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AbstractThe minimum routing cost spanning tree (MRCST) is a spanning tree that minimizes the sum of pairwise distances between itsvertices given a weighted graph. In this study, we use Campos Algorithm with slight modifications on the coefficient of spanningpotential. Those algorithms were implemented on a random table problem data of complete graphs of order 10 to 100 in incrementsof 10. The goal is to find the diameter (the largest shortest path distance) and the maximum link (the maximum number of edgesconnecting two vertices) in the spanning tree solution of MRCST. The result shows that a slight modification of the spanning potentialcoefficients gives better solutions.
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1. INTRODUCTION

One of the mathematical elds with specic birth dates is graph
theory (Vasudev, 2006) . Graph theory is a mathematical disci-
pline that is used to represent discrete objects and the connec-
tions between these objects. A vertex can represent an object,
while an edge can represent the relationship between objects.
The graph theory concept was rst initiated by Leonard Euler
in 1736 when he gave a solution to The Konigsberg bridge
problem in Kaliningrad, Russia. In the city of Konigsberg,
there is the Pregel river which splits the city into four sepa-
rate landmasses, and there are seven bridges that connect the
landmasses as shown below:

Figure 1. Illustration of Konigsberg Problem

Source: https://www.britannica.com/science/Konigsberg-
bridge-problem

The issue is that the people want to start from one of the
landmasses, cross each bridge precisely once, and then return
to the beginning. By representing the landmasses as nodes
(vertices) and bridges as lines (edges), Euler stated that this
was impossible because the number of bridges connecting each
landmass was odd. This problem is only possible if the number
of bridges connecting each land is even. Later, this model using
vertices and edges representing lands and bridges became the
background for the emergence of the current concept of graph
theory. There is a rapid development of graph theory after the
solution given by Euler because of its exibility so that graph
theory can be used to represent daily life problems.

There are numerous applications of graph theory. For
instance, in network-design problems such as transportation,
power supply, water resource management, communication,
and many others. In network design problems, some theoreti-
cal graph concepts are frequently used, such as Shortest Path
(SP), Minimum Spanning Tree (MST), and others.

Among the most popular concepts in graph theory is MST
which is commonly used as a backbone in network design prob-
lems and has been extensively studied. Kruskal (1956) in-
troduced Kruskal’s algorithms, and Prim (1957) introduced
Prim’s algorithm to solve MST. Those two algorithms are used
extensively and are very famous. However, the rst algorithm
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to solve the MST was proposed by Borŭvka (1926) when he
solved the problem of constructing Moravia’s power network
in the Czech Republic. Some fast algorithms have been pro-
posed to solve MST due to its unique structure and applica-
tion in numerous network design issues. The MST problem
is commonly encountered in applications for network design
where other graph parameters like distance, degree, diameter,
ow, connectivity, and others must be satised. A distance
constraint on commodity ow, for example, could represent
the maximum delivery distance in a transportation network.
The Degree Constrained Minimum Spanning Tree (DCMST)
is the problem of determining an MST whilst having to sat-
isfy the degree restriction on each vertex. If, in addition to
the degree constraint, there are additional constraints, namely
the period, then the problem becomes a multi-stage network
installation problem orMulti-Period Degree-ConstrainedMin-
imum Spanning Tree (MPDCMST) problem. In DCMST,
all vertices can be connected without period restriction, while
in MPDCMST there is a period restriction in connecting the
vertices. The period restriction occurs because of some reasons,
such as weather conditions, fund limitations, and so on. This
problem was investigated by Kawatra (2002) for implementa-
tion in a digraph, while Wamiliana et al. (2015b); Wamiliana
et al. (2015a) ; Wamiliana et al. (2020) implemented it in an
undirected graph.

Given a connected weighted graph, the routing cost of the
spanning tree is dened as the sum of the total path lengths
of all pairs of vertices in the spanning tree of that graph. The
MRCST aims to nd the lowest routing cost of the spanning
tree. TheMRCST is also known as the shortest average distance-
spanning tree and in an unweighted graph is called the mini-
mumWiener index.

Even though not as famous as traveling salesman problems
where many researchers have been involved in that topic, some
researchers have already investigated the MRCST problem, in-
cludingWu (2002) ;Wolf andMerz (2010) ; Chen et al. (2013) ;
Tan and Due (2013) ; Lin et al. (2006) and Sattari and Dide-
hvar (2013) . Since the MRCST is an NP-hard problem, then
heuristic algorithms are investigated more, for example, Singh
(2008) and Tan (2012b) . Singh and Sundar (2011) investi-
gated a bee colony algorithm, and Hieu et al. (2011) proposed
an ant colony algorithm. Genetic algorithm for solving the
MRCST problem has been investigated by Tan (2012a) ; Jul-
strom (2001) and Julstrom (2005) . Julstrom (2005) also coded
the tree using Blob code and showed that representing the tree
using Blob code in genetic algorithms performed better than
coding the tree as an edge-set which was proposed by Raidl
and Julstrom (2003) . Sattari and Didehvar (2015) proposed a
GRASP with a metaheuristic path-relinking algorithm to solve
MRCST. Fischetti et al. (2002) showed that aside from net-
work design, trees with low routing costs have found useful
applications in biological computation, where they are applica-
ble for nding good genomic sequence alignments. A heuristic
that is based on the recognition of a network core around which
it is possible to construct a solution was proposed by Masone

et al. (2019) . In this study, we will discuss Campos’s algorithm
for MRCST because Campos’s algorithm usually was used as a
comparison for developed algorithms in the literature. In the
next Section, we will discuss the MRCST.

2. THE PROBLEM

Given an undirected weighted connected graph G(V,E), V de-
notes the set of vertices. V= v1, v2, v3, · · · , vn , V≠∅, and E
denote the collection of edges that connect the vertices in V,
E={euv|(vu ,vv)∈V}, and for each edge euv there is a correspond-
ing weight cuv≥0, A Minimum Routing Cost Tree (MRCT) T
represents a spanning tree in such a way that for all spanning
trees T that can be computed from G, Cr (T*)= min (

∑n
u=1

∑n
v=1

cT (u,v), u≠v), where cT (u,v) is the cost of vertex u and vertex
v,T* is the spanning tree whose theminimal cost routing among
other spanning trees in G Campos and Ricardo (2008) . Cr (T)
is the total cost of the shortest path for every pair of vertices
in T where the shortest path is counted twice for every pair of
vertices, once from vertex u to v, and once from v to u (rout-
ing). Note that vertex u and v may be connected by a path,
not by an edge. By dening d(u,v) as the distance of every
pair (u,v) vertices in G, an MRCST can be described as a prob-
lem of determining the minimum total distance d(u,v) for each
pair of vertices (u,v) in spanning tree T of G so that Cr (T*)=
(
∑n
u=1

∑n
v=1duv, u≠v), where T* is the spanning tree in G which

produce the smallest total distance for each pair of vertices.
In MRCST both d(u,v) and d(v,u) are take into account. To
illustrate the problem, suppose that we are given a spanning
tree of an undirected connected weighted graph as in Figure 2.

Figure 2. Spanning Tree T

To nd the total distance in a graph in Figure 2, we calcu-
late the distance for every pair of vertices in that spanning tree.
Let d(u,v) as the distance of vertex u and v, then d(v1,v2)= 7,
d(v1,v3)= 27, d(v1, v4)= 22, d(v1,v5)= 20, d(v1,v6)= 15, d(v1,v7)=
4, d(v2,v3)= 20, d(v2,v4)= 15, d(v2,v5)= 13, d(v2,v6)= 8, d(v2,v7)=
3, d(v3,v4)= 19, d(v3,v5)= 17, d(v3,v6)= 12, d(v3,v7)= 23, d(v4,v5)
= 2, d(v4,v6)= 7, d(v4,v7)= 18, d(v5,v6)= 5, d(v5,v7)= 16, d(v6,v7)=
11.
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Since in MRCST both d(u,v) and d(v,u) are under consider-
ation, then the value of MRCST of the graph in example 1 is
2×(7+27+22+20+15+4+20+15+13+8+3+19+17+12+23+2+7+
18+5+16+11)= 2×284= 568

A graph’s diameter is dened as the largest shortest path
distance in the graph. It is, in other words, diameter is the
maximum value of overall pairs, which denotes the shortest
path distance from a vertex to another vertex. Amaximal link is
the number of the maximal number of edges that connect a pair
of vertices in a graph. For example, in Figure 2, the diameter
of that spanning tree T is 27 which is the distance between
vertex v1 and v3, while the maximal link of that spanning tree
is 5 which is the number of edges that connect vertex v1 and
v4. For other pairs of vertices in that tree, the number of
edges connecting them is less than 5. Note that in a weighted
spanning tree the diameter and the link of a spanning tree may
not be the same, however, in an unweighted graph the diameter
and the link are similar which is the maximal number of edges
that connect a pair of vertices in the graph.

3. CAMPOS’ ALGORITHM

Campos’ algorithm begins by choosing an initial vertex with the
criteria that the vertex has the largest spanning potential which
is dened as: Spv= C1 dv+C2

dv
sv
+C3 1

mv
, where dv is the degree

of vertex v, sv is the sum of the weight edges that incidence to
v, and mv is the maximum weight of incidence edges, and C1,
C2, and C3 are coecients. Suppose v is the vertex with the
largest spanning potential, then calculate wv, all the weight of
incidence edges to v, pdv as the degree of the candidate parent
vertex in T, psv as the sum of the adjacent edge weights of the
candidate parent vertex in T, cfv as cost estimation for the path
between vertex v and f in T. Next, calculate parameters: wdv,
jspv, sdv and swv as follow:

wdv= C4 wv+C5 cfv (set C4= C5= 1), jspv: sdv+
sdv
swv
, sdv=dv+ pdv

and swv=sv+psv.

Next step is make list L = {wv, dv, sv, pv, pdv, psv, cfv, wdv, jspv},
and put in v to L.

L= {v, wv, dv, sv, pv, pdv, psv, cfv, wdv, jspv}. Choose the
highest value of wdv and jspv. If there is no value of wdv and
jspv, remove all wv, dv, sv, pv, pdv, psv, cfv, wdv which relate to
v and choose another vertex adjacent to v, and calculate again
the parameter and continue the process as before. If wdv and
jspv have values, then put v as the initial vertex and the smallest
adjacent edge to v put into T. Remove all parameters related to
the current chosen edge and vertex. Next, choose the smallest
edge incidence with vertices in T and check if the addition of
that edge in T constitutes a cycle. If yes, remove that edge, and
choose the next smallest. If not, check if the spanning tree has
already been obtained (|T| = n-1). If yes, stop, spanning tree T
is obtained, otherwise, put in the chosen edge in L and repeat
the process.

4. RESULT AND DISCUSSSION

We run Campos’s algorithm and slight modications on the
coecient of spanning potential of Campos’ Algorithm on the
data set problems which are complete weighted graphs of order
10 to 100 in increments of 10. The edge weights are integers
generated at random from a uniform distribution (1, 1000),
and 30 random problems are generated for each order. The
algorithm is implemented using three dierent coecients of
spanning potential. Based on the simulation, we nd that the
value of MRCST is smaller if the value of C2 is between 0.8
and 0.89. If the value of C2 is smaller than 0.8 or bigger
than 0.89, the value of MRCST is bigger than the value of C2
recommended by Campos and Ricardo (2008) which is 0.6.
Based on implementation we get the following result:

Figure 3. Spanning Tree of n=10 for Problem Dat.10 using C1
= 0.2, C2 = 0.6 and C3= 0.2, and the Value of MRCST is
22,745, with Maximal Link 6 and Diameter 1034

Figure 4. Spanning Tree of n=10 for Problem Dat.10 using
C1= 0.1, C2= 0.8 and C3= 0.1, and the Value of MRCST is
21,642, with Maximal Link 5 and Diameter 1087

The coecient of C1= 0.2, C2= 0.6, and C3= 0.2 are sug-
gested as the best coecients by Campos and Ricardo (2008) ,
C1= 0.01, C2= 0.8, C3= 0.1 and C1= 0.1, C2= 0.89, and C3=
0.2 are two combinations of coecients to determine the value
of spanning potential. From the simulation, we found that
those two combinations are the best. From the result, we found
that the highest number of edges connecting a pair of vertices
is the same for all three variations. The smallest number occurs
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Table 1. The Results of Implementation on Complete Graphs with Order 10 to 100 in Increments of 10

C1=0.2, C2= 0.6, C3= 0.2 C1= 0.02, C2= 0.89, C3= 0.1 C1= 0.1, C2= 0.8, C3= 0.1

n

The
average
value of
MRCT

The
max link

The
largest
diameter

The
average of
the largest
diameter

The
average
value of
MRCT

The
max link

The
largest
diameter

The
average of
the largest
diameter

The
average
value of
MRCT

The
max link

The
largest
diameter

The
average of
the largest
diameter

10 15,228.7 8 1429 770.8 15,179.3 8 1429 771.27 15,179.3 8 1429 771.27
20 44,262.4 12 799 551.1 44,119.13 11 799 542.2 44,119.13 11 799 542.2
30 75,626.03 14 573 429.5 75,581.5 14 573 429.5 75,581.5 14 573 429.5
40 113,285.2 17 478 354.97 113,285.2 17 478 354.97 113,285.2 17 478 354.97
50 167,045.8 16 427 318.133 166,982.1 16 427 319.23 166,982.07 16 427 319.23
60 200,377.4 21 364 274.67 200,381.4 21 364 275.2 200,381.4 21 364 275.2
70 241,589.7 17 332 243.3 239,946 17 332 242.5 239,946 17 332 242.5
80 292,620.7 20 299 221.37 293,996.5 20 299 220.8 293,996.53 20 299 220.8
90 336,946.3 20 293 198.8 336,731.2 20 293 198.8 336,731.2 20 293 293
100 395,334.4 20 261 191.9 394,547.6 20 261 191.9 394,547.57 20 261 191.9

Figure 5. Spanning Tree of n=20 for Problem Dat.3 using C1=
0.2, C2= 0.6 and C3= 0.2, and the Value of MRCST is
43,066, with Maximal Link 12 and Diameter 653

Figure 6. Spanning Tree of n=20 for Problem Dat.3 using C1=
0.1, C2= 0.8 and C3= 0.1, and the Value of MRCST is
38,798, with Maximal Link 10 and Diameter 392

in order 10 with the maximum number of edges connecting
two vertices in the solution (spanning tree) being 8, while the
highest number of edges occurs in order 21. Note that in the
table we present the average value for MRCT (the value of
MRCT for 30 problems in every order and taking the average)
and the average value of the average of the largest diameter.
The largest diameter recorded in Table 1 is the largest diameter
of the 30 problems in every graph order, and it is also similar
to a maximal link which is taken from the maximal link of the
30 problems in every graph order. Figure 3 to Figure 6 above
shows the visualization of examples of the solutions for vertex
orders 10 and 20. Due to the space limitation, the visualization

for higher-order graphs is not given.
Figure 3 and Figure 4 are the two spanning trees obtained

by implementing Campos’ Algorithm with dierent combina-
tions of values of coecients spanning potential on a graph
of order 10. With C1= 0.2, C2= 0.6, and C3= 0.2 in Figure
3, the graph shows that the maximal link is 6 and diameter is
1034 and MRCST value is 22,745, while with C1= 0.1, C2=
0.8, C3= 0.1 in Figure 4 the graph shows that the maximal
link is 5 and diameter is 1087 and MRCST value is 21,642.
Figures 5 and 6 show the result of implementation on order 20.
With C1= 0.2, C2= 0.6, and C3= 0.2 the graph shows that the
maximal link is 12 and diameter is 653 and MRCST value is
43,066, while with C1= 0.1, C2= 0.8, C3= 0.1 the graph shows
that the maximal link is 10, diameter is 392 and MRCST value
is 38,798. Moreover, the diameter (the largest shortest path
distance) does not always occur in the maximal link. In Figure
3 for example, the maximal link is 6 which is the path that con-
nects vertices 5–6–0–3–4–8–2 with a distance of 978, while
the diameter is 1034 which is the path that connects vertices
2–8–4–3–7.

5. CONCLUSION

We can conclude from the preceding discussion that imple-
mented on a complete weighted connected graph, the edges
that form the diameter of the spanning tree may not be the
same in the maximal links. Moreover, the combination of the
coecients of the spanning potential (C2= 0.8 or C2= 0.89)
performed slightly better than the value of the coecient sug-
gested by Campos and Ricardo (2008) . From the results, we
found that the highest number of edges connecting a pair of
vertices is the same for all three variations. The smallest num-
ber occurs in order 10 with the maximum number of edges
connecting two vertices in the spanning tree being 8, while the
highest number of edges occurs in order 60 which is 21.
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