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COMMENTS

In this paper, the authors provide an exact value of locating chromatic number of a shadow path graph
Dy (P,) where n > 6. They also determine the locating chromatic number of a barbell graph containing
shadow path. They give some interesting outcomes. I think that the results in the paper are new and
correct. Therefore, | RECOMMEND THIS PAPER FOR PUBLICATION in IJC. However, the paper

still need some major improvements for publication.

Abstract and in many places: The authors use two notions ”locating chromatic number” and
”locating-chromatic number”. Please use only one notion throughout the paper.

Page 1 and in many places: "et al.” should be ”et al.”.

”

Section 1 first sentence: ”... with derived two graphs concept, coloring vertices ...” should be ”...
by combining two concepts in graph theory, which are vertex coloring ...”.

Page 1 definition of k-coloring: ”1,2,...,k” should be "{1,2,... k}".

Page 2 before Th 1.1: ”The following theorem are basics to determine ...” should be ” The following
two theorems are usefull to determine ...”.

Page 2 before Th 1.1: What is the definition of neighbour of a vertex in a graph?

Page 2 after Th 1.2: ”... a graph is newly interesting ...” should be ”... a graph is an interesting

Page 2 after Th 1.2: ”... there is no general theorem for ...” should be ”... there is no general
algorithm for ...”.

Page 2 after Th 1.2: ”... any graph and ...” should be ”... any graphs and ...”

Page 2 after Th 1.2: ”... a few results related to the determination of ...” should be ”... a few
results related to determining ...”

Page 2 after Th 1.2: ”... have succeeded in constructing tree on ...” should be ”... provided a tree
construction of ...”.

Page 2 definition of shadow path: ”Let P, be a path with V(P,) = {z; | 1 < ¢ < n} and
E(P,) ={wxiziy1 |1 <i<n—1}. The shadow paths graph Dy(FP,) is a graph with the vertex set
{ui,v; | 1 < i <n} where

— UjUj, ViV € E(DQ(PTL)) if and Ol’lly if TiT; € E(Pn)

— w;vj € E(D2(P,)) if and only if z;2; € E(P,)”

Throughout the paper, the label of vertices can be referred to the definition above. The authors do
not need to rewrite V(D2 (P,)) on every proof of theorem.



e Page 3 Corollary 2.1: This corollary is not completely true. The counterexamples are two connected
graphs below. Both graphs contain Ds(Ps) but their locating chromatic number are at most 5.

e Page 3 Th 2.1: Since Corollary 2.1 is not completely true, therefore, the authors should use another
method to prove the lower bound of Theorem 2.1.

e Page 4 function ¢, (u;) and in many places: Since a shadow path graph Ds(P,) is a connected graph,
it is clear that Do(P,) has only one component. What are 2"?, 374 4% 5t" and 6! components?

e Page 4 Th 2.2: This theorem is also not completely true. A barbell graph in the figure below
contains shadow paths D2(Py) but its locating chromatic number is at most 5.

1 2 1 3 b} 3 4 3
4 5 4 5 2 1 2 1
e Page 15 Concluding remarks: The authors should revise the conclusion since some of results are
not completely true.

e Page 15 References: On [1] the authors write an abbreviation of the name of journal (ITB J.
Sci.). However, on [2] they write a complete title of the journal (Far East Journal of Mathematical
Sciences). For all references, please choose either write an abbreviation or write a complete title.
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Abstract

The locating chromatic number was introduced by Chartrand in 2002. The locating chromatic
number of a graph is a combined concept between the coloring and partition dimension of a graph.
The locating chromatic number of a graph is defined as the cardinality of the minimum color
classes of the graph. In this paper, we discuss about the locating chromatic number of shadow path
graphs and barbell graph containing shadow graph.

Keywords: the locating-chromatic number, shadow path graph, barbell graph
Mathematics Subject Classification : XXXXx

1. Introduction

The locating chromatic number of a graph was introduced by Chatrand et al.[6] by combining
two concepts in graph theory, which are vertex coloring and partition dimension of a graph. Let
G = (V, E) be a connected graph. A k-coloring of G is a function ¢ : V(G) — {1,2,--- ,k},
where ¢(u) # c(v) for any two adjacent vertices v and v in G. Thus, the coloring ¢ induces a
partition IT of V(&) into k color classes (independent sets) Cy, Cs, - - -, C, where C; is the set of
all vertices colored by the color i for 1 < i < k. The color code crj(v) of a vertex v in G is defined
as the k—ordinate (d(v, C4),d(v,Cs),--- ,d(v,Cy)), where d(v,C;) = min{d(v,z);z € C;} for

Received: xx xxxxx 20xx, Accepted: xx xxxxx 20xx.
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1 <7 < k. The k—coloring c of G such that all vertices have different color codes is called a
locating coloring of G. The locating chromatic number of GG, denoted by x(G), is the minimum
k such that GG has a locating coloring.

The following two theorems are useful to determine the lower bound of the locating chromatic
of a graph. The set of neighbors of a vertex ¢ in G, denoted by N (q).

Theorem 1.1. (see [6]). Let c be a locating coloring in a connected graph G. If x and y are
distinct vertices of G such that d(p, w) = d(q,w) for allw € V(G) — {p, q}, then c(p) # ¢(q). In
particular, if p and q are non-adjacent vertices such that N(p) # N(q), then c(p) # c(q).

Theorem 1.2. (see [6]). The locating chromatic number of a cycle graph C,(n > 3) is 3 for odd
n and 4 for even n.

The locating chromatic number of a graph is an interesting topic to study because there is no
general algorithm for determining the locating chromatic number of any graphs and there are only
a few results related to determining of the locating chromatic number of some graphs. Chartrand
et al. [6] determined all graphs of order n with locating number n, namely a complete multipartite
graph of n vertices. Moreover, Chartrand et al.[7] provided a tree construction of n vertices,
n > 5, with locating chromatic number varying from 3 to n, except for (n — 1). Next, Asmiati
et al. [1] obtained the locating chromatic number of amalgamation of stars and non-homogeneous
caterpillars and firecracker graphs [2]. In [5] Welyyanti et al. determined the locating chromatic
number of complete n-ary trees. Next, Sofyan et al. [4] determined the locating chromatic number
of homogeneous lobster. Recently, Ghanem et al. [8] found the locating chromatic number of
powers of the path and cycles.

Let P, be a path with V(P,) = {z; | 1 < ¢ < n}and E(P,) = {zxip1 | 1 < i <
n — 1}. The shadow path graph Dy(P,) is a graph with the vertex set {u;,v; | 1 < i < n}
where w;u; € E(Dy(P,)) if and only if z;z; € E(P,) and w;v; € E(Do(F,)) if and only if
r;x; € E(P,). A barbell graph containing shadow path graph, denoted by Bp,(p,) is obtained
by copying a shadow path graph (namely, D'Q(Pn)) and connecting the two graphs with a bridge.
We assume that {u}, v} | 1 < i < n} is a vertex set of Dy(P,) and a bridge in Bp,p,) connecting

17 Y1

{u, L 1% 41 } for odd n and {u/y, ”ﬁ} for even n.
@ 2 2

Motivated by the result of Asmiati ef al. [3] about the determination of the locating chromatic
number of certain barbell graphs, in this paper we determine the locating chromatic number of
shadow path graphs and barbell graph containing shadow path for n > 3.

2. Main Results

The following theorem gives the locating chromatic number for shadow path graph D, (P,) for
n > 3.

Lemma 2.1. Let ¢ be a locating-chromatic number for shadow path graph Do(P,), with u; € P}
and v; € P?. Then c(u;) # c(v;).
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PROOF. On the shadow path graph D, (P, ), we can see that d(u;, ) = d(v;, x), i € [1,n — 1]
for every x € ((D2(P,)) \ {us,v;}). By Theorem 1.1, we have c(u;) # c(v;). O

Theorem 2.1. The locating chromatic number of a shadow path graph for n > 3, Dy(P,) is 6.

PROOF.

First, we determine the lower bound for the locating-chromatic number of shadow path graph
Dy(P,) for n > 3. The Shadow path graph Dy(P,) for n > 3 consists of minimal two cycles
Cy. Pick the first cycle Cy, then by Theorem 1.2, we could assign 4 colors, {1,2, 3,4} to the first
cycle’s vertices. Next, in the second C'y, we have two vertices, which intersect with two vertices in
the first Cy. By Lemma 2.1, we must assign two different colors to the remaining vertices of the
second Cy. Therefore, we have 1 (G) > 6.

Next, we determine the upper bound of the locating chromatic number of the shadow path graph
1, fori=1
for n > 3. Let ¢ be a coloring using 6 colors as follow : c(u;) = ¢ 2, fori=2n,n>1

3, fori=2n+1,n>1

Y

4, fori=1
c(v;)) =<5, fori=2n,n>1
6, fori=2n+1,n>1
The color codes of Dy(P,) are :
i — 1, for 1% ordinate,i > 1;

for 4" ordinate, i > 2

0, for 2"¢ ordinate, eveni ,2 < i < n;
for 37 ordinate, oddi,3 < i < n;
cr(u;) = < 2, for 5" ordinate, eveni,2 < i < n;

for 6" ordinate, oddi,1 < i < n;
for 37 ordinate, i = 1
for 4" ordinate, i = 1
otherwise.
i — 1, for 1% ordinate,i > 2;
for 4**ordinate, i > 1;

0, for 5"¢ ordinate,eveni,2 < i < n;
for 6! ordinate, oddi,3 <i < n;
cr(vs) = < 2, for 2" ordinate, eveni, 2 < i < n;

for 3% ordinate, odd i ,3 < i < n;
for 1%¢ ordinate, 7 = 1

for 6" ordinate,i = 1

1, otherwise.
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Since all vertices in Dy(P,) for n > 3 have distinct color codes, then c is a locating coloring
using 6 colors. As a result x; Do(P,) < 6. Thus x;Do(P,) = 6. O

1 2 3 2 3 2 3
P
NS
4 5 6 5 6 5 6

Figure 1. A locating coloring of Dy (P7).

Theorem 2.2. The locating chromatic number of a barbell graph containing shadow path for
n > 3is 6.

PROOF.

First, we determine the lower bound of x1 Bp,(p,) for n > 3. Since the barbell graph Bp,p,)
containing D (P, ), then by Theorem 2.3 we have x1(Bp,(p,)) > 6. To prove the upper bound,
consider the following three cases.

