
(4)

Proof. Let 𝐵𝑃(𝑛,1), 𝑛 ≥ 3, be the barbell graph with the vertex
set 𝑉(𝐵𝑃(𝑛,1)) = {𝑢𝑖, 𝑢𝑛+𝑖, 𝑤𝑖, 𝑤𝑛+𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set
𝐸(𝐵𝑃(𝑛,1)) = {𝑢𝑖𝑢𝑖+1, 𝑢𝑛+𝑖𝑢𝑛+𝑖+1, 𝑤𝑖𝑤𝑖+1, 𝑤𝑛+𝑖𝑤𝑛+𝑖+1 : 1 ≤ 𝑖 ≤
𝑛− 1} ∪ {𝑢𝑛𝑢1, 𝑢2𝑛𝑢𝑛+1, 𝑤𝑛𝑤1, 𝑤2𝑛𝑤𝑛+1} ∪ {𝑢𝑖𝑢𝑛+𝑖, 𝑤𝑖𝑤𝑛+𝑖 : 1 ≤
𝑖 ≤ 𝑛} ∪ {𝑢𝑛𝑤𝑛}.

Let us distinguish two cases.
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Case 1 (𝑛 odd). According to Theorem 4 for 𝑛 odd we have
𝜒𝐿(𝐵𝑃(𝑛,1)) ≥ 4. To show that 4 is an upper bound for the
locating chromatic number of the barbell graph 𝐵𝑃(𝑛,1) we
describe an locating coloring 𝑐 using 4 colors as follows:

𝑐 (𝑢𝑖) =
{{{{
{{{{
{

1, for 𝑖 = 1

3, for even 𝑖, 𝑖 ≥ 2

4, for odd 𝑖, 𝑖 ≥ 3.

𝑐 (𝑢𝑛+𝑖) =
{{{{
{{{{
{

2, for 𝑖 = 1

3, for odd 𝑖, 𝑖 ≥ 3

4, for even 𝑖, 𝑖 ≥ 2.

𝑐 (𝑤𝑖) =
{{{{
{{{{
{

1, for odd 𝑖, 𝑖 ≤ 𝑛 − 2

2, for even 𝑖, 𝑖 ≤ 𝑛 − 1

3, for 𝑖 = 𝑛.

𝑐 (𝑤𝑛+𝑖) =
{{{{
{{{{
{

1, for even 𝑖, 𝑖 ≤ 𝑛 − 1

2, for odd 𝑖, 𝑖 ≤ 𝑛 − 2

4, for 𝑖 = 𝑛.

(5)

For 𝑛 odd the color codes of 𝑉(𝐵𝑃(𝑛,1)) are

𝑐Π (𝑢𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛 + 1
2

𝑖 − 1, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, 𝑖 > 𝑛 + 1
2

𝑛 − 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1
2

0, for 3𝑡ℎ component, 𝑖 even, 𝑖 ≥ 2

for 4𝑡ℎ component, 𝑖 odd, 𝑖 ≥ 3

1, otherwise.

𝑐Π (𝑢𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛 + 1
2

𝑖 − 1, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1
2

𝑛 − 𝑖 + 2, for 1𝑠𝑡 component, 𝑖 > 𝑛 + 1
2

0, for 4𝑡ℎ component, 𝑖 even, 𝑖 ≥ 2

for 3𝑡ℎ component, 𝑖 odd, 𝑖 ≥ 3

1, otherwise.

𝑐Π (𝑤𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 3𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑛 − 𝑖, for 3𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

0, for 2𝑛𝑑 component, 𝑖 even, 𝑖 ≤ 𝑛 − 1

for 1𝑠𝑡 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2

1, otherwise.

𝑐Π (𝑤𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 4𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑖 + 1, for 3𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑛 − 𝑖, for 4𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 3𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

0, for 1𝑠𝑡 component, 𝑖 even, 𝑖 ≤ 𝑛 − 1

for 2𝑛𝑑 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2

1, otherwise.
(6)

Since all vertices in 𝐵𝑃(𝑛,1) have distinct color codes, then the
coloring 𝑐 with 4 colors is an optimal locating coloring and it
proves that 𝜒𝐿(𝐵𝑃(𝑛,1)) ≤ 4.

Case 2 (𝑛 even). In view of the lower bound fromTheorem 7
it suffices to prove the existence of a locating coloring 𝑐 :
𝑉(𝐵𝑃(𝑛,1)) 󳨀→ {1, 2, . . . , 5} such that all vertices in 𝐵𝑃(𝑛,1)
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have distinct color codes. For 𝑛 even, 𝑛 ≥ 4, we describe the
locating coloring in the following way:

𝑐 (𝑢𝑖) =

{{{{{{{
{{{{{{{
{

1, for 𝑖 = 1

3, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 2

4, for odd 𝑖, 3 ≤ 𝑖 ≤ 𝑛 − 1

5, for 𝑖 = 𝑛.

𝑐 (𝑢𝑛+𝑖) =
{{{{
{{{{
{

2, for 𝑖 = 1

3, for odd 𝑖, 𝑖 ≥ 3

4, for even 𝑖, 𝑖 ≥ 2.

𝑐 (𝑤𝑖) =

{{{{{{{
{{{{{{{
{

1, for odd 𝑖, 𝑖 ≤ 𝑛 − 3

2, for even 𝑖, 𝑖 ≤ 𝑛 − 2

3, for 𝑖 = 𝑛 − 1

4, for 𝑖 = 𝑛.

𝑐 (𝑤𝑛+𝑖) =
{{{{
{{{{
{

1, for even 𝑖, 𝑖 ≤ 𝑛 − 2

2, for odd 𝑖, 𝑖 ≤ 𝑛 − 1

5, for 𝑖 = 𝑛.

(7)

In fact, our locating coloring of 𝐵𝑃(𝑛,1), 𝑛 even, has been
chosen in such a way that the color codes are

𝑐Π (𝑢𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 2𝑛𝑑 and 5𝑡ℎ components, 𝑖 ≤ 𝑛
2

𝑖 − 1, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛
2

𝑛 − 𝑖, for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛
2

0, for 3𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 2

for 4𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1

2, for 4𝑡ℎ component, 𝑖 = 1

for 3𝑡ℎ component, 𝑖 = 𝑛

1, otherwise.

𝑐Π (𝑢𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛
2

𝑖 − 1, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛
2

𝑛 + 𝑖, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑛 − 𝑖 + 1, for 2𝑛𝑑 and 5𝑡ℎ components, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 2, for 1𝑡ℎ component, 𝑖 > 𝑛
2

0, for 3𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1

for 4𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛

2, for 3𝑡ℎ component, 𝑖 = 1

1, otherwise.

𝑐Π (𝑤𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 4𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 1, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

for 3𝑡ℎ component, 𝑖 ≤ 𝑛
2 − 1

𝑛 − 𝑖, for 4𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 − 1, for 3𝑡ℎ component, 𝑛
2 ≤ 𝑖 ≤ 𝑛 − 1

0, for 1𝑠𝑡 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 3

for 2𝑛𝑑 component, 𝑖 even, 𝑖 ≤ 𝑛 − 2

2, for 1𝑠𝑡 component, 𝑖 = 𝑛 − 1

for 2𝑛𝑑 component, 𝑖 = 𝑛

1, otherwise.

𝑐Π (𝑤𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 2 for 3𝑡ℎ component, 𝑖 ≤ 𝑛
2 − 1

𝑛 − 𝑖, for 3𝑡ℎ component, 𝑛
2 ≤ 𝑖 ≤ 𝑛 − 1

for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 > 𝑛
2

0, for 1𝑠𝑡 component, 𝑖 even, 𝑖 ≤ 𝑛 − 2

for 2𝑛𝑑 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 1

2, for 1𝑠𝑡 and 3𝑡ℎ components, 𝑖 = 𝑛

1, otherwise.
(8)

Since for 𝑛 even all vertices of 𝐵𝑃(𝑛,1) have distinct color codes
then our locating coloring has the required properties and
𝜒𝐿(𝐵𝑃(𝑛,1)) ≤ 5. This concludes the proof.
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The locating chromatic number of a graph 𝐺 is defined as the cardinality of a minimum resolving partition of the vertex set 𝑉(𝐺)
such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in 𝐺 are not contained
in the same partition class. In this case, the coordinate of a vertex V in 𝐺 is expressed in terms of the distances of V to all partition
classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic
number for two families of barbell graphs.

1. Introduction

The partition dimension was introduced by Chartrand et al.
[1] as the development of the concept of metric dimension.
The application of metric dimension plays a role in robotic
navigation [2], the optimization of threat detecting sensors
[3], and chemical data classification [4]. The concept of
locating chromatic number is a marriage between the parti-
tion dimension and coloring of a graph, first introduced by
Chartrand et al in 2002 [5]. The locating chromatic number
of a graph is a newly interesting topic to study because there
is no general theorem for determining the locating chromatic
number of any graph.

Let 𝐺 = (𝑉, 𝐸) be a connected graph. We define the
distance as theminimum length of path connecting vertices 𝑢
and V in𝐺, denoted by 𝑑(𝑢, V). A 𝑘-coloring of𝐺 is a function
𝑐 : 𝑉(𝐺) 󳨀→ {1, 2, . . . , 𝑘}, where 𝑐(𝑢) ̸= 𝑐(V) for any two
adjacent vertices 𝑢 and V in 𝐺. Thus, the coloring 𝑐 induces
a partition Π of 𝑉(𝐺) into 𝑘 color classes (independent sets)
𝐶1, 𝐶2, . . . , 𝐶𝑘, where 𝐶𝑖 is the set of all vertices colored by
the color 𝑖 for 1 ≤ 𝑖 ≤ 𝑘. The color code 𝑐Π(V) of a vertex V in
𝐺 is defined as the 𝑘-vector (𝑑(V, 𝐶1), 𝑑(V, 𝐶2), . . . , 𝑑(V, 𝐶𝑘)),
where 𝑑(V, 𝐶𝑖) = min{𝑑(V, 𝑥) : 𝑥 ∈ 𝐶𝑖} for 1 ≤ 𝑖 ≤ 𝑘. The
𝑘-coloring 𝑐 of 𝐺 such that all vertices have different color
codes is called a locating coloring of 𝐺. The locating chromatic

number of 𝐺, denoted by 𝜒𝐿(𝐺), is the minimum 𝑘 such that
𝐺 has a locating coloring.

The following theorem is a basic theorem proved by
Chartrand et al. [5]. The neighborhood of vertex 𝑢 in a
connected graph 𝐺, denoted by 𝑁(𝑢), is the set of vertices
adjacent to 𝑢.

Theorem 1 (see [5]). Let 𝑐 be a locating coloring in a connected
graph 𝐺. If 𝑢 and V are distinct vertices of 𝐺 such that 𝑑(𝑢, 𝑡) =
𝑑(V, 𝑡) for all 𝑡 ∈ 𝑉(𝐺)−{𝑢, V}, then 𝑐(𝑢) ̸= 𝑐(V). In particular, if
𝑢 and V are non-adjacent vertices of 𝐺 such that𝑁(𝑢) = 𝑁(V),
then 𝑐(𝑢) ̸= 𝑐(V).

The following corollary gives the lower bound of the
locating chromatic number for every connected graph 𝐺.

Corollary 2 (see [5]). If 𝐺 is a connected graph and there is a
vertex adjacent to 𝑘 leaves, then 𝜒𝐿(𝐺) ≥ 𝑘 + 1.

There are some interesting results related to the determi-
nation of the locating chromatic number of some graphs.The
results are obtained by focusing on certain families of graphs.
Chartrand et al. in [5] have determined all graphs of order
𝑛 with locating chromatic number 𝑛, namely, a complete
multipartite graph of 𝑛 vertices. Moreover, Chartrand et
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al. [6] have succeeded in constructing tree on 𝑛 vertices,
𝑛 ≥ 5, with locating chromatic numbers varying from 3
to 𝑛, except for (𝑛 − 1). Then Behtoei and Omoomi [7]
have obtained the locating chromatic number of the Kneser
graphs. Recently, Asmiati et al. [8] obtained the locating
chromatic number of the generalized Petersen graph 𝑃(𝑛, 1)
for 𝑛 ≥ 3. Baskoro and Asmiati [9] have characterized all
trees with locating chromatic number 3. In [10] all trees
of order 𝑛 with locating chromatic number 𝑛 − 1 were
characterized, for any integers 𝑛 and 𝑡, where 𝑛 > 𝑡 + 3
and 2 ≤ 𝑡 < 𝑛/2. Asmiati et al. in [11] have succeeded in
determining the locating chromatic number of homogeneous
amalgamation of stars and their monotonicity properties and
in [12] for firecracker graphs. Next, Wellyyanti et al. [13]
determined the locating chromatic number for complete 𝑛-
ary trees.

