
 

 

 



 

 

 



 

 



 



PREFACE 

First of all, author wishes to thank to God, The Almighty, with the finished of 

the first draft of this book. The intension of writing this book is to serve students and 

researchers, especially in animal and agricultural sciences, to help them in applying 

appropriate experimental designs and statistical methods using software R. 

The first part of this book presents the very basic of R introduction and basic 

principles of experimental design in order the readers be able to follow subsequent 

applications. In every chapter the readers will be introduced with a brief theoretical 

background, and then enriched with examples, mostly from animal and agricultural 

sciences which can be solved using excel or calculator and then followed by R example 

solution so that the readers can compare the results using calculation technique and 

software R. 

The first chapter of this book tries to introduce the readers how to get started 

using R, including the website where to get free software and install R. The second 

chapter provides readers with terminology in experimental design followed by the next 

chapter discussing the simplest experimental design: Completely Randomized Design 

(CRD). Chapter 4 describes multiple comparison, including LSD, Tukey, Duncan, 

SNK, Dunnett, Scheffe, Boferroni, and orthogonal comparison and contrast. 

Assumption for ANOVA and data transformation is discussed in chapter 5 and 6. 

Chapters 7 to 14 focus on specific experimental designs and their analyses, 

including randomized complete block design, Latin square design, crossover designs, 

factorials, nested designs, split plots and strip plot design, analysis of covariance, and 

repeated measures design. Examples with sample R script are provided for each topic. 

The chapter 15 covers the special topic of analysis of numerical treatment levels 

including orthogonal polynomial contrast. The final chapter discusses linear and 

nonlinear regression with common nonlinear model used in agriculture. 

Author would like to express many gratitude to everyone who helped author 

produce this book. Author extends a special acknowledgement to Professor Bambang 

Setiyadi, Ph.D. for his assistance with editing to publish this book. 

 

 Bandar Lampung, March 2019 

 Akhmad Dakhlan 
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I. Getting Started with R 

 

1.1 Introduction 

R is an elegant and comprehensive statistical and graphic programming 

language. Why do many people switch to using R? R is free software, it can be run on 

various platforms such as Windows, Unix and MacOS, the program is regularly 

updated, and it has artistic graphic capacity. 

R software can be downloaded for free and installed easily through one of the 

closest sites on the Comprehensive R Archive Network (CRAN) mirror, for 

example, https://cran.r-project.org/ or in Indonesia: https://repo.bppt.go.id/cran/ 

(BPPT). When R is installed, there is a help system to ask various things in R. For 

example: 

>help.start()     #common help 

>help(t.test)    #help on t.test, or 

>??t.test    #the same thing with help(t.test) 

>help(anova)   #help on anova 

 

To start R, please double-click the R symbol on your computer desktop, then 

the R Console will appear, which is where we start working, as shown below. 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjgodHJtejfAhVFKo8KHZtKA9wQFjAAegQIBhAB&url=https%3A%2F%2Fcran.r-project.org%2F&usg=AOvVaw0pGNScRjIdSkNXK6Ky1j_m
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On the file menu, click then select Change directory, so that we can confirm in 

the folder where we will work and save the data in. Then click the file menu again and 

select New script, then the R editor will appear blank as below. 

 

 

Thus, the console and R editor will appear on your computer monitor like this: 
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This R editor is a place where we write R scripts that we can save and can 

reopen when we need them later. Actually we can directly write the R script on the 

console and press enter to execute it, but we should write R scripts in the R editor so 

we can manage and save the R file we want, so we can reopen the R file when we need 

it. To execute the script that we wrote in the R editor, click control r (Ctrl r) 

simultaneously on each line of the script we write. 

 

1.2 Getting Started Using R 

To begin with, now try writing the script below in your R editor. Then click 

control r (Ctrl r) on every line. 

 

### This is an example of R scripts to help you 

learn  

### how easy it can be to use for simple statistical 

analyses 

### so that finally we can use its full power for 

much more complex things 

 

### lines can be read by the computer if we click on 

that line 

### and press ctrl-R 

### lines that start with a # like this one are 

'comments'  

### that the computer doesn’t do anything with 

### Try pressing control R on the next seven lines 

and look what happens in the R console window 

x <- 6 

y <- 2 

x+y 

z <- 15 

z+x-y 

### that's easy right? 

print("that's easy right?") 

 

### now try pressing lines below to compare mean of 

two data of different population using t.test 

 

### now for an unpaired t-test   

t.test(c(3,6,5,7,9,7,4,6,7),c(1,3,2,4,3,2,3,4,2)) 

### check the output... are the two samples 

significantly different? 

 

### now for a paired t-test   
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t.test(c(3,6,5,7,9,7,4,6,7),c(1,3,2,4,3,2,3,4,2),pai

red=TRUE) 

### check the output... are the two samples 

significantly different? 

 

### now for an unpaired t-test with a one tailed 

(greater than) alternative hypothesis  

t.test(c(3,6,5,7,9,7,4,6,7),c(1,3,2,4,3,2,3,4,2),alt

ernative="greater") 

### check the output... are the two samples 

significantly different? 

### more or less then before? 

 

### if you would like to know more options for 

t.test 

?t.test 

### don’t forget to connect to internet to do that 

 

The results will appear in the console below. 

 

 

Or in full on your monitor it will appear as below. 
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Now close your R editor by clicking on the cross (X) in the upper right corner, 

the request will be saved or not. Alternative way to save editor file is by clicking File 

menu and choose Save Workspace or by clicking the icon of Save Worspace in the 

upper left side. Save your R editor in the folder or directory you are using now with 

your file name. Suppose you are working on the R_Project folder, and the file for your 

script with the name Coba, then when opening the R_Project folder there will be a file 

with the name Coba.R. 
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II. Terminology in Experimental Design 

2.1 Introduction 

Experiments are done based on our questions that we want to find the answers. 

For example, is growth of broiler affected by the addition of prebiotic in its ration, and 

how much prebiotic the best to broiler growth? For these questions we need to design 

an experiment carefully to answer the questions. In this case, we need some DOC (day 

old chick) of broiler which are homogeneous, we need different level of prebiotic in 

rations, and we need cages to place groups of birds. So the component of this 

experiment consisted of measurement unit (DOC), experimental units (cage), factor 

(addition of prebiotic that influence the broiler growth), treatment (different level of 

prebiotic), replication (some cages with the same level of prebiotic), responses or 

outcome (the growth of broiler), randomization (we do not chose certain DOC to be 

placed in a cage or in other words, we just place DOC randomly in a cage), control or 

standard/baseline treatment (no addition of prebiotic, base ration), controlled (other 

environment factor that influence on broiler growth is controlled, only the effect of 

prebiotic that we want to know and investigate on broiler growth), and experimental 

error (the same experimental unit with the same treatment give different outcome). 

Other example, we want to know the effect of fertilizer addition on rice 

production. In this case we need some plots of land to plant the rice. Experimental unit 

in this case is different field plots, the measurement units might be a subset of the rice 

plants on the field plot, fertilizer is factor, the treatment is level of fertilizer. replication 

(some plots with the same level of fertilizer), responses or outcome (rice production), 

randomization (we do not chose certain rice plant to be placed in a plot or in other 

words, we just place rice plants randomly in a plot), control or standard/baseline 

treatment (no addition of fertilizer), controlled (other environment factor that influence 

on rice production is controlled, only the effect of fertilizer that we want to know and 

investigate on rice production). 

 

2.2 Terminology 

Based on the example above, experimental unit is the material of experiment 

which can be applied or assigned, at random, to a treatment. Potential examples of 

experimental units might be plots of land, individual animals, and populations. A 
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treatment is methods or various ways which are applied to experimental units. 

Experimental units which receive the same treatment is called a treatment group. 

Experimental units which is applied without treatment is called control group or 

standard treatment. A factor is combination of treatments and controls, and the 

different treatments/controls are called the levels of the factor. 

There are three basic principle in experimental design including replication 

which means the experiment has to be carried out on several units in order to measure 

the sampling error. The second principle is randomization where the units have to be 

assigned randomly to treatments. Furthermore, the treatments should be comparable, 

the units should be similar in structure meaning that animals are of almost in the same 

age and live in a similar environment. The third principle is local control, blocking that 

stratifies the units into groups with similar (homogeneous) characteristics such as age, 

sex, and other factors affecting the outcome or responses is called local control. 

The following script is an example to make randomization in R. 

 
> data <- data.frame(label=letters[1:8],number=11:18) 

> data 

> data <- data[sample(1:nrow(data)), ] 

> data 
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III. COMPLETELY RANDOMIZED DESIGN (CRD) 

 

3.1 Balanced CRD 

The simplest experimental design is a completely randomized design or just 

called CRD. CRD is appropriate if the experimental unit and the environments of the 

experiment are homogeneous, and there is only one factor with levels under the study. 

For example, a research is conducted to investigate the effect of prebiotic 

addition in ration on broiler performance (body weight gain). Factor in this research is 

prebiotic addition with four treatments applied to broiler chicken, those are base ration 

(T1), T1 plus 0.2% prebiotic addition (T2), T1 plus 0.4% prebiotic addition (T3), and 

T1 plus 0.6% prebiotic addition (T4). The treatments are replicated four times. 

Hypothesis for this design is H0 : µ1 = µ2 = µ3 = µ4 or H0 : τ1 = τ2 = τ3 = τ4, while 

the alternative hypothesis is H1: at least one of the means are different from the others. 

First thing to do is doing randomization. In this case, there are 4x5 = 20 

experimental units. Give numbers 1 to 20 to a group of chickens that will be used as 

experimental units, and then randomize the layout of the experiment as below. 

 

> randomize <- data.frame(label=rep(c(letters[1:4]), 

each=5), number=1:20) 

> randomize 

   label number 

1      a      1 

2      a      2 

3      a      3 

4      a      4 

5      a      5 

6      b      6 

7      b      7 

8      b      8 

9      b      9 

10     b     10 

11     c     11 

12     c     12 

13     c     13 

14     c     14 

15     c     15 

16     d     16 

17     d     17 

18     d     18 

19     d     19 
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20     d     20 

> randomize <- randomize[sample(1:nrow(randomize)), ] 

 

 

> randomize 

   label number 

19     d     19 

4      a      4 

10     b     10 

13     c     13 

14     c     14 

1      a      1 

12     c     12 

20     d     20 

9      b      9 

17     d     17 

7      b      7 

15     c     15 

16     d     16 

11     c     11 

18     d     18 

3      a      3 

8      b      8 

6      b      6 

2      a      2 

5      a      5 

> 

 

So the first experimental unit is filled by treatment d, the second experimental unit is 

filled by treatment a, and soon until twenty experimental units. Linear model for this 

CRD is 

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖𝑗.       i= 1, …, t;  j = 1, …, n 

where: 

yij = observation j in treatment i 

μ = the overall mean 

τi = the fixed effect of treatment i 

εij = random error 

If the number replication is the same, the sample means of the data in the ith level of 

the treatment factor can be formulated with 

𝑦̅i. =
1

𝑟𝑖
∑ 𝑦𝑖𝑗

𝑟𝑖

𝑗=1

 

The grand mean can be formulated with 
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𝑦̅. . =
1

𝑡
∑ 𝑦̅𝑖.

𝑡

𝑖=1

=
1

𝑛
∑ ∑ 𝑦𝑖𝑗

𝑟𝑖

𝑗=1

.

𝑡

𝑖=1

 

where n = ∑ 𝑟𝑖.  

Total variance in CRD is variance of treatment and variance of residual and 

can be written as follow. 

( yij − y̅. . )  =  ( yi . − y̅. . )  + ( yij − y̅i . )  

Sum squares of the above equation can be formulated as below. 

SST =  SSt +  SSE 

where SST is sum square total, SSt is sum square treatment and SSE is sum 

square error. 

SST = ∑ ∑(𝑦𝑖𝑗 − 𝑦̅. . )2

𝑟𝑖

𝑗=1

𝑡

𝑖=1

 

SSt = ∑ ∑(𝑦̅𝑖. − 𝑦̅. . )2

𝑟𝑖

𝑗=1

𝑡

𝑖=1

 

SSE = ∑ ∑(𝑦𝑖𝑗 −  𝑦𝑖. )2

𝑟𝑖

𝑗=1

.

𝑡

𝑖=1

 

 

Degree of freedom of total (dfT) of SST = N – 1 = tr – 1 = 20 -1 = 19 

Degree of freedom of treatment (dft) of SSt = t – 1 = 4 – 1 = 3 

Degree of freedom of error (dfe) of SSE =t( r – 1) = N – t = 20 – 4 = 16 

Mean square treatment (MSt) