Similarity Report

1. Priority Analysis of Regional Rehabilita samsul bakri tion.pdf WORD COUNT CHARACTER COUNT

5049 Words 22008 Characters PAGE COUNT FILE SIZE 14 Pages 876.1KB SUBMISSION DATE **REPORT DATE** Jan 17, 2023 8:07 AM GMT+7 Jan 17, 2023 8:07 AM GMT+7

• 15% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 13% Internet database
- Crossref database

PAPER NAME

11% Submitted Works database

• Excluded from Similarity Report

- Bibliographic material
- Cited material
- Manually excluded sources

- 14% Publications database
- Crossref Posted Content database
- Ouoted material
- Small Matches (Less then 10 words)

AUTHOR

PAPER • OPEN ACCESS

Priority Analysis of Regional Rehabilitation Activities Irrigation Way Apu System by using Simple Additive Weighting (SAW) Method

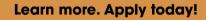
To cite this article: L Virgianti et al 2022 IOP Conf. Ser.: Earth Environ. Sci. 1012 012008

View the article online for updates and enhancements.

You may also like

Interconnects Zhenguo Yang, Guanguang Xia, Steve P. Simner et al.

ECS Toyota Young Investigator Fellowship



For young professionals and scholars pursuing research in batteries, fuel cells and hydrogen, and future sustainable technologies.

At least one \$50,000 fellowship is available annually. More than \$1.4 million awarded since 2015!

Application deadline: January 31, 2023

This content was downloaded from IP address 103.3.46.176 on 12/01/2023 at 09:00

Priority Analysis of Regional Rehabilitation Activities Irrigation Way Apu System by using Simple Additive Weighting (SAW) Method

L Virgianti¹, A Setiawan², Tugiyono³ and S Bakri

Department of Environmental Science, Universitas Lampung, Bandar Lampung, Indonesia

Email: lidiavirgianti62@gmail.com¹, aslulila@yahoo.com², tugiyono64@unila.ac.id³

Abstract: Currently, the facilities and infrastructure of the Way Apu System Irrigation Area have degraded in function, thus disrupting the level of agricultural productivity in Buru Regency. Therefore, to restore the function of irrigation infrastructure, it is necessary to carry out rehabilitation activities. Ideally, rehabilitation activities should be carried out comprehensively and simultaneously, but it is necessary to select priority activities due to budget constraints. Various methods can select activity priorities, but in this study, the simple additive weighting method is used, namely the method by finding the weighted summation of the performance ratings of each alternative on all attributes. This study showed that the activity that became the priority with a score of 0.707 was the rehabilitation of the Way Pamali weir. Meanwhile, other activities can be carried out according to the available budget.

1. Introduction

The need for food from time to time is increasing in line with the increasing population growth rate. In Maluku Province, Buru Regency is one of the centers for producing food crops with a harvested area of 13,111.04 Ha in 2020 with productivity of 38.57 tons/ha [1] In Buru Regency, there is an irrigation area with the central authority, namely the DI Way Apu system (Sub DI. Way Pamali, Way Leman, and Way Lo) with a total potential area of 4,174 ha and a functional area of 1,007 ha. The condition of irrigation infrastructure in the Way Apu DI system is currently experiencing degradation due to the age of the building and the high sedimentation in the Way Apu river; this causes a decrease in the performance of the irrigation network so that irrigation network rehabilitation is needed.Ideally, rehabilitation activities should be carried out comprehensively and simultaneously so that the irrigation system is maintained. However, in reality, the government budget is minimal, so it is necessary to select a priority scale for the items of rehabilitation work to be carried out.

To maintain the function of irrigation, it is necessary to carry out rehabilitation activities periodically. The practice in the field so far has distinguished light, moderate and severe rehabilitation. This rehabilitation classification is characterized by the level of technical difficulty, the scope of work, level of damage, and the number of rehabilitation costs.

Minor rehabilitation is carried out due to the accumulation of residual damage that cannot be repaired during annual maintenance; it used to be called special maintenance (special maintenance)

Rehabilitation is being carried out due to accumulated damage and neglect of OP activities over an intermediate period.

Heavy rehabilitation is usually carried out due to natural disasters and neglect of OP activities for an extended period, so irrigation performance falls below the economic performance limit. The experience so far is that several DI are rehabilitated once every 20 to 25 years.)[2]

1.1 Simple Additive Weighting Method

The SAW method is often also known as the weighted addition method.² he basic concept of the SAW method is to find the weighted sum of the performance ratings on each alternative for all attributes.

The steps for modeling decision support using the SAW method)[2]and)[3] are as follows:

- Determining the criteria that will be used as a reference in decision-making is symbolized by Ci.
- Determine the suitability rating of each alternative on each criterion •
- Make a decision matrix based on the criteria (Ci), then normalize the matrix based on the equations that are adjusted to the type of attribute in order to obtain a normalized matrix. The first step in the SAW method is to make a decision matrix for each alternative for each attribute of Cij

$$C_{ii} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{24} & x_{22} \end{pmatrix}$$

- $Cij = \begin{pmatrix} x_{21} & x_{22} & \dots \\ x_{31} & x_{23} & \dots \end{pmatrix}$ Betermine the weight value that shows the relative importance of each attribute (WW = $\{w_i, w_i, \dots, w_n\}$ Perform normalizing the decision matrix (X) to a scale that can be compared with all existing alternative ratings. The normalized matrix R is obtained from the equation[4]

$$Rij = \frac{x_{ij}}{Max x_{ij}} \text{ If j is a benefit attribute}$$

$$Rij = \frac{x_{ij}}{Min x_{ij}} \text{ If } j \text{ is a cost attribute (cost)}$$

The final result is obtained from the ranking process, namely the addition of the normalized matrix multiplication R with the weight vector so that the largest value is chosen as the best alternative (Ai) as the solution

$$A_i = \sum_{j=1}^n w_j r_{ij} \dots \dots \dots \dots \dots \dots \dots \dots$$

2. Methods

This study begins with identifying problems, namely the decline in the function of irrigation facilities and infrastructure that requires rehabilitation activities. However, on the one hand, there are limited costs/budgets for next year.

Furthermore, a literature study and secondary data collection were carried out from previous studies.

After the data is collected, the weighting and priority scale calculations are carried out using the SAW method.

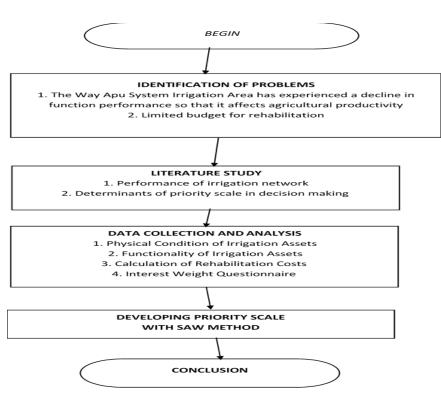


Figure 1. Study Thought

3. Results and discussions

3.1. Assessment of Network Performance Conditions and Rehabilitation Costs

Assessment of the physical condition of buildings or irrigation networks is obtained from visual observations by comparing the amount of damage to existing buildings. Meanwhile, the authority for irrigation management follows the existing regulations, namely for weirs up to primary canals, it is the authority of the River Basin Center, while the network. The secondary becomes the authority of the Provincial Government, and the Regency/City government carries out the tertiary network. Maluku BWS Program Planning. Because these rehabilitation activities aFor the calculation of the rehabilitation costs of each building obtained from the DED Study. The River Basin Center carried out upgrading and Rehabilitation of the Way Apu System by the PPK, so the priority distribution of authority was divided as follows:

Table 1. Priority Value of Authority						
No	Authority	Priority Value				
1	Center	3				
2	Province	2				
3	County/City	1				

The values of performance, functionality, authority, and rehabilitation costs for each building are shown in Table 2

Table 2. Rehabilitation Costs and Performance Value of Irrigation Buildings IN Way API	System	
--	--------	--

SUB DI	le 2. Rehabilitation Costs ACTIVITY		PERFORMANC	FUNCTI	AUTHORITY
		COST 1 \$ = Rp14,250,00	Ε	0	
		Kp14,230,00		NALITY	
SUB DI	WAY PAMALI		69%	64%	3
WAY	MAIN CHANNEL	276,296.22			
PAMALI	NORMALIZATION	_, , , , , , , ,			
	WORK, $L = 5.445 \text{ m}$		000/	0.40/	2
	LEFT APU WAY		89%	84%	2
	SECONDARY	321,609.81			
	CHANNEL WORK, $L = 6,338 \text{ m}$				
	GRANDE		95%	90%	2
	SECONDARY	56,781.54	9370	9070	Z
	CHANNEL WORK	50,781.54			
	GRANDENG		95%	90%	1
	TERTIER		JJ 70	2070	1
	CHANNEL WORK	3,770.21			
	B.Gr.1 Ki 2, $L =$	3,770.21			
	74.30 m				
	GRANDENG		95%	90%	1
	TERTIER				
	CHANNEL WORK	3,770.21			
	B.Gr.3 Ki 2. L =				
	93.30 m				
	WAY APU SYSTEM	3,028,784.70			3
	SUPPLEMENT dam	5,020,704.70			
	WAY PAMALI dam	270,759.37	89%	84%	3
	rehabilitation	210,109.51			
	SADAP BUILDING	32,275.97	84%	79%	1
	REHABILITATION	- ,	0.00/	0.50/	1
	SUPPLEMENTARY	22 100 22	90%	85%	1
	BUILDING	23,198.23			
	PLANNING TERRIER DOX		95%	90%	1
	TERRIER BOX BUILDING	2,633.60	95%	90%	1
	PLANNING	2,055.00			
SUB DI	PULU		88%	83%	2
WAY	SECONDARY		0070	0570	2
LEMAN	CHANNEL WORK,	19,757.49			
	L = 1,516 m				
	PULU LEFT		88%	83%	2
	SECONDARY	21 751 49			
	CHANNEL WORK,	21,751.48			
	L = 1,669 m				
	SECONDARY		89%	84%	2
	CHANNEL WORK	20,573.33			
	Wp 3 Left, $L =$	20,575.55			
	1,578.60 m				
	WAY TINA		90%	85%	2
	SECONDARY	102,710.26			
	CHANNEL WORK,	,			
	L = 7,881 m				

Ind International Conference on Agriculture and Applied Science (ICoAAS 2021)

IOP Publishing

IOP Conf. Series: Earth and Environmental Science

1012 (2022) 012008

SUB DI	ACTIVITY	COST 1 \$ = Rp14,250,00	PERFORMANC E	FUNCTI O NALITY	AUTHORITY
	WAY LEMAN		90%	85%	2
	RIGHT				
	SECONDARY	13,997.06			
	CHANNEL WORK $L = 1.074 \text{ m}$				
	Tertiary CHANNEL		85%	80%	1
	WORK Wp.3 LEFT,	6,790.01	0070	0070	1
	L = 521 m	•,,,,,,,,,			
	TERRIER		85%	80%	1
	CHANNEL WORK	3,206.03			
	B.Wt.3, $L = 246 \text{ m}$				
	TERRIER	10.247.02	87%	82%	1
	CHANNEL WORK	10,347.92			
	$\frac{B.Wt.8, L = 794 \text{ m}}{WAY \text{ LEMAN DAM}}$		80%	75%	3
	REHABILITATION	582,303.24	8070	/ 3 70	3
	SADAP BUILDING		89%	84%	1
	REHABILITATION	29,401.41	0,70	01/0	1
	SUPPLEMENTARY		89%	84%	1
	BUILDING	45,597.99			
	PLANNING				
	TERRIER BOX		89%	84%	1
	BUILDING	15,915.06			
SUB DI	PLANNING PRIMARY		75%	70%	3
WAY LO	CHANNEL		1370	/070	3
	NORMALIZATION				
	WORK (MASTER	68,652.69			
	CHANNEL WAY				
	LO) L = 2670.00 m				
	SECONDARY		80%	75%	2
	CHANNEL WORK	18,538.80			
	WAY LO RIGHT L	-)			
	= 721 m SECONDARY		83%	78%	1
	CHANNEL WORK		0370	/8/0	1
	BASALALE L =	86,060.14			
	3347 m				
	SECONDARY		85%	80%	1
	CHANNEL WORK	183,922.36			
	WAY LO DOWN	105,722.50			
	$\frac{\text{RIGHT L} = 7153 \text{ m}}{\text{RIGHT L} = 7153 \text{ m}}$				
	SECONDARY CHANNEL WORK		75%	70%	1
	CHANNEL WORK WAY LO DOWN	35,664.45			
	LEFT L = 1180 m				
	SECONDARY		73%	68%	1
	CHANNEL WORKS	101 005 00		5675	-
	WAY LO CENTRAL	181,225.98			
	L = 6620 m				
	SECONDARY	77,215.00	80%	75%	1
	CHANNEL WORK	, , ,210.00			

2nd International Conference on Agriculture and Applied Science (ICoAAS 2021)

IOP Publishing

IOP Conf. Series: Earth and Environmental Science

1012 (2022) 012008

SUB DI	ACTIVITY	COST 1 \$ = Rp14,250,00	PERFORMANC E	FUNCTI O NALITY	AUTHORITY
	WAY LO LEFT L =				
	3003 m				
	MASTER TERRIER		90%	85%	1
	CHANNEL WORK	3,831.18			
	WAY LO B.Lo.2 L = 149 m				
	SECONDARY		92%	87%	1
	TERRIER		9270	0770	1
	CHANNEL WORK	1.070.02			
	WAY LO BOTTOM	1,079.93			
	RIGHT B.Lb.Ka.2b				
	L = 42 m				
	SECONDARY		92%	87%	1
	TERRIER CHANNEL WORK				
	WAY LO DOWN	4,191.16			
	LEFT B.Lb.Ki.2 L = $-$				
	163 m				
	SECONDARY		91%	86%	1
	TERRIER				
	CHANNEL WORK	514.25			
	WAY LO DOWN	51 1.25			
	LEFT B.Lb.Ki.3a L = 20 m				
	SECONDARY		95%	90%	1
	TERRIER		JJ70	2070	1
	CHANNEL WORK	7 070 07			
	WAY LO DOWN	7,070.97			
	LEFT B.Lb.Ki.4 L =				
	275 m				
	SECONDARY		92%	87%	1
	TERRIER CHANNEL WORKS	11,879.23			
	WAY LO CENTRAL	11,079.25			
	B.Lo.Tg.4 $L = 462 \text{ m}$				
	SECONDARY		92%	87%	1
	TERRIER				
	CHANNEL WORK	11,241.56			
	WAY LO CENTRAL	11,241.50			
	B.Lo.Tg.5 $L = 437.20$				
	m SECONDARY				
	TERRIER				
	CHANNEL WORK		0.00/	0.50 (
	WAY LO CENTRAL	17,962.84	90%	85%	1
	B.Lo.Tg.6 L = 698.6				
	m				
	SECONDARY				
	TERRIER CHANNEL WORKS				
	CHANNEL WORKS	7,914.34	90%	85%	1
	WAY LO CENTRAL B.Lo.Tg.7 $L = 307.80$				
	m				

Und International Conference on Agriculture and Applied Science (ICoAAS 2021)

IOP Publishing

IOP Conf. Series: Earth and Environmental Science

1012 (2022) 012008

doi:10.1088/1755-1315/1012/1/012008

SUB DI	ACTIVITY	COST 1 \$ = Rp14,250,00	PERFORMANC E	FUNCTI O NALITY	AUTHORITY
	SECONDARY TERRIER CHANNEL WORK WAY LO LEFT B.Lo.Ki.9Ka L = 120 m	3,085.51	91%	86%	1
	SECONDARY TERRIER CHANNEL WORK WAY LO LEFT B.Lo.Ki.9Ki L = 341 m	8,768.00	91%	86%	1
	WAY LO DAM REHABILITATION WORKS	134,875.40	80%	75%	3
	SADAP BUILDING REHABILITATION WORKS	58,056.04	90%	85%	1
	SUPPLEMENTARY BUILDING REHABILITATION WORK	43,324.31	92%	87%	1
	TERRIER BOX BUILDING REHABILITATION WORKS	4,325.10	92%	87%	1
	TOTAL	5,861,630.37			
	Maks	3,028,784.70	95%	90%	3
	Min	514.25			

Source: DED Upgrading and Rehabilitation DI Way Apu System

Determining the Weight of Interest

Determination of the importance of priority criteria for the rehabilitation of the Way Apu System irrigation area is preceded by mapping the selected expert respondents. Mapping respondents divided into 3 groups, namely:

- 1. Water User Farmers Association (P3A) (6 people)
- Maluku BWS officials who are related to irrigation management, can also act as decisionmakers (Head of Integration, Head of OP, PPK of Irrigation, PPK of Planning and Programs) (4 people)

The results of the questionnaire recapitulation obtained are snown in Table 3 below:

Table 3. Recapitulation of Interest Weight Ouestionnaire

No	Criteria	Very	important	Quite	Number	of
		important		important	respondents	
1	Physical Condition of Irrigation Assets	3	5	2	10	
2	Functionality of irrigation assets	3	4	3	10	
3	Irrigation Rehabilitation Cost	8	2		10	
4	Authority	8	1	1	10	

Analysis : 2021

From the data obtained above, then it is processed by multiplying each answer point with a weight determined by a Likert scale (Very Important; 3, Important; 2, Quite Important; 1), the results of calculating the respondents' answers are as follows:

Criteria for the physical condition of irrigation assets

- a. Respondents answered very important (3) $= 3 \times 3 = 9$
- b. Respondents answered important (5) $= 5 \times 2 = 10$
- c. Respondents answered quite important = 2 x 1 = 2 Total Skor = 21

In the same way, each criterion will get a score and each score will be the weight of the assessment. The results of the score and the weight of each criterion can be seen in Table

Table 1. Total Score and Criteria Weight						
Criteria	Score	Weight				
Physical Condition	of					
Irrigation Assets	21	22%				
Functionality	20	21%				
Rehabilitation Fee	28	29%				
Authority	27	28%				
Total Score	96					

The next step is to normalize the decision matrix (X) to a scale that can be compared with all alternative ratings, so that the normalized matrix data (R) is obtained as follows:

Table 2. Normalisation						
SUB DI	ACTIVITY	Cost	Performance	Functionality	Authority	
SUB DI WAY	WAY PAMALI MAIN CHANNEL	0,0912	0,72	71%	1,00	
PAMALI	NORMALIZATION WORK, $L = 5.445 \text{ m}$					
	LEFT APU WAY SECONDARY CHANNEL	0,1062	0,94	94%	0,67	
	WORK, L = 6,338 m GRANDENG SECONDARY CHANNEL WORK	0,0187	1,00	100%	0,67	
	GRANDENG TERTIER CHANNEL WORK B.Gr.1	0,0012	1,00	100%	0,33	
	Ki 2, L = 74.30 m GRANDENG TERTIER CHANNEL WORK B.Gr.3	0,0012	1,00	100%	0,33	
	Ki 2. L = 93.30 m WAY APU SYSTEM SUPPLEMENT dam	1,0000	-	0%	1,00	
	WAY PAMALI dam rehabilitation	0,0894	0,94	93%	1,00	
	SADAP BUILDING REHABILITATION	0,0107	0,89	88%	0,33	
	SUPPLEMENTARY BUILDING PLANNING	0,0077	0,94	94%	0,33	
	TERTIER BOX BUILDING PLANNING	0,0009	1,00	100%	0,33	
SUB DI WAY LEMAN	PULU SECONDARY CHANNEL WORK, L = 1,516 m	0,0065	0,93	92%	0,67	

nd International Conference on Agriculture and Applied Science (ICoAAS 2021)

IOP Publishing

IOP Conf.	Sorias	Forth	and	Env	ironmontal	Saianaa
IOF Com.	series.	Eartin	anu	EIIV	nonnentai	Science

1012 (2022) 012008

SUB DI	ACTIVITY	Cost	Performance	Functionality	Authority
	PULU LEFT SECONDARY CHANNEL WORK, L = 1,669 m	0,0072	0,93	92%	0,67
	SECONDARY CHANNEL WORK Wp 3 Left, L = 1,578.60 m	0,0068	0,94	93%	0,67
	WAY TINA SECONDARY CHANNEL WORK, L = 7,881 m	0,0339	0,95	94%	0,67
	WAY LEMAN RIGHT SECONDARY CHANNEL WORK L = 1.074 m	0,0046	0,95	94%	0,67
	Tertiary CHANNEL WORK Wp.3 LEFT, $L = 521 \text{ m}$	0,0022	0,89	89%	0,33
	$\begin{array}{l} \text{WP.5 LEFT, } L = 321 \text{ m} \\ \text{TERTIER} & \text{CHANNEL} \\ \text{WORK B.Wt.3, } L = 246 \text{ m} \end{array}$	0,0011	0,89	89%	0,33
	TERTIER CHANNEL WORK B.Wt.8, L = 794 m	0,0034	0,92	91%	0,33
	WAY LEMAN DAM REHABILITATION	0,1923	0,84	83%	1,00
	SADAP BUILDING REHABILITATION	0,0097	0,94	93%	0,33
	SUPPLEMENTARY BUILDING PLANNING	0,0151	0,94	93%	0,33
	TERTIER BOX BUILDING PLANNING	0,0053	0,94	93%	0,33
SUB DI WAY LO	PRIMARY CHANNEL NORMALIZATION WORK (MASTER CHANNEL WAY LO) L = 2670.00 m	0,0227	0,79	78%	1,00
	SECONDARY CHANNEL WORK WAY LO RIGHT L = 721 m	0,0061	0,84	83%	0,67
	SECONDARY CHANNEL WORK BASALALE L = 3347 m	0,0284	0,87	87%	0,33
	SECONDARY CHANNEL WORK WAY LO DOWN RIGHT L = 7153 m	0,0607	0,89	89%	0,33
	SECONDARY CHANNEL WORK WAY LO DOWN LEFT L = 1180 m	0,0118	0,79	78%	0,33
	SECONDARY CHANNEL WORKS WAY LO CENTRAL L = 6620 m	0,0598	0,77	76%	0,33
	SECONDARY CHANNEL WORK WAY LO LEFT L = 3003 m	0,0255	0,84	83%	0,33
	MASTER TERTIER CHANNEL WORK WAY LO B.Lo.2 L = 149 m	0,0013	0,95	94%	0,33
	SECONDARY TERTIER CHANNEL WORK WAY	0,0004	0,97	97%	0,33

1nd International Conference on Agriculture and Applied Science (ICoAAS 2021)

IOP Publishing

IOP	Conf	Series.	Farth	and	Environmenta	Science
IOI	Com.	berres.	Lann	anu	Liiviioiiiiiciita	Defence

1012 (2022) 012008

SUB DI	ACTIVITY	Cost	Performance	Functionality	Authority
	LO BOTTOM RIGHT B.Lb.Ka.2b L = 42 m SECONDARY TERTIER CHANNEL WORK WAY LO DOWN LEFT B.Lb.Ki.2	0,0014	0,97	97%	0,33
	L = 163 m SECONDARY TERTIER CHANNEL WORK WAY LO DOWN LEFT	0,0002	0,96	96%	0,33
	B.Lb.Ki.3a L = 20 m SECONDARY TERTIER CHANNEL WORK WAY LO DOWN LEFT B.Lb.Ki.4	0,0023	1,00	100%	0,33
	L = 275 m SECONDARY TERTIER CHANNEL WORKS WAY LO CENTRAL B.Lo.Tg.4 L = 462 m	0,0039	0,97	97%	0,33
	SECONDARY TERTIER CHANNEL WORK WAY LO CENTRAL B.Lo.Tg.5 L = 437.20 m	0,0037	0,97	97%	0,33
	SECONDARY TERTIER CHANNEL WORK WAY LO CENTRAL B.Lo.Tg.6 L = 698.6 m	0,0059	0,95	94%	0,33
	SECONDARY TERTIER CHANNEL WORKS WAY LO CENTRAL B.Lo.Tg.7 L = 307.80 m	0,0026	0,95	94%	0,33
	SECONDARY TERTIER CHANNEL WORK WAY LO LEFT B.Lo.Ki.9Ka L = 120 m	0,0010	0,96	96%	0,33
	SECONDARY TERTIER CHANNEL WORK WAY LO LEFT B.Lo.Ki.9Ki L = 341 m	0,0029	0,96	96%	0,33
		0,0445	0,84	83%	1,00
	SADAP BUILDING REHABILITATION WORKS	0,0192	0,95	94%	0,33
	SUPPLEMENTARY BUILDING REHABILITATION WORK	0,0143	0,97	97%	0,33
	TERTIER BOX BUILDING REHABILITATION WORKS	0,0014	0,97	97%	0,33

doi:10.1088/1755-1315/1012/1/012008

The following process is to multiply the normalization matrix by the weight of each criterion as written in the formula below:

$$A_i = \sum_{j=1}^n w_j r_{ij} \dots \dots \dots \dots \dots \dots \dots \dots$$

The results of the calculation of priority for the rehabilitation of the way APU system irrigation area are shown in Table 6.

	Table 3. Calculation of the Reh	aointat	Cost		Cost	le way	Cost	stem	Cost	
				R(Kin)				R(W)	Score	
SUB DI	ACTIVITY	K (B)	Score	· · · · · · · · · · · · · · · · · · ·	R(Kin)		R(Kin)		R(W)	
500 01			R(b) x		`´		`´-			Total
			W (k)					28%		Skor
	WAY PAMALI MAIN CHANNEL	2770	VV (K)	22/0	(K)	2170	(K)	2070	(K)	SKUI
	NORMALIZATION WORK. $L =$									
	,		0 0266	0,7228	0 1581	0 7074	0 1474	1 0000	0 2813	0.6133
	LEFT APU WAY SECONDARY	0,0712	0,0200	0,7220	0,1201	0,7071	0,1171	1,0000	0,2013	0,0155
		0.1062	0.0310	0,9389	0.2054	0.9356	0.1949	0.6667	0.1875	0.6188
	GRANDENG SECONDARY		.,	• ,> • • • >	- ,	.,,	•,	.,	*,***	-,
		0,0187	0,0055	1,0000	0,2188	1,0000	0,2083	0,6667	0,1875	0,6201
	GRANDENG TERTIER CHANNEL			,	-)	,	-)		- ,	-)
		0,0012	0,0004	1,0000	0,2188	1,0000	0,2083	0,3333	0,0938	0,5212
	GRANDENG TERTIER CHANNEL									
SUB DI	WORK B.Gr.3 Ki 2. L = 93.30 m	0,0012	0,0004	1,0000	0,2188	1,0000	0,2083	0,3333	0,0938	0,5212
WAY PAMALI	WAY APU SYSTEM									
PAMALI	SUPPLEMENT dam	1,0000	0,2917	0,0000	0,0000	0,0000	0,0000	1,0000	0,2813	0,5729
	REHABILITATION OF THE WAY	-								
	APU SYSTEM SUPPLEMENT dam									
	and the existing WAY APU dam	0,0894	0,0261	0,9368	0,2049	0,9333	0,1944	1,0000	0,2813	0,7067
	SADAP BUILDING									
			0,0031	0,8854	0,1937	0,8791	0,1831	0,3333	0,0938	0,4737
	SUPPLEMENTARY BUILDING									
		· ·	0,0022	0,9435	0,2064	0,9403	0,1959	0,3333	0,0938	0,4983
	TERTIER BOX BUILDING									
	PLANNING	0,0009	0,0003	1,0000	0,2188	1,0000	0,2083	0,3333	0,0938	0,5211
	PULU SECONDARY CHANNEL	.								
		0,0065	0,0019	0,9263	0,2026	0,9222	0,1921	0,6667	0,1875	0,5842
	PULU LEFT SECONDARY	0 0070	0.0001	0.02(2	0.000	0 0000	0 1001	0.000	0 1075	0.5044
	, , ,	0,0072	0,0021	0,9263	0,2026	0,9222	0,1921	0,6667	0,1875	0,5844
	SECONDARY CHANNEL WORK		0 0000	0.0260	0 20 40	0 0 2 2 2	0 1044	0.000	0 1075	0.5000
	Wp 3 Left, L = 1,578.60 m WAY TINA SECONDARY	0,0068	0,0020	0,9368	0,2049	0,9333	0,1944	0,6667	0,1875	0,3889
		0 0220	0 0000	0,9474	0 2072	0 0 1 1 1	0 1069	0 6667	0 1075	0 6014
WAY	CHANNEL WORK, L = 7,881 m WAY LEMAN RIGHT	· ·	0,0099	0,9474	0,2072	0,9444	0,1968	0,000/	0,1875	0,6014
	SECONDARY CHANNEL WORK									
LEMAIN			0.0013	0,9474	0 2072	0 0444	0 1068	0 6667	0 1875	0 5028
	Tertiary CHANNEL WORK Wp.3	0,0040	0,0013	0,7474	0,2072	0,7444	0,1900	0,0007	0,1073	0,5720
		0 0022	0 0007	0,8947	0 1957	0 8889	0 1852	0 3333	0 0938	0 4753
	TERTIER CHANNEL WORK	-	0,0007	5,6747	5,1757	3,0007	0,1002	5,5555	5,0750	5,1755
	B.Wt.3, $L = 246 \text{ m}$		0.0003	0,8947	0.1957	0.8889	0.1852	0.3333	0.0938	0.4750
	TERTIER CHANNEL WORK		-,	-,,	-,	,,	.,	5,0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,.,.,
			0,0010	0,9158	0,2003	0,9111	0,1898	0,3333	0,0938	0,4849
L	2	-,	5,0010	0,7100	0,2000	~,/ 111	\$,1070	-,	0,0750	5,1017

Table 3. Calculation of the Rehabilitation Priority Scale in the Way Apu System

IOP Conf. Series: Earth and Environmental Science

SUB DI	ACTIVITY		Cost		Cost		Cost		Cost	
SUBDI		R (B)	Score	R(Kin)	Score	R(Ke)	Score	R(W)	Score	Skor
	WAY LEMAN DAM									
	REHABILITATION		0,0561	0,8421	0,1842	0,8333	0,1736	1,0000	0,2813	0,6951
	SADAP BUILDING									
	REHABILITATION		0,0028	0,9368	0,2049	0,9333	0,1944	0,3333	0,0938	0,4960
	SUPPLEMENTARY BUILDING									
	PLANNING	-	0,0044	0,9368	0,2049	0,9333	0,1944	0,3333	0,0938	0,4975
	TERTIER BOX BUILDING									
	PLANNING	0,0053	0,0015	0,9368	0,2049	0,9333	0,1944	0,3333	0,0938	0,4947
	PRIMARY CHANNEL									
	NORMALIZATION WORK									
	(MASTER CHANNEL WAY LO) L		0.0000	0 700 5	0 1707	0 7770	0.1.(20)	1 0000	0 0010	0.0000
	= 2670.00 m	0,0227	0,0066	0,7895	0,1727	0,7778	0,1620	1,0000	0,2813	0,6226
	SECONDARY CHANNEL WORK	0.00(1	0.0010	0.0401	0 10 40	0 0 2 2 2	0.1726	0 (((7	0 1075	0 5 4 7 1
	WAY LO RIGHT $L = 721 \text{ m}$	0,0061	0,0018	0,8421	0,1842	0,8333	0,1/36	0,6667	0,1875	0,5471
	SECONDARY CHANNEL WORK	0 0 2 8 4	0 0002	0,8737	0 1011	0 9667	0 1906	0 2222	0 0020	0 4727
	BASALALE L = 3347 m SECONDARY CHANNEL WORK	0,0284	0,0083	0,8/3/	0,1911	0,8007	0,1800	0,3333	0,0938	0,4/3/
	WAY LO DOWN RIGHT L = 7153	-								
			0.0177	0,8947	0 1057	0 8880	0 1852	0 2222	0 0028	0 4024
	m SECONDARY CHANNEL WORK	0,0007	0,0177	0,8947	0,1937	0,0009	0,1652	0,3333	0,0938	0,4924
	WAY LO DOWN LEFT $L = 1180 \text{ m}$	0 01 18	0.0034	0 7805	0 1727	0 7778	0 1620	0 3333	0 0038	0 /310
	SECONDARY CHANNEL WORKS	0,0110	0,0054	0,7875	0,1727	0,7770	0,1020	0,5555	0,0750	0,7317
	WAY LO CENTRAL L = 6620 m	0 0598	0.0175	0,7684	0 1681	0 7556	0 1574	0 3333	0 0938	0 4367
	SECONDARY CHANNEL WORK	0,0570	0,0175	0,7004	0,1001	0,7550	0,1574	0,5555	0,0750	0,4307
	WAY LO LEFT L = 3003 m	0 0255	0.0074	0,8421	0 1842	0 8333	0 1736	0 3333	0 0938	0 4 5 9 0
	MASTER TERTIER CHANNEL	0,0233	0,0071	0,0121	0,1012	0,0555	0,1750	0,5555	0,0750	0,1570
	WORK WAY LO B.Lo.2 $L = 149 \text{ m}$	0.0013	0.0004	0.9474	0.2072	0.9444	0.1968	0.3333	0.0938	0.4981
	SECONDARY TERTIER		-,		°)_ °	*,>	.,	• ,= = = = =	.,	.,
	CHANNEL WORK WAY LO									
SUB DI	BOTTOM RIGHT B.Lb.Ka.2b L =									
WAY	42 m	0,0004	0,0001	0,9684	0,2118	0,9667	0,2014	0,3333	0,0938	0,5071
LO	SECONDARY TERTIER									
	CHANNEL WORK WAY LO									
	DOWN LEFT B.Lb.Ki.2 L = 163 m	0,0014	0,0004	0,9684	0,2118	0,9667	0,2014	0,3333	0,0938	0,5074
	SECONDARY TERTIER									
	CHANNEL WORK WAY LO									
	DOWN LEFT B.Lb.Ki.3a L = 20 m	0,0002	0,0000	0,9579	0,2095	0,9556	0,1991	0,3333	0,0938	0,5024
	SECONDARY TERTIER									
	CHANNEL WORK WAY LO									
	DOWN LEFT B.Lb.Ki.4 L = 275 m		0,0007	1,0000	0,2188	1,0000	0,2083	0,3333	0,0938	0,5215
	SECONDARY TERTIER									
	CHANNEL WORKS WAY LO									
	U	· ·	0,0011	0,9684	0,2118	0,9667	0,2014	0,3333	0,0938	0,5081
	SECONDARY TERTIER									
	CHANNEL WORK WAY LO		0 0011	0.0604	0.0110		0.0014		0.000	0 5001
	CENTRAL B.Lo.Tg.5 L = 437.20 m		0,0011	0,9684	0,2118	0,9667	0,2014	0,3333	0,0938	0,5081
	SECONDARY TERTIER									
	CHANNEL WORK WAY LO		0.0017	0.0474	0 2072	0 0444	0 1069	0 2222	0 0020	0 4005
	0		0,001/	0,9474	0,2072	0,9444	0,1908	0,3333	0,0938	0,4993
	SECONDARY TERTIER									
	CHANNEL WORKS WAY LO		0 0000	0 0474	0 2072	0 0444	0 1040	0 2222	0 0020	0 1005
	CENTRAL B.Lo.Tg.7 L = 307.80 m SECONDARY TERTIER									
L	SECONDANI IEKHEK	0,0010	0,0003	0,73/9	0,2093	0,7330	0,1771	0,3333	0,0938	0,5027

SUB DI	ACTIVITY		Cost		Cost		Cost			Total
SCD DI		R (B)	Score	R(Kin)	Score	R(Ke)	Score	R(W)	Score	Skor
	CHANNEL WORK WAY LO LEFT									
	B.Lo.Ki.9Ka L = 120 m									
	SECONDARY TERTIER									
	CHANNEL WORK WAY LO LEFT									
	B.Lo.Ki.9Ki L = 341 m	0,0029	0,0008	0,9579	0,2095	0,9556	0,1991	0,3333	0,0938	0,5032
	WAY LO DAM REHABILITATION									
	WORKS	0,0445	0,0130	0,8421	0,1842	0,8333	0,1736	1,0000	0,2813	0,6521
	SADAP BUILDING									
	REHABILITATION WORKS	0,0192	0,0056	0,9474	0,2072	0,9444	0,1968	0,3333	0,0938	0,5033
	SUPPLEMENTARY BUILDING									
	REHABILITATION WORK	0,0143	0,0042	0,9684	0,2118	0,9667	0,2014	0,3333	0,0938	0,5112
	PEKERJAAN REHABILITASI									
	BANGUNAN BOX TERSIER	0,0014	0,0004	0,9684	0,2118	0,9667	0,2014	0,3333	0,0938	0,5074

4. Conclusion

Based on the calculation of the priority scale using the SAW method and the availability of the budget in 2022, which is \$ 1,754,385.96 ., - then the activities that may be prioritized for rehabilitation that can be carried out are

ACTIVITY	Total Score	Cost 1\$ = 14,250.0
WAY PAMALI dam rehabilitation	0,707	270.76
WAY LEMAN DAM REHABILITATION	0,695	582.30
Way Lo . Weir Rehabilitation Work	0,652	134.88
PRIMARY CHANNEL NORMALIZATION WORK (MASTER CHANNEL WAY LO) L = 2670.00 m	0,623	68.65
GRANDENG SECONDARY CHANNEL WORK	0,620	56.78
LEFT APU WAY SECONDARY CHANNEL WORK, L = 6,338 m	0,619	321.61
WAY PAMALI MAIN CHANNEL NORMALIZATION WORK, $L = 5.445 \text{ m}$	0,613	276.30
WAY TINA SECONDARY CHANNEL WORK, L = 7,881 m	0,601	102.71

References

- [1] Leatemia A J 2021 Provinsi Maluku dalam Angka 2020 (Maluku: BPS Provinsi Maluku)
- [2] Arsyad K M 2017 Modul rehabilitasi Jaringan Irigasi Modul 8 Rehabilitasi Jaringan Irigasi arg K M Arsyad (Bandung: Pusat Pendidikan dan Pelatihan Sumber Daya Air dan Konstruksi) or 80
- [3] Iqbal Hasan M, Saat S eta Khadafi M . 2004 Pokok-pokok materi teori pengambilan keputusan *Pokok-pokok materi teori pengambilan keputusan* arg M S Khadafi (Jakarta: Perpusnas) or 153
- [4] Shiddieq D F eta Septyan E 2017 Analisis Perbandingan Metode AHP Dan SAW Dalam Penilaian Kinerja Karyawan (Studi Kasus Di PT. GRAFINDOMEDIA PRATAMA Bandung) *Lpkia* **1** 1–7

• 15% Overall Similarity

Top sources found in the following databases:

- 13% Internet database
- Crossref database
- 11% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

Yanto Budisusanto Crossref	o, Nurwatik, Dani Ilham Zhaqdavyan. "Determining S
ijobas.pelnus.ac.id Internet	ł
Zhaohan Chen, Li S Crossref	Shi. "The Investigation of the Improvement of Agricul.
curis.ku.dk Internet	
Fiona Greer, Jaser ^{Crossref}	nka Rakas, Arpad Horvath. "Reduce aviation's greenh
School of Busines	s and Management ITB on 2022-04-21

- 14% Publications database
- Crossref Posted Content database

9	media.neliti.com	<1%
10	growkudos.com Internet	<1%
11	Tshwane University of Technology on 2020-11-17 Submitted works	<1%
12	ejournal.kresnamediapublisher.com	<1%

Excluded from Similarity Report		
Bibliographic materialCited materialManually excluded sources	 Quoted material Small Matches (Less then 10 words) 	
EXCLUDED SOURCES		
repository.lppm.unila.ac.id		71%

L Virgianti, A Setiawan, Tugiyono, S Bakri. "Priority Analysis of Regional Reha... 71% Crossref