CASE 1 (n = 3). Let c be a locating coloring using 6 colors as follows :

1, fori=2;
c(u;)) =<2, fori=1
(3, fori=3
'4, for: = 2;
c(u) =45, fori=1
6, fori=3
(1, fori=1;
c(v;)) =45, fori=3
(6, fori=2
(2, fori = 1;
c(v))=1<3, fori=3
(4, fori=2

The color codes of Bp,(p,) are
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(0, for 1° ordinate, i = 2;

for 2" ordinate, 4

=1
for 3" ordinate, i = 3;
2, for 3! ordinate, i = 1;

exl(ti) = for 4** ordinate, i = 2;
for 274 ordinate, i = 3;
for 5" and 6! ordinate, i = 1 and 3;
1, otherwise.
(0, for 5" ordinate, i = 1;
for 4" ordinate, i = 2;
for 6! ordinate, i = 3;
2, for 6! ordinate, i = 1;
cr(uy) =

for 17¢ ordinate, i = 2;

for 5" ordinate, i = 3;

for 274 and 3"¢ ordinate, i = 1 and 3;
1, otherwise.
0, for 1% ordinate, ¢ = 1;

for 6! ordinate, i = 2;

for 5" ordinate, i = 3;
cr(v;) = < 2, for 5" ordinate, i = 1;

for 1% ordinate, i = 3;

for 2" and 3"¢ ordinate, i = 1 and 3;
1, otherwise.
0, for 2™ ordinate, i = 1;

for 4" ordinate, i = 2;

for 37 ordinate, i = 3;
2, for 1% ordinate, 7 = 1 and 3;

for 6" ordinate, i = 2;

for 2"¢ ordinate, i = 3;

for 3" and 5" ordinate, i = 3;

1, otherwise.

\

Since all vertices in Bp,(p,) have distinct color codes, then c is a locating coloring using 6
colors. As aresult x;,Bp,p;) < 6. Thus xBp,p;) = 6.

CASE 2 (n odd). Let c be a locating coloring using 6 colors as follows :
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N
=
e

v
£
=)

&)
F
%]

Figure 2. A locating coloring of Bp,(p,).

.

1

1, fori:njL ;
2

1 1
Pt —4j+3>landi> 0

,n=4j+1,7>1
n+1

2, foroddi;? <

1
c(u;) = for even 1;i < ,n=4j+1,7>1andi > ,n=4j+3,7>1

1 1
M —4jt1>landi>

3, for oddi;z < ,n=47+3,7>1

1 1
for eveni;i < ,n:4j+3,j21311di>n+ ,n=4j+1,7>1
\
4
1
4, fori:n+ ;
2
n+1

yn=47+1,52>1

|
5, foroddi:i < % n=4j+3,j>1andi>
n+1

1
c(u}) = for even 1;i < ,n=4j+1,7>1and: > ,n=4j+3,7>1

| |
i —4j41>1andi>

ynm=45+3,7>1
n+1

6, for oddi;i <

1
for eveni;i < ,n=47+3,5>1andz > ,n=474+1,5>1

[ 2
( 1 1
1, for oddii< 2 p—4j43.j>1andi>

,n=47+1,7>1
n—+1

1
,n=4j+1,7>1and? >

1 1
M —4j+1,j>1andi >

for eveni;i < y,n=47+3,7>1

n+1

c(v;) =<5, for oddiji <

1
for eveni;i < ,m=4j+3,j>1andi > ,nm=4j+1,7>1
n+1

6, fori= )
, fori 5
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1 1
M —4j+3i>1andi> o

2, for oddi;i < ,n=47+1,7>1

1 1

foreveni;i<n ,n:4j+1,j21andi>n+
1
c(v)) =<4, fori:n;_ :

yn=4j+3,72>1

n+1 n+1

3, for oddi;i < ,nm=4j4+1,7>1andi >

,n=47+3,7>1

...n n+1
for eveni;i <

1
,n=4j+3,7>1andi > ,n=47+1,7>1

The color codes of Bp,p,) are

" 1 1
<n—2k ) —i, for 1% ordinate, i < %;
1
for 4" ordinate, i < i;

n+1 n+1

i—( 5 ), for 1°* ordinate, i > ——;

) . +1
for 4" ordinate, i > nT;

. .. . n+1
0, for 2"¢ ordinate, oddi,i < :
d s .. o n+l1
for 3" ordinate, eveni,i < ;
o .. n+l1
for 2" ordinate, eveni i > ——;
enlus) = n —i—2 1
for 3¢ ordinate, oddi,i > 5
. .. o n+1
2, for 5" ordinate, oddi ,i < 5
. ... n+1
for 5" ordinate, eveni,i > 5
. .. . n+1
for 6'* ordinate, oddi ,i < 5
. ... n+1
for 6! ordinate, eveni,i > 5
. . on+1
for 4" ordinate, i = 5

1, otherwise.
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( 1 1
(n—2|— ) —1, for 1% ordinate,i < i;

1
for 4" ordinate, i < L,

1 1
1 — (n—2|— ), for 1% ordinate, i > L,

1
for 4'" ordinate, i > %,

. .. n+1
0, for 5" ordinate, oddi,i < ——;

n+1
for 5" ordinate, eveni,i > ——;

. ... n+1
for 6" ordinate, oddi,i > ——:
. .. on+1
for 6" ordinate, eveni,i <

1
2, for 2"¢ ordinate, oddi,i < i;

. . n+ 1
for 2"¢ ordinate, eveni, i >

for 3" ordinate, odd i ,7 > n ;— :

n+1_
2 )

for 3" ordinate, eveni,i <

. . on+1
for 1% ordinate, 1 = ———;

1, otherwise.
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(n+1

( 2 )_ia
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for 4** ordinate,i < ——;

for 6" ordinate, i < ——;

for 4'" ordinate, i > ——;

for 6 ordinate, i > 5

for 1% ordinate,
for 1% ordinate,
for 5" ordinate,
for 5" ordinate,
for 2" ordinate,
for 2" ordinate,
for 37 ordinate,

for 3"¢ ordinate,

n+1
n+1
n+1
n+1
1
oddi,i < —— nt :
2
n+1
even i z>—,
1
oddi,i > —— nt :
2
. n+1
eveni,i < ;
n—gl
oddi,i < ;
2
n+1
eveni,i > ——;
+21
oddi,i > ——;
2
n+1
even i z<—,
2
n+1
2

for 1%¢ ordinate, i = —;

otherwise.

Asmiati et al.
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’(n—2|— 1) — 4, for 4" ordinate, i < %1,

for 6" ordinate, i > %1,

i — (n ;— 1), for 4" ordinate, i > %1,

for 6'* ordinate, i > %1,
0, for 2"¢ ordinate, odd i,i < %1,
for 2"? ordinate, eveni,i > %1,
() for 37 ordinate, odd i,7 > %1,
o for 3" ordinate, eveni,i < nt 1;
2, for 1% ordinate, odd i,i < nT—l—l;
for 1°¢ ordinate, eveni,i > %17
for 5" ordinate, odd i, > n ; 1;
for 5 ordinate, eveni,i < %17

for 6! ordinate, i = %1;

1, otherwise.

\
Since all vertices in Bp,(p,), n > 3 for odd n have distinct color codes, then c is a locating
coloring using 6 colors. As aresult x7Bp,(p,) < 6. Thus x1Bp,(p,) = 6.

2 8 2 1 2 3

3
0y oD M)

Figure 3. A locating coloring of Bp,(p;)

CASE 3 (n even). Let c be a locating coloring using 6 colors as follows :

10
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4,

\

forz':g;
for odd iji < -, n:4j,j21andz'>g, n=4j+2,j>1
for eveni;i < —, n:4j+2,jzlandi>ﬁ, n=4j,7>1
for oddizi < o, m=4j+2,j=>1andi> o, n=4j,j > 1
for eveni;z’<§, n:4j,j21andi>g, n=4;+2,5>1
fori:ﬁ;

for oddi;i < —, n:4j,j21andi>g, n=4j+2,j>1
for eveni;i<§, n:4j+2,jzlandi>ﬁ, n=4j5,7>1
for oddi;i < 5, n=4j+2,j > Landi > o, n=4j,j > 1
for eveni;i<§, n:4j,j21andi>g, n=4;+2,5>1
for oddi;i < —, n:4j,j21andi>g, n=4j+2,j>1
for eveni;i < —, n:4j—|—2,j21andi>ﬁ, n=4j5,j>1
for oddizi < 5, n=4j+2,j>1landi> 5, n=4jj=>1
for eveI;Li;i<§, n:4j,j21andi>g, n=4j+2,5>1
for2:§; i ;
for oddi;i < —, n:4j,j21andz'>§, n=4j+2,5>1
for eveni;i < —, n:4j+2,jzlandi>ﬁ, n=4j,7>1
for oddizi < o, m=4j+2,j>1andi> o, n=4j,j > 1
for eveni;z'<§7 n:4j,j213ndi>g, n=4;+2,5=>1

fort = —;
2

The color codes of Bp,(p,) are

11
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for 1% ordinate, 7

|3

<_

Y

3\)

for 4" ordinate, i < —:

for 1%¢ ordinate, i

> 5

:1\921\3

for 4 ordinate, i > 5

for 2"¢ ordinate,
for 37 ordinate,
for 2" ordinate,
for 37¢ ordinate,
for 5" ordinate,
for 5" ordinate,
for 6" ordinate,

for 6" ordinate,

oddi,i < 2
eveni,i < —;
eveni, i > —;
oddi,i > —;
oddi,i < —;
eveni,i > —;
oddi, i < —;

eveni,i > 5;

. . n
for 4" ordinate, i = 5

otherwise.

for 1%¢ ordinate, i
for 4" ordinate,

for 1% ordinate, i

)

<
<

’

> 55

0 3{\3|:1\3I3

for 4'" ordinate, i > 5

for 5 ordinate,
for 5" ordinate,
for 6" ordinate,
for 6 ordinate,
for 2" ordinate,
for 2" ordinate
for 374 ordinate,

for 37 ordinate,

for 1% ordinate, i

otherwise.

oddi,i < =
eveni,i > —;
oddi,7 > —;
eveni, i < —;

oddi,i < —;

, eveni, i > 5;

.. n
oddi,i > —;
eveni,i < 5;

12
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Y

(=) —1, for 4™ ordinate, i

I

<
for 6 ordinate, i <

i— (5), for 4" ordinate, i > —;

O 20| ;03

for 6" ordinate, i > 5
0, for 1% ordinate, oddi,i < —;
for 1% ordinate, eveni, i > —;

for 5" ordinate, oddi,i > —;

CW(U’i) = L . ..
for 5 ordinate, eveni,i < —;
2, for 2"¢ ordinate, oddi,i < —;
for 2" ordinate, eveni,i > 5
for 37 ordinate, odd i,7 > —:
for 3¢ ordinate, eveni,i < 5;
. . n
for 1%¢ ordinate, i = 5
L1 otherwise.
(5) — i, for 4" ordinate, i < g;
for 6 ordinate, i > 2;
i— (5), for 4" ordinate, i > z;
for 6! ordinate, i > 5
0, for 2"¢ ordinate, oddi,i < —;
for 27¢ ordinate, eveni,i > 5
. for 3% ordinate, oddi,i > —;
¢ (vf)

for 3" ordinate, eveni,i < 5
2, for 1% ordinate, odd i,i < E;
for 1! ordinate, eveni, i > —;
for 5" ordinate, oddi,i > —;
for 5" ordinate, eveni,i < —:

2
. . n
for 6 ordinate, i = o

L1 otherwise.

Since all vertices in Bp,(p,), n 2> 3 for even n have distinct color codes, then c is a locating

13
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coloring using 6 colors. As aresult x7Bp,(p,) < 6. Thus x;Bp,(p,) = 6. 1

3

D]

~
L) L) | |
2 3 2

Figure 4. A locating coloring of Bp, (p;)

3. Concluding Remarks

The locating chromatic number of a shadow path graphs and the barbell graph containing a
shadow path graph is similar, which is 6.
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Abstract

The locating chromatic number was introduced by Chartrand in 2002. The locating chromatic
number of a graph is a combined concept between the coloring and partition dimension of a graph.
The locating chromatic number of a graph is defined as the cardinality of the minimum color
classes of the graph. In this paper, we discuss about the locating chromatic number of shadow path
graphs and barbell graph containing shadow graph.

Keywords: the locating-chromatic number, shadow path graph, barbell graph

Mathematics Subject Classification: 05C12, 05C15
DOI: 10.19184/ijc.2021.5.2.4

1. Introduction

The locating chromatic number of a graph was introduced by Chatrand et al.[6] by combining
two concepts in graph theory, which are vertex coloring and partition dimension of a graph. Let
G = (V, E) be a connected graph. A k-coloring of G is a function ¢ : V(G) — {1,2,--- ,k},
where ¢(u) # c(v) for any two adjacent vertices v and v in G. Thus, the coloring ¢ induces a
partition IT of V'(G) into k color classes (independent sets) Cy, Csy, - - -, Cy, where C; is the set of
all vertices colored by the color i for 1 < i < k. The color code cpj(v) of a vertex v in G is defined

Received: 12 February 2021, Revised: 7 July 2021, Accepted: 25 September 2021.
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as the k—ordinate (d(v,C4),d(v,C3),- - ,d(v, Cy)), where d(v, C;) = min{d(v,z);x € C;} for
1 <4 < k. The k—coloring ¢ of G such that all vertices have different color codes is called a
locating coloring of G. The locating chromatic number of G, denoted by x,(G), is the minimum
k such that GG has a locating coloring.

The following two theorems are useful to determine the lower bound of the locating chromatic
of a graph. The set of neighbors of a vertex ¢ in GG, denoted by N(q).

Theorem 1.1. (see [6]). Let ¢ be a locating coloring in a connected graph G. If x and y are
distinct vertices of G such that d(p, w) = d(q,w) for all w € V(G) — {p, q}, then c(p) # ¢(q). In
particular, if p and q are non-adjacent vertices such that N(p) # N(q), then c(p) # c(q).

Theorem 1.2. (see [6]). The locating chromatic number of a cycle graph C,(n > 3) is 3 for odd
n and 4 for even n.

The locating chromatic number of a graph is an interesting topic to study because there is no
general algorithm for determining the locating chromatic number of any graphs and there are only
a few results related to determining of the locating chromatic number of some graphs. Chartrand
et al. [6] determined all graphs of order n with locating number 7, namely a complete multipartite
graph of n vertices. Moreover, Chartrand et al.[7] provided a tree construction of n vertices,
n > 5, with locating chromatic number varying from 3 to n, except for (n — 1). Next, Asmiati
et al. [1] obtained the locating chromatic number of amalgamation of stars and non-homogeneous
caterpillars and firecracker graphs [2]. In [S] Welyyanti et al. determined the locating chromatic
number of complete n-ary trees. Next, Sofyan et al. [4] determined the locating chromatic number
of homogeneous lobster. Recently, Ghanem er al. [8] found the locating chromatic number of
powers of the path and cycles.

Let P, be a path with V(P,) = {z; | 1 < i < n}and E(P,) = {xziy1 | 1 < i <
n — 1}. The shadow path graph Dy (P,) is a graph with the vertex set {u;,v; | 1 < i < n}
where u;u; € E(Dy(P,)) if and only if x;z; € E(P,) and u;v; € E(Dy(P,)) if and only if
x;x; € E(P,). A barbell graph containing shadow path graph, denoted by Bp,(p,) is obtained
by copying a shadow path graph (namely, D,(P,)) and connecting the two graphs with a bridge.
We assume that {u}, v} | 1 < i < n} is a vertex set of Dy(P,) and a bridge in Bp,(p,) connecting
{u, 110+ 1 } for odd n and {u/y, Uﬁ} for even n.

2 2 2

Motivated by the result of Asmiati ef al. [3] about the determination of the locating chromatic
number of certain barbell graphs, in this paper we determine the locating chromatic number of
shadow path graphs and barbell graph containing shadow path for n > 3.

2. Main Results

The following theorem gives the locating chromatic number for shadow path graph D, (P,) for
n > 3.

Lemma 2.1. Let ¢ be a locating-chromatic number for shadow path graph Do(P,), with u; € P}
and v; € P?. Then c(u;) # c(v;).
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Proof. On the shadow path graph D, (P,), we can see that d(u;, x) = d(v;,x), i € [1,n — 1] for
every x € ((Do(P,)) \ {ui,v;}). By Theorem 1.1, we have c(u;) # c(v;). O

Theorem 2.1. The locating chromatic number of a shadow path graph for n > 3, Dy(P,) is 6.

Proof. First, we determine the lower bound for the locating-chromatic number of shadow path
graph Dy(P,) for n > 3. The Shadow path graph D,(P,) for n > 3 consists of minimal two
cycles Cy. Pick the first cycle Cy, then by Theorem 1.2, we could assign 4 colors, {1,2,3,4}
to the first cycle’s vertices. Next, in the second C}, we have two vertices, which intersect with
two vertices in the first C;. By Lemma 2.1, we must assign two different colors to the remaining
vertices of the second (4. Therefore, we have x(G) > 6.

Next, we determine the upper bound of the locating chromatic number of the shadow path
graph for n > 3. Let c be a coloring using 6 colors as follow:
( 1, for:i=1,
, forte=2n,n>1,
, fori=2n+1,n>1,
fori =1,
, fort=2n,n>1,
(6, fori=2n+1,n2>1.
The color codes of Dy(P,) are :
(i — 1, for 1% ordinate,i > 1,
for 4'"ordinate, i > 2,

c(u;) =

\
)

Ot = W N

c(vy) =

0, for 2"¢ ordinate, eveni ,2 < i < n,
for 37 ordinate, oddi,3 < i < n,
cx(ug) = < 2, for 5" ordinate,eveni,2 < i < n,

for 6" ordinate,oddi,1 <i <n,
for 37 ordinate, i = 1,
for 4" ordinate, i = 1,

1, otherwise,

¢ —1, for 1% ordinate,i > 2,

for 4" ordinate, i > 1,

0, for 5"¢ ordinate,eveni,2 < i < n,
for 6" ordinate, odd i ,3 < i < n;
cr(v;) =12, for 2"¢ ordinate, eveni,2 < i < n,

for 37 ordinate, oddi,3 < i < n,
for 1°¢ ordinate, i = 1,
for 6" ordinate, i = 1,

1, otherwise.
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Since all vertices in Dy(P,) for n > 3 have distinct color codes, then c is a locating coloring using

6 colors. As aresult Dy (P,) < 6. Thus x;Ds(P,) = 6. O
1 2 3 2 3 2 3
4 5 6 5 6 5 6

Figure 1. A minimum locating coloring of Dy (Pr).

Theorem 2.2. The locating chromatic number of a barbell graph containing shadow path for

n > 3is 6.

Proof. First, we determine the lower bound of xzBp,p,) for n > 3. Since the barbell graph
Bp,(p,) containing Dy(P,), then by Theorem 2.3 we have x1(Bp,p,)) > 6. To prove the upper
bound, consider the following three cases.

CASE 1 (n = 3). Let c be a locating coloring using 6 colors as follows :

.

for i = 2,
fori =1,
fori = 3,
for: = 2,
fori =1,
fori = 3,
for: =1,
for i = 3,
fori = 2,
for: =1,
for ¢ = 3,
for i = 2.

for 1% ordinate, ¢ = 2,
for 2" ordinate, i = 1,
for 3" ordinate, i = 3,
for 3" ordinate, i = 1,
for 4** ordinate, i = 2,
for 274 ordinate, i = 3,
for 5" and 6" ordinate, i = 1 and 3,

L,
c(u;) =<2,
\37
(47
c(u;) = {5,
k6’
( 1’
c(vi) = {5,
\6’
(27
c(vi) = 9 3,
\4’
The color codes of Bp,p,) are
r07
2
cr(u;) =
1

\

?

otherwise,

85



On the locating chromatic number of barbell shadow ...

cr (Vi)

n(0f) =

Since all vertices in Bp,(p,) have distinct color codes, then c is a locating coloring using 6 colors.

(

0,

1

\

for 5" ordinate, i = 1,
for 4" ordinate, i = 2,
for 6! ordinate, i = 3,
for 6 ordinate, i = 1,
for 17¢ ordinate, i = 2,

| Asmiati, M. Damayanti, and L. Yulianti

for 5" ordinate, i = 3,

for 2" and 3"¢ ordinate, i = 1 and 3,
otherwise,

for 1% ordinate, ¢ = 1,

for 6" ordinate, i = 2,

for 5" ordinate, i = 3,

for 5'" ordinate, i = 1,

for 1% ordinate, 7 = 3,

for 2" and 3" ordinate, i = 1 and 3,
otherwise,

for 2" ordinate, i = 1,

for 4" ordinate, i = 2,

for 37 ordinate, i = 3,

for 1% ordinate, 7 = 1 and 3,

for 6" ordinate, i = 2,

for 2"¢ ordinate, i = 3,

for 3" and 5" ordinate, i = 3,

otherwise.

As aresult X1, Bp,(p,) < 6. Thus x1Bp,(p,) = 6.

2 i 3
5 4 6
1 6 5
2 4 3

Figure 2. A minimum locating coloring of Bp, p,).
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CASE 2 (n odd). Let c be a locating coloring using 6 colors as follows :

1
1, fom':njL )
2 n+1 n+1
2, foroddi;i < ,n=474+3,5>1and ¢ > ,n=457+1,5>1,
1 1
c(u;) = forevenl;@'<n+ ,71:4(]'—1—1,3'21andi>nJr ,n=45+3,5 > 1,
n+1 n+1

3, for oddi;i < ,n=47+1,7>1and¢ > ,n=474+3,5 > 1,

1 1
for eveni;i < ,n:4j+3,j21andi>n+ ,n=47+1,5 > 1,
\
4
1
4, forz':n+ ,
’ n+1 n+1
5, foroddi;i < ,n=474+3,5>1and > y,n=474+1,5>1,
1 1
c(ul) = for even 131 < 20— p—4j+1,j>1landi> om n—4j+3,5 > 1,
n+1 n+1

,nm=4j+3,7 > 1,
n+1

6, for oddi;i <

,n=474+1,7>1andi >

1
,n=47+3,7>1land¢ >

,n=45+1,5 21,

for eveni;i < 5
\

( .. o n+1 ) ) .o n+1
, for oddi;i < ,n=47+3,7>1andi >

,yn=4j+1,7>1,
n+1

1
,n=45+1,5>1and >

1 1
o —4j41>1andi>

for eveni;i < ,n=4j+3,7 > 1,

c(v;) = ¢5, for oddi;i < ,n=4j+3,5>1,

1 1
for evenii < /0= n—4j+3,j>landi> Ot n—4j4+1,5>1,
|
6, forz‘:n+ ,
\ 2
( n+1 n+1

2, for oddi;i < ,n=4j+3,7>1andi > ,n=4j+1,5>1,

1 1
for eveni;z'<n ,n:4j—|-1,j212111(1Z'>n—|r ,nm=45+3,7 > 1,
1
c(vf) = {4, fori=""=
2
n+1 n+1

L n=4j+3,>1,
n+1

3, for oddi;i <

,n=474+1,7>1ands >

1
,n=47+3,5>1lands >

cn=4j+1,j>1.

.. n
for eveni;i <
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The color codes of Bp,(p,) are

Cr(us)

1
(=) -,
. n+1
Z_( 2 )7
0,
2,
(L
n—+1
( 2 )_27
) n—+1
Z_( 2 )7
0,
2,
(L

for 1%¢ ordinate, 7 <
for 4" ordinate, i < 2
for 1% ordinate, 7 >

for 4" ordinate, i >

for 2" ordinate,

for 3" ordinate,

for 2" ordinate,

for 37 ordinate,

for 5" ordinate,
for 5 ordinate,
for 6 ordinate,

for 6 ordinate,

. .
for 4" ordinate, i =

otherwise,

for 1%t ordinate, i <

‘3
olF
£

+
[y

3
+
—

+ N
[y

I

oddi,: < ”—“
n+1

M|

evenl Z<
even1,z>”T“7
oddi,i> ",
oddi,i < ™,
even i 2>”+1

odd i z<"—Jrl

eveni,i > ”H

Ll
)

n+1

for 4" ordinate, i < "—H,

for 1%¢ ordinate, 7 >

n+1

for 4" ordinate, i > "TH,

for 5 ordinate,
for 5! ordinate,
for 6! ordinate,

for 6 ordinate,

for 2"¢ ordinate,

for 2"¢ ordinate,

oddi,i < ™,

eveni,i > ”+1,

odd i z>”—+1

eveni,i < ”“

n+1
oddi,: < 5

for 3"¢ ordinate, odd i ,i > ”—“

for 37 ordinate,

for 1% ordinate, 7 =

otherwise,

88

eveni, i > ”T“
eveni,i < "“
n+1

2
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cr (i)

Since all vertices in Bp,(p,), n > 3 for odd n have distinct color codes, then c is a locating coloring

1
() -,
) n+1
Z_( 2 )7
0,
2,
(1
rn—+1
( 2 )_27
n-+1
_( 2 )7
0,
2,
(1

for 4" ordinate, 7 < %+
for 6" ordinate, 7 < "+l
for 4'" ordinate, 7 > "+,
for 6" ordinate, ; > &L
for 1° ordinate, odd i,7 < 3+,
for 1% ordinate, eveni,i > "“
for 5" ordinate, oddi,i > ”—“
for 5" ordinate, eveni,i < ”+1
for 2" ordinate, oddi,i < ”—“
for 2" ordinate, eveni,i > ”*1
for 3" ordinate, oddi,i > ”—“

for 3¢ ordinate, eveni,i < "H

for 1% ordinate, i = ”—H

otherwise,

for 4'" ordinate, 7 < %t
for 6" ordinate, i > 25,
for 4'" ordinate, i > "

for 6" ordinate, ; > &L
for 2" ordinate, odd i,i < ",
for 2" ordinate, eveni,i > "+1
for 3"¢ ordinate, odd i,i > ”—“

for 37 ordinate, eveni,i < ”*1
for 1% ordinate, odd i, < ”—“

for 1% ordinate, eveni, i > "“
for 5" ordinate, odd i,7 > "—“
for 5" ordinate, eveni,i < ”“
for 6" ordinate, i = %31,
otherwise.

using 6 colors. As aresult x7,Bp,(p,) < 6. Thus x7Bp,(p,) = 6.
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3
)

Figure 3. A minimum locating coloring of Bp, (p,)

CASE 3 (n even). Let ¢ be a locating coloring using 6 colors as follows:

1, fori=3,
2, foroddi;i< g, n=4j,j>1landi> 5, n=4j+2,5 > 1,
c(u;) = for eveni;i <%, n=4j+2,j>1andi> % n=4j,j>1,

3, foroddisi< g, n=4j+2,j>1andi> 5, n=4j,j5>1,
for eveni;i < 5, n=4j,j>1andi > 5, n=45+2,5>1,

4, fori= g,
5, for oddi;i < g, n=4j,j>1landi> 5, n=4j+2,7 > 1,
c(u}) = for eveni;i <%, n=4j+2,j>1andi> % n=4j,j>1,

6, for oddi;i< g, n=4j+2,j>1andi> 5, n=4j,j>1,
for eveni;i < 5, n=4j,j>1andi > 5, n=45+2,5>1,

I, for oddi;i< g, n=4j,j>1landi> 3, n=47+2,5>1,
for eveni;i < 5, n=45+2,7>1andi >3, n=4j,5>1,
c(v;)) =<5, foroddi;i <%, n=4j+2,j>1andi>% n=4j,j>1,
for eveni;i < 5, n=4j,j >1landi >3, n=45+2,5>1,
6, fori=2%

2
2, foroddi;i< g, n=4j,j>1landi> 35, n=4j+2,j > 1,

for eveni;i < 5, n=4j5+2,7>1andi >3, n=4j,57>1,
c(v;) =<3, for oddi;i <%, n=4j+2,j>1andi>% n=4j,j>1,
for eveni;i < 5, n=4j,j >1landi >3, n=45+2,5>1,

for: = 5.
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The color codes of Bp,(p,) are

Cﬂ(ui)

<

/

(5) =i

for 1°¢ ordinate, i <
for 4" ordinate, i <
for 1% ordinate, 7 >

for 4" ordinate, i > —;

for 2"? ordinate,
for 3" ordinate,
for 2" ordinate,
for 3" ordinate,
for 5 ordinate,
for 5" ordinate,
for 6" ordinate,

for 6! ordinate,

for 4" ordinate, i =

otherwise,

for 1%t ordinate,

for 4" ordinate, i

for 1% ordinate, i

(SIS

Y

Y

S| 3

bR

|3

oddi,i < 7,
eveni,i < g,
eveni,i > g,
oddi,i > g,
oddi,i < g,
eveni,i > g,
oddi,i < 7,

. n
eveni,i > g,

n
PR

n

<3,
n

<z

n
>§,

for 4" ordinate, i > 2,

for 5" ordinate,
for 5" ordinate,
for 6" ordinate,
for 6! ordinate,
for 2"¢ ordinate,
for 2"¢ ordinate,
for 37 ordinate,
for 3" ordinate,
for 1% ordinate, ¢

otherwise,

oddi,i < g,
eveni,i > g,
oddi,i > g,
eveni,i < g,
oddi,i < g,
eveni,i > 7,
oddi,i > g,
eveni,i < g,

_n
=2
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(5) —4, for 4" ordinate,i < %,
for 6" ordinate, i < %,
n
. th . .
i — (5), for 4" ordinate, 7 > 7,
for 6" ordinate, i > %,
0, for 1° ordinate, oddi,i < %,

for 1° ordinate, eveni,i > %,

cn(v;) = for 5" ordinate, odd i,i > %,
for 5 ordinate, eveni,i < %,
2, for 2" ordinate, odd i,i < %,
for 2" ordinate, eveni,i > %,
for 37 ordinate, odd i,i > %,
for 3¢ ordinate, eveni,i < 5,
for 1° ordinate, i = %,
L1, otherwise,
' (g) — i, for 4™ ordinate,i < %,
for 6" ordinate, i > %,
i— (g), for 4" ordinate, i > 2,
for 6 ordinate, i > %,
0, for 2" ordinate, odd i,i < %,
for 2" ordinate, eveni,i > %,
en(v]) = for 37 ordinate, odd i,i > %,

for 3¢ ordinate, eveni,i < 5,
2, for 1° ordinate, oddi,i < %,

for 1° ordinate, eveni,i > %,

for 5 ordinate, odd i,i > %,

for 5 ordinate, eveni,i < %,

n

for 6" ordinate, i = %,

1, otherwise.

\

Since all vertices in Bp,(p,), n > 3 for even n have distinct color codes, then c is a locating
coloring using 6 colors. As aresult x7,Bp,(p,) < 6. Thus x1Bp,(p,) = 6. O

3. Concluding Remarks

The locating chromatic number of a shadow path graphs and the barbell graph containing a
shadow path graph is similar, which is 6.
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L)
2

w(

Figure 4. A minimum locating coloring of Bp, (p;)
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