The generalized Petersen graph 𝑃(𝑛,𝑚), 𝑛 ≥ 3 and 1 ≤
𝑚 ≤ ⌊(𝑛 − 1)/2⌋, consists of an outer 𝑛-cycle 𝑦1, 𝑦2, . . . , 𝑦𝑛,
a set of 𝑛 spokes 𝑦𝑖𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, and 𝑛 edges 𝑥𝑖𝑥𝑖+𝑚,
1 ≤ 𝑖 ≤ 𝑛, with indices taken modulo 𝑛. The generalized
Petersen graphwas introduced byWatkins in [14]. Let us note
that the generalized Petersen graph 𝑃(𝑛, 1) is a prism defined
as Cartesian product of a cycle 𝐶𝑛 and a path 𝑃2.

Next theorems give the locating chromatic numbers for
complete graph 𝐾𝑛 and generalized Petersen graph 𝑃(𝑛, 1).

Theorem3 (see [6]). For 𝑛 ≥ 2, the locating chromatic number
of complete graph 𝐾𝑛 is 𝑛.

Theorem 4 (see [8]). The locating chromatic number of
generalized Petersen graph 𝑃(𝑛, 1) is 4 for odd 𝑛 ≥ 3 or 5 for
even 𝑛 ≥ 4.

The barbell graph is constructed by connecting two
arbitrary connected graphs𝐺 and𝐻 by a bridge. In this paper,
firstly we discuss the locating chromatic number for barbell
graph 𝐵𝑚,𝑛 for 𝑚, 𝑛 ≥ 3, where 𝐺 and 𝐻 are complete graphs
on𝑚 and 𝑛 vertices, respectively. Secondly, we determine the
locating chromatic number of barbell graph 𝐵𝑃(𝑛,1) for 𝑛 ≥ 3,
where 𝐺 and𝐻 are two isomorphic copies of the generalized
Petersen graph 𝑃(𝑛, 1).

2. Results and Discussion

Next theoremproves the exact value of the locating chromatic
number for barbell graph 𝐵𝑛,𝑛.

Theorem 5. Let 𝐵𝑛,𝑛 be a barbell graph for 𝑛 ≥ 3. Then the
locating chromatic number of 𝐵𝑛,𝑛 is 𝜒𝐿(𝐵𝑛,𝑛) = 𝑛 + 1.

Proof. Let 𝐵𝑛,𝑛, 𝑛 ≥ 3, be the barbell graph with the vertex
set 𝑉(𝐵𝑛,𝑛) = {𝑢𝑖, V𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set 𝐸(𝐵𝑛,𝑛)
= ⋃𝑛−1𝑖=1 {𝑢𝑖𝑢𝑖+𝑗 : 1 ≤ 𝑗 ≤ 𝑛 − 𝑖} ∪ ⋃𝑛−1𝑖=1 {V𝑖V𝑖+𝑗 : 1 ≤ 𝑗 ≤
𝑛 − 𝑖} ∪ {𝑢𝑛V𝑛}.

First, we determine the lower bound of the locating
chromatic number for barbell graph 𝐵𝑛,𝑛 for 𝑛 ≥ 3. Since
the barbell graph 𝐵𝑛,𝑛 contains two isomorphic copies of a
complete graph 𝐾𝑛, then with respect to Theorem 3 we have
𝜒𝐿(𝐵𝑛,𝑛) ≥ 𝑛. Next, suppose that 𝑐 is a locating coloring

using 𝑛 colors. It is easy to see that the barbell graph 𝐵𝑛,𝑛
contains two vertices with the same color codes, which is a
contradiction. Thus, we have that 𝜒𝐿(𝐵𝑛,𝑛) ≥ 𝑛 + 1.

To show that 𝑛 + 1 is an upper bound for the locating
chromatic number of barbell graph 𝐵𝑛,𝑛 it suffices to prove
the existence of an optimal locating coloring 𝑐 : 𝑉(𝐵𝑛,𝑛) 󳨀→
{1, 2, . . . , 𝑛 + 1}. For 𝑛 ≥ 3 we construct the function 𝑐 in the
following way:

𝑐 (𝑢𝑖) = 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑐 (V𝑖) =
{{{{
{{{{
{

𝑛, for 𝑖 = 1

𝑖, for 2 ≤ 𝑖 ≤ 𝑛 − 1

𝑛 + 1, otherwise.

(1)

By using the coloring 𝑐, we obtain the color codes of 𝑉(𝐵𝑛,𝑛)
as follows:

𝑐Π (𝑢𝑖)

=
{{{{
{{{{
{

0, for 𝑖𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛

2, for (𝑛 + 1)𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛 − 1

1, otherwise,

𝑐Π (V𝑖) =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

0, for 𝑖𝑡ℎ component, 2 ≤ 𝑖 ≤ 𝑛 − 1

for 𝑛𝑡ℎ component, 𝑖 = 1, and

for (𝑛 + 1)𝑡ℎ component, 𝑖 = 𝑛,

3, for 1𝑠𝑡 component, 1 ≤ 𝑖 ≤ 𝑛 − 1

2, for 1𝑠𝑡 component, 𝑖 = 𝑛

1, otherwise.

(2)

Since all vertices in 𝑉(𝐵𝑛,𝑛) have distinct color codes, then
the coloring 𝑐 is desired locating coloring. Thus, 𝜒𝐿(𝐵𝑛,𝑛) =
𝑛 + 1.

Corollary 6. For 𝑛,𝑚 ≥ 3, and 𝑚 ̸= 𝑛, the locating chromatic
number of barbell graph 𝐵𝑚,𝑛 is

𝜒𝐿 (𝐵𝑚,𝑛) = max {𝑚, 𝑛} . (3)

Next theorem provides the exact value of the locating
chromatic number for barbell graph 𝐵𝑃(𝑛,1).

Theorem 7. Let 𝐵𝑃(𝑛,1) be a barbell graph for 𝑛 ≥ 3. Then the
locating chromatic number of 𝐵𝑃(𝑛,1) is
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𝜒𝐿 (𝐵𝑃(𝑛,1)) =
{
{
{

4, for odd 𝑛

5, for even 𝑛.
(4)

Proof. Let 𝐵𝑃(𝑛,1), 𝑛 ≥ 3, be the barbell graph with the vertex
set 𝑉(𝐵𝑃(𝑛,1)) = {𝑢𝑖, 𝑢𝑛+𝑖, 𝑤𝑖, 𝑤𝑛+𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set
𝐸(𝐵𝑃(𝑛,1)) = {𝑢𝑖𝑢𝑖+1, 𝑢𝑛+𝑖𝑢𝑛+𝑖+1, 𝑤𝑖𝑤𝑖+1, 𝑤𝑛+𝑖𝑤𝑛+𝑖+1 : 1 ≤ 𝑖 ≤
𝑛− 1} ∪ {𝑢𝑛𝑢1, 𝑢2𝑛𝑢𝑛+1, 𝑤𝑛𝑤1, 𝑤2𝑛𝑤𝑛+1} ∪ {𝑢𝑖𝑢𝑛+𝑖, 𝑤𝑖𝑤𝑛+𝑖 : 1 ≤
𝑖 ≤ 𝑛} ∪ {𝑢𝑛𝑤𝑛}.

Let us distinguish two cases.

Case 1 (𝑛 odd). According to Theorem 4 for 𝑛 odd we have
𝜒𝐿(𝐵𝑃(𝑛,1)) ≥ 4. To show that 4 is an upper bound for the
locating chromatic number of the barbell graph 𝐵𝑃(𝑛,1) we
describe an locating coloring 𝑐 using 4 colors as follows:

𝑐 (𝑢𝑖) =
{{{{
{{{{
{

1, for 𝑖 = 1

3, for even 𝑖, 𝑖 ≥ 2

4, for odd 𝑖, 𝑖 ≥ 3.

𝑐 (𝑢𝑛+𝑖) =
{{{{
{{{{
{

2, for 𝑖 = 1

3, for odd 𝑖, 𝑖 ≥ 3

4, for even 𝑖, 𝑖 ≥ 2.

𝑐 (𝑤𝑖) =
{{{{
{{{{
{

1, for odd 𝑖, 𝑖 ≤ 𝑛 − 2

2, for even 𝑖, 𝑖 ≤ 𝑛 − 1

3, for 𝑖 = 𝑛.

𝑐 (𝑤𝑛+𝑖) =
{{{{
{{{{
{

1, for even 𝑖, 𝑖 ≤ 𝑛 − 1

2, for odd 𝑖, 𝑖 ≤ 𝑛 − 2

4, for 𝑖 = 𝑛.

(5)

For 𝑛 odd the color codes of 𝑉(𝐵𝑃(𝑛,1)) are

𝑐Π (𝑢𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛 + 1
2

𝑖 − 1, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, 𝑖 > 𝑛 + 1
2

𝑛 − 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1
2

0, for 3𝑡ℎ component, 𝑖 even, 𝑖 ≥ 2

for 4𝑡ℎ component, 𝑖 odd, 𝑖 ≥ 3

1, otherwise.

𝑐Π (𝑢𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛 + 1
2

𝑖 − 1, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1
2

𝑛 − 𝑖 + 2, for 1𝑠𝑡 component, 𝑖 > 𝑛 + 1
2

0, for 4𝑡ℎ component, 𝑖 even, 𝑖 ≥ 2

for 3𝑡ℎ component, 𝑖 odd, 𝑖 ≥ 3

1, otherwise.

𝑐Π (𝑤𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 3𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑛 − 𝑖, for 3𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

0, for 2𝑛𝑑 component, 𝑖 even, 𝑖 ≤ 𝑛 − 1

for 1𝑠𝑡 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2

1, otherwise.

𝑐Π (𝑤𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

𝑖, for 4𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑖 + 1, for 3𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑛 − 𝑖, for 4𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 3𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

0, for 1𝑠𝑡 component, 𝑖 even, 𝑖 ≤ 𝑛 − 1

for 2𝑛𝑑 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2

1, otherwise.
(6)

Since all vertices in 𝐵𝑃(𝑛,1) have distinct color codes, then the
coloring 𝑐 with 4 colors is an optimal locating coloring and it
proves that 𝜒𝐿(𝐵𝑃(𝑛,1)) ≤ 4.

Case 2 (𝑛 even). In view of the lower bound fromTheorem 7
it suffices to prove the existence of a locating coloring 𝑐 :
𝑉(𝐵𝑃(𝑛,1)) 󳨀→ {1, 2, . . . , 5} such that all vertices in 𝐵𝑃(𝑛,1)
have distinct color codes. For 𝑛 even, 𝑛 ≥ 4, we describe the
locating coloring in the following way:

𝑐 (𝑢𝑖) =

{{{{{{{
{{{{{{{
{

1, for 𝑖 = 1

3, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 2

4, for odd 𝑖, 3 ≤ 𝑖 ≤ 𝑛 − 1

5, for 𝑖 = 𝑛.
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𝑐 (𝑢𝑛+𝑖) =
{{{{
{{{{
{

2, for 𝑖 = 1

3, for odd 𝑖, 𝑖 ≥ 3

4, for even 𝑖, 𝑖 ≥ 2.

𝑐 (𝑤𝑖) =

{{{{{{{
{{{{{{{
{

1, for odd 𝑖, 𝑖 ≤ 𝑛 − 3

2, for even 𝑖, 𝑖 ≤ 𝑛 − 2

3, for 𝑖 = 𝑛 − 1

4, for 𝑖 = 𝑛.

𝑐 (𝑤𝑛+𝑖) =
{{{{
{{{{
{

1, for even 𝑖, 𝑖 ≤ 𝑛 − 2

2, for odd 𝑖, 𝑖 ≤ 𝑛 − 1

5, for 𝑖 = 𝑛.
(7)

In fact, our locating coloring of 𝐵𝑃(𝑛,1), 𝑛 even, has been
chosen in such a way that the color codes are

𝑐Π (𝑢𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 2𝑛𝑑 and 5𝑡ℎ components, 𝑖 ≤ 𝑛
2

𝑖 − 1, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛
2

𝑛 − 𝑖, for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛
2

0, for 3𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 2

for 4𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1

2, for 4𝑡ℎ component, 𝑖 = 1

for 3𝑡ℎ component, 𝑖 = 𝑛

1, otherwise.

𝑐Π (𝑢𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛
2

𝑖 − 1, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛
2

𝑛 + 𝑖, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑛 − 𝑖 + 1, for 2𝑛𝑑 and 5𝑡ℎ components, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 2, for 1𝑡ℎ component, 𝑖 > 𝑛
2

0, for 3𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1

for 4𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛

2, for 3𝑡ℎ component, 𝑖 = 1

1, otherwise.

𝑐Π (𝑤𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 4𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 1, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

for 3𝑡ℎ component, 𝑖 ≤ 𝑛
2 − 1

𝑛 − 𝑖, for 4𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 − 1, for 3𝑡ℎ component, 𝑛
2 ≤ 𝑖 ≤ 𝑛 − 1

0, for 1𝑠𝑡 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 3

for 2𝑛𝑑 component, 𝑖 even, 𝑖 ≤ 𝑛 − 2

2, for 1𝑠𝑡 component, 𝑖 = 𝑛 − 1

for 2𝑛𝑑 component, 𝑖 = 𝑛

1, otherwise.

𝑐Π (𝑤𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 2 for 3𝑡ℎ component, 𝑖 ≤ 𝑛
2 − 1

𝑛 − 𝑖, for 3𝑡ℎ component, 𝑛
2 ≤ 𝑖 ≤ 𝑛 − 1

for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 > 𝑛
2

0, for 1𝑠𝑡 component, 𝑖 even, 𝑖 ≤ 𝑛 − 2

for 2𝑛𝑑 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 1

2, for 1𝑠𝑡 and 3𝑡ℎ components, 𝑖 = 𝑛

1, otherwise.
(8)

Since for 𝑛 even all vertices of 𝐵𝑃(𝑛,1) have distinct color codes
then our locating coloring has the required properties and
𝜒𝐿(𝐵𝑃(𝑛,1)) ≤ 5. This concludes the proof.
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The locating chromatic number of a graph 𝐺 is defined as the cardinality of a minimum resolving partition of the vertex set 𝑉(𝐺)
such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in 𝐺 are not contained
in the same partition class. In this case, the coordinate of a vertex V in 𝐺 is expressed in terms of the distances of V to all partition
classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic
number for two families of barbell graphs.

1. Introduction

The partition dimension was introduced by Chartrand et al.
[1] as the development of the concept of metric dimension.
The application of metric dimension plays a role in robotic
navigation [2], the optimization of threat detecting sensors
[3], and chemical data classification [4]. The concept of
locating chromatic number is a marriage between the parti-
tion dimension and coloring of a graph, first introduced by
Chartrand et al in 2002 [5]. The locating chromatic number
of a graph is a newly interesting topic to study because there
is no general theorem for determining the locating chromatic
number of any graph.

Let 𝐺 = (𝑉, 𝐸) be a connected graph. We define the
distance as theminimum length of path connecting vertices 𝑢
and V in𝐺, denoted by 𝑑(𝑢, V). A 𝑘-coloring of𝐺 is a function
𝑐 : 𝑉(𝐺) 󳨀→ {1, 2, . . . , 𝑘}, where 𝑐(𝑢) ̸= 𝑐(V) for any two
adjacent vertices 𝑢 and V in 𝐺. Thus, the coloring 𝑐 induces
a partition Π of 𝑉(𝐺) into 𝑘 color classes (independent sets)
𝐶1, 𝐶2, . . . , 𝐶𝑘, where 𝐶𝑖 is the set of all vertices colored by
the color 𝑖 for 1 ≤ 𝑖 ≤ 𝑘. The color code 𝑐Π(V) of a vertex V in
𝐺 is defined as the 𝑘-vector (𝑑(V, 𝐶1), 𝑑(V, 𝐶2), . . . , 𝑑(V, 𝐶𝑘)),
where 𝑑(V, 𝐶𝑖) = min{𝑑(V, 𝑥) : 𝑥 ∈ 𝐶𝑖} for 1 ≤ 𝑖 ≤ 𝑘. The
𝑘-coloring 𝑐 of 𝐺 such that all vertices have different color
codes is called a locating coloring of 𝐺. The locating chromatic

number of 𝐺, denoted by 𝜒𝐿(𝐺), is the minimum 𝑘 such that
𝐺 has a locating coloring.

The following theorem is a basic theorem proved by
Chartrand et al. [5]. The neighborhood of vertex 𝑢 in a
connected graph 𝐺, denoted by 𝑁(𝑢), is the set of vertices
adjacent to 𝑢.

Theorem 1 (see [5]). Let 𝑐 be a locating coloring in a connected
graph 𝐺. If 𝑢 and V are distinct vertices of 𝐺 such that 𝑑(𝑢, 𝑡) =
𝑑(V, 𝑡) for all 𝑡 ∈ 𝑉(𝐺)−{𝑢, V}, then 𝑐(𝑢) ̸= 𝑐(V). In particular, if
𝑢 and V are non-adjacent vertices of 𝐺 such that𝑁(𝑢) = 𝑁(V),
then 𝑐(𝑢) ̸= 𝑐(V).

The following corollary gives the lower bound of the
locating chromatic number for every connected graph 𝐺.

Corollary 2 (see [5]). If 𝐺 is a connected graph and there is a
vertex adjacent to 𝑘 leaves, then 𝜒𝐿(𝐺) ≥ 𝑘 + 1.

There are some interesting results related to the determi-
nation of the locating chromatic number of some graphs.The
results are obtained by focusing on certain families of graphs.
Chartrand et al. in [5] have determined all graphs of order
𝑛 with locating chromatic number 𝑛, namely, a complete
multipartite graph of 𝑛 vertices. Moreover, Chartrand et
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al. [6] have succeeded in constructing tree on 𝑛 vertices,
𝑛 ≥ 5, with locating chromatic numbers varying from 3
to 𝑛, except for (𝑛 − 1). Then Behtoei and Omoomi [7]
have obtained the locating chromatic number of the Kneser
graphs. Recently, Asmiati et al. [8] obtained the locating
chromatic number of the generalized Petersen graph 𝑃(𝑛, 1)
for 𝑛 ≥ 3. Baskoro and Asmiati [9] have characterized all
trees with locating chromatic number 3. In [10] all trees
of order 𝑛 with locating chromatic number 𝑛 − 1 were
characterized, for any integers 𝑛 and 𝑡, where 𝑛 > 𝑡 + 3
and 2 ≤ 𝑡 < 𝑛/2. Asmiati et al. in [11] have succeeded in
determining the locating chromatic number of homogeneous
amalgamation of stars and their monotonicity properties and
in [12] for firecracker graphs. Next, Wellyyanti et al. [13]
determined the locating chromatic number for complete 𝑛-
ary trees.

The generalized Petersen graph 𝑃(𝑛,𝑚), 𝑛 ≥ 3 and 1 ≤
𝑚 ≤ ⌊(𝑛 − 1)/2⌋, consists of an outer 𝑛-cycle 𝑦1, 𝑦2, . . . , 𝑦𝑛,
a set of 𝑛 spokes 𝑦𝑖𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, and 𝑛 edges 𝑥𝑖𝑥𝑖+𝑚,
1 ≤ 𝑖 ≤ 𝑛, with indices taken modulo 𝑛. The generalized
Petersen graphwas introduced byWatkins in [14]. Let us note
that the generalized Petersen graph 𝑃(𝑛, 1) is a prism defined
as Cartesian product of a cycle 𝐶𝑛 and a path 𝑃2.

Next theorems give the locating chromatic numbers for
complete graph 𝐾𝑛 and generalized Petersen graph 𝑃(𝑛, 1).

Theorem3 (see [6]). For 𝑛 ≥ 2, the locating chromatic number
of complete graph 𝐾𝑛 is 𝑛.

Theorem 4 (see [8]). The locating chromatic number of
generalized Petersen graph 𝑃(𝑛, 1) is 4 for odd 𝑛 ≥ 3 or 5 for
even 𝑛 ≥ 4.

The barbell graph is constructed by connecting two
arbitrary connected graphs𝐺 and𝐻 by a bridge. In this paper,
firstly we discuss the locating chromatic number for barbell
graph 𝐵𝑚,𝑛 for 𝑚, 𝑛 ≥ 3, where 𝐺 and 𝐻 are complete graphs
on𝑚 and 𝑛 vertices, respectively. Secondly, we determine the
locating chromatic number of barbell graph 𝐵𝑃(𝑛,1) for 𝑛 ≥ 3,
where 𝐺 and𝐻 are two isomorphic copies of the generalized
Petersen graph 𝑃(𝑛, 1).

2. Results and Discussion

Next theoremproves the exact value of the locating chromatic
number for barbell graph 𝐵𝑛,𝑛.

Theorem 5. Let 𝐵𝑛,𝑛 be a barbell graph for 𝑛 ≥ 3. Then the
locating chromatic number of 𝐵𝑛,𝑛 is 𝜒𝐿(𝐵𝑛,𝑛) = 𝑛 + 1.

Proof. Let 𝐵𝑛,𝑛, 𝑛 ≥ 3, be the barbell graph with the vertex
set 𝑉(𝐵𝑛,𝑛) = {𝑢𝑖, V𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set 𝐸(𝐵𝑛,𝑛)
= ⋃𝑛−1𝑖=1 {𝑢𝑖𝑢𝑖+𝑗 : 1 ≤ 𝑗 ≤ 𝑛 − 𝑖} ∪ ⋃𝑛−1𝑖=1 {V𝑖V𝑖+𝑗 : 1 ≤ 𝑗 ≤
𝑛 − 𝑖} ∪ {𝑢𝑛V𝑛}.

First, we determine the lower bound of the locating
chromatic number for barbell graph 𝐵𝑛,𝑛 for 𝑛 ≥ 3. Since
the barbell graph 𝐵𝑛,𝑛 contains two isomorphic copies of a
complete graph 𝐾𝑛, then with respect to Theorem 3 we have
𝜒𝐿(𝐵𝑛,𝑛) ≥ 𝑛. Next, suppose that 𝑐 is a locating coloring

using 𝑛 colors. It is easy to see that the barbell graph 𝐵𝑛,𝑛
contains two vertices with the same color codes, which is a
contradiction. Thus, we have that 𝜒𝐿(𝐵𝑛,𝑛) ≥ 𝑛 + 1.

To show that 𝑛 + 1 is an upper bound for the locating
chromatic number of barbell graph 𝐵𝑛,𝑛 it suffices to prove
the existence of an optimal locating coloring 𝑐 : 𝑉(𝐵𝑛,𝑛) 󳨀→
{1, 2, . . . , 𝑛 + 1}. For 𝑛 ≥ 3 we construct the function 𝑐 in the
following way:

𝑐 (𝑢𝑖) = 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑐 (V𝑖) =
{{{{
{{{{
{

𝑛, for 𝑖 = 1

𝑖, for 2 ≤ 𝑖 ≤ 𝑛 − 1

𝑛 + 1, otherwise.

(1)

By using the coloring 𝑐, we obtain the color codes of 𝑉(𝐵𝑛,𝑛)
as follows:

𝑐Π (𝑢𝑖)

=
{{{{
{{{{
{

0, for 𝑖𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛

2, for (𝑛 + 1)𝑡ℎ component, 1 ≤ 𝑖 ≤ 𝑛 − 1

1, otherwise,

𝑐Π (V𝑖) =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

0, for 𝑖𝑡ℎ component, 2 ≤ 𝑖 ≤ 𝑛 − 1

for 𝑛𝑡ℎ component, 𝑖 = 1, and

for (𝑛 + 1)𝑡ℎ component, 𝑖 = 𝑛,

3, for 1𝑠𝑡 component, 1 ≤ 𝑖 ≤ 𝑛 − 1

2, for 1𝑠𝑡 component, 𝑖 = 𝑛

1, otherwise.

(2)

Since all vertices in 𝑉(𝐵𝑛,𝑛) have distinct color codes, then
the coloring 𝑐 is desired locating coloring. Thus, 𝜒𝐿(𝐵𝑛,𝑛) =
𝑛 + 1.

Corollary 6. For 𝑛,𝑚 ≥ 3, and 𝑚 ̸= 𝑛, the locating chromatic
number of barbell graph 𝐵𝑚,𝑛 is

𝜒𝐿 (𝐵𝑚,𝑛) = max {𝑚, 𝑛} . (3)

Next theorem provides the exact value of the locating
chromatic number for barbell graph 𝐵𝑃(𝑛,1).

Theorem 7. Let 𝐵𝑃(𝑛,1) be a barbell graph for 𝑛 ≥ 3. Then the
locating chromatic number of 𝐵𝑃(𝑛,1) is
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𝜒𝐿 (𝐵𝑃(𝑛,1)) =
{
{
{

4, for odd 𝑛

5, for even 𝑛.
(4)

Proof. Let 𝐵𝑃(𝑛,1), 𝑛 ≥ 3, be the barbell graph with the vertex
set 𝑉(𝐵𝑃(𝑛,1)) = {𝑢𝑖, 𝑢𝑛+𝑖, 𝑤𝑖, 𝑤𝑛+𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and the edge set
𝐸(𝐵𝑃(𝑛,1)) = {𝑢𝑖𝑢𝑖+1, 𝑢𝑛+𝑖𝑢𝑛+𝑖+1, 𝑤𝑖𝑤𝑖+1, 𝑤𝑛+𝑖𝑤𝑛+𝑖+1 : 1 ≤ 𝑖 ≤
𝑛− 1} ∪ {𝑢𝑛𝑢1, 𝑢2𝑛𝑢𝑛+1, 𝑤𝑛𝑤1, 𝑤2𝑛𝑤𝑛+1} ∪ {𝑢𝑖𝑢𝑛+𝑖, 𝑤𝑖𝑤𝑛+𝑖 : 1 ≤
𝑖 ≤ 𝑛} ∪ {𝑢𝑛𝑤𝑛}.

Let us distinguish two cases.

Case 1 (𝑛 odd). According to Theorem 4 for 𝑛 odd we have
𝜒𝐿(𝐵𝑃(𝑛,1)) ≥ 4. To show that 4 is an upper bound for the
locating chromatic number of the barbell graph 𝐵𝑃(𝑛,1) we
describe an locating coloring 𝑐 using 4 colors as follows:

𝑐 (𝑢𝑖) =
{{{{
{{{{
{

1, for 𝑖 = 1

3, for even 𝑖, 𝑖 ≥ 2

4, for odd 𝑖, 𝑖 ≥ 3.

𝑐 (𝑢𝑛+𝑖) =
{{{{
{{{{
{

2, for 𝑖 = 1

3, for odd 𝑖, 𝑖 ≥ 3

4, for even 𝑖, 𝑖 ≥ 2.

𝑐 (𝑤𝑖) =
{{{{
{{{{
{

1, for odd 𝑖, 𝑖 ≤ 𝑛 − 2

2, for even 𝑖, 𝑖 ≤ 𝑛 − 1

3, for 𝑖 = 𝑛.

𝑐 (𝑤𝑛+𝑖) =
{{{{
{{{{
{

1, for even 𝑖, 𝑖 ≤ 𝑛 − 1

2, for odd 𝑖, 𝑖 ≤ 𝑛 − 2

4, for 𝑖 = 𝑛.

(5)

For 𝑛 odd the color codes of 𝑉(𝐵𝑃(𝑛,1)) are

𝑐Π (𝑢𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛 + 1
2

𝑖 − 1, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, 𝑖 > 𝑛 + 1
2

𝑛 − 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1
2

0, for 3𝑡ℎ component, 𝑖 even, 𝑖 ≥ 2

for 4𝑡ℎ component, 𝑖 odd, 𝑖 ≥ 3

1, otherwise.

𝑐Π (𝑢𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛 + 1
2

𝑖 − 1, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1
2

𝑛 − 𝑖 + 2, for 1𝑠𝑡 component, 𝑖 > 𝑛 + 1
2

0, for 4𝑡ℎ component, 𝑖 even, 𝑖 ≥ 2

for 3𝑡ℎ component, 𝑖 odd, 𝑖 ≥ 3

1, otherwise.

𝑐Π (𝑤𝑖)

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝑖, for 3𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑛 − 𝑖, for 3𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

0, for 2𝑛𝑑 component, 𝑖 even, 𝑖 ≤ 𝑛 − 1

for 1𝑠𝑡 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2

1, otherwise.

𝑐Π (𝑤𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

𝑖, for 4𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑖 + 1, for 3𝑡ℎ component, 𝑖 ≤ 𝑛 − 1
2

𝑛 − 𝑖, for 4𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

𝑛 − 𝑖 + 1, for 3𝑡ℎ component, 𝑖 ≥ 𝑛 + 1
2

0, for 1𝑠𝑡 component, 𝑖 even, 𝑖 ≤ 𝑛 − 1

for 2𝑛𝑑 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2

1, otherwise.
(6)

Since all vertices in 𝐵𝑃(𝑛,1) have distinct color codes, then the
coloring 𝑐 with 4 colors is an optimal locating coloring and it
proves that 𝜒𝐿(𝐵𝑃(𝑛,1)) ≤ 4.

Case 2 (𝑛 even). In view of the lower bound fromTheorem 7
it suffices to prove the existence of a locating coloring 𝑐 :
𝑉(𝐵𝑃(𝑛,1)) 󳨀→ {1, 2, . . . , 5} such that all vertices in 𝐵𝑃(𝑛,1)
have distinct color codes. For 𝑛 even, 𝑛 ≥ 4, we describe the
locating coloring in the following way:

𝑐 (𝑢𝑖) =

{{{{{{{
{{{{{{{
{

1, for 𝑖 = 1

3, for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 2

4, for odd 𝑖, 3 ≤ 𝑖 ≤ 𝑛 − 1

5, for 𝑖 = 𝑛.
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𝑐 (𝑢𝑛+𝑖) =
{{{{
{{{{
{

2, for 𝑖 = 1

3, for odd 𝑖, 𝑖 ≥ 3

4, for even 𝑖, 𝑖 ≥ 2.

𝑐 (𝑤𝑖) =

{{{{{{{
{{{{{{{
{

1, for odd 𝑖, 𝑖 ≤ 𝑛 − 3

2, for even 𝑖, 𝑖 ≤ 𝑛 − 2

3, for 𝑖 = 𝑛 − 1

4, for 𝑖 = 𝑛.

𝑐 (𝑤𝑛+𝑖) =
{{{{
{{{{
{

1, for even 𝑖, 𝑖 ≤ 𝑛 − 2

2, for odd 𝑖, 𝑖 ≤ 𝑛 − 1

5, for 𝑖 = 𝑛.
(7)

In fact, our locating coloring of 𝐵𝑃(𝑛,1), 𝑛 even, has been
chosen in such a way that the color codes are

𝑐Π (𝑢𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 2𝑛𝑑 and 5𝑡ℎ components, 𝑖 ≤ 𝑛
2

𝑖 − 1, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛
2

𝑛 − 𝑖, for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 1𝑠𝑡 component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛
2

0, for 3𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 2

for 4𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1

2, for 4𝑡ℎ component, 𝑖 = 1

for 3𝑡ℎ component, 𝑖 = 𝑛

1, otherwise.

𝑐Π (𝑢𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 1𝑠𝑡 component, 𝑖 ≤ 𝑛
2

𝑖 − 1, for 2𝑛𝑑 component, 𝑖 ≤ 𝑛
2

𝑛 + 𝑖, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑛 − 𝑖 + 1, for 2𝑛𝑑 and 5𝑡ℎ components, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 2, for 1𝑡ℎ component, 𝑖 > 𝑛
2

0, for 3𝑡ℎ component, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1

for 4𝑡ℎ component, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛

2, for 3𝑡ℎ component, 𝑖 = 1

1, otherwise.

𝑐Π (𝑤𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 4𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 1, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

for 3𝑡ℎ component, 𝑖 ≤ 𝑛
2 − 1

𝑛 − 𝑖, for 4𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 − 1, for 3𝑡ℎ component, 𝑛
2 ≤ 𝑖 ≤ 𝑛 − 1

0, for 1𝑠𝑡 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 3

for 2𝑛𝑑 component, 𝑖 even, 𝑖 ≤ 𝑛 − 2

2, for 1𝑠𝑡 component, 𝑖 = 𝑛 − 1

for 2𝑛𝑑 component, 𝑖 = 𝑛

1, otherwise.

𝑐Π (𝑤𝑛+𝑖)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑖, for 5𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 1, for 4𝑡ℎ component, 𝑖 ≤ 𝑛
2

𝑖 + 2 for 3𝑡ℎ component, 𝑖 ≤ 𝑛
2 − 1

𝑛 − 𝑖, for 3𝑡ℎ component, 𝑛
2 ≤ 𝑖 ≤ 𝑛 − 1

for 5𝑡ℎ component, 𝑖 > 𝑛
2

𝑛 − 𝑖 + 1, for 4𝑡ℎ component, 𝑖 > 𝑛
2

0, for 1𝑠𝑡 component, 𝑖 even, 𝑖 ≤ 𝑛 − 2

for 2𝑛𝑑 component, 𝑖 odd, 𝑖 ≤ 𝑛 − 1

2, for 1𝑠𝑡 and 3𝑡ℎ components, 𝑖 = 𝑛

1, otherwise.
(8)

Since for 𝑛 even all vertices of 𝐵𝑃(𝑛,1) have distinct color codes
then our locating coloring has the required properties and
𝜒𝐿(𝐵𝑃(𝑛,1)) ≤ 5. This concludes the proof.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Theauthors are thankful toDRPMDikti for the Fundamental
Grant 2018.



International Journal of Mathematics and Mathematical Sciences 5

References

[1] G. Chartrand, P. Zhang, and E. Salehi, “On the partition
dimension of a graph,” Congressus Numerantium, vol. 130, pp.
157–168, 1998.

[2] V. Saenpholphat and P. Zhang, “Conditional resolvability: a
survey,” International Journal of Mathematics andMathematical
Sciences, vol. 38, pp. 1997–2017, 2004.

[3] M. Johnson, “Structure-activity maps for visualizing the graph
variables arising in drug design,” Journal of Biopharmaceutical
Statistics, vol. 3, no. 2, pp. 203–236, 1993.

[4] G. Chartrand and P. Zhang, “THE theory and applications of
resolvability in graphs. A survey,” vol. 160, pp. 47–68.

[5] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P.
Zhang, “The locating-chromatic number of a graph,” Bulletin
of the Institute of Combinatorics and Its Applications, vol. 36, pp.
89–101, 2002.

[6] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P.
Zhang, “Graphs of order n-1,” Discrete Mathematics, vol. 269,
no. 1-3, pp. 65–79, 2003.

[7] A. Behtoei and B.Omoomi, “On the locating chromatic number
of Kneser graphs,” Discrete Applied Mathematics: The Journal
of Combinatorial Algorithms, Informatics and Computational
Sciences, vol. 159, no. 18, pp. 2214–2221, 2011.

[8] Asmiati, Wamiliana, Devriyadi, and L. Yulianti, “On some
petersen graphs having locating chromatic number four or five,”
Far East Journal of Mathematical Sciences, vol. 102, no. 4, pp.
769–778, 2017.

[9] E. T. Baskoro and Asmiati, “Characterizing all trees with
locating-chromatic number 3,” Electronic Journal of Graph
Theory and Applications. EJGTA, vol. 1, no. 2, pp. 109–117, 2013.

[10] D. K. Syofyan, E. T. Baskoro, and H. Assiyatun, “Trees with
certain locating-chromatic number,” Journal of Mathematical
and Fundamental Sciences, vol. 48, no. 1, pp. 39–47, 2016.

[11] Asmiati, H. Assiyatun, and E. T. Baskoro, “Locating-chromatic
number of amalgamation of stars,” ITB Journal of Science, vol.
43A, no. 1, pp. 1–8, 2011.

[12] Asmiati, H. Assiyatun, E. T. Baskoro, D. Suprijanto, R. Siman-
juntak, and S. Uttunggadewa, “The locating-chromatic number
of firecracker graphs,” Far East Journal of Mathematical Sciences
(FJMS), vol. 63, no. 1, pp. 11–23, 2012.

[13] D. Welyyanti, E. T. Baskoro, R. Simanjuntak, and S. Uttung-
gadewa, “On locating-chromatic number of complete n-ary
tree,” AKCE International Journal of Graphs and Combinatorics,
vol. 10, no. 3, pp. 309–315, 2013.

[14] M. E. Watkins, “A theorem on tait colorings with an application
to the generalized Petersen graphs,” Journal of Combinatorial
Theory, vol. 6, no. 2, pp. 152–164, 1969.


	20 JanSampul Hindawi.pdf (p.1-2)
	20 Januari CorresAuthor barbell Graph.pdf (p.3-70)
	CA 22 Des jam 1.pdf (p.3-63)
	1-17 published lamp.pdf (p.1-20)
	1-17 published.pdf (p.1-19)
	1-17.pdf (p.1-17)
	CA2.pdf (p.1-8)
	CA1.pdf (p.1-7)
	Corresponding lengkap.pdf (p.1-46)
	Corresponding Hindawi.pdf (p.1-17)



	CA3.pdf (p.9-58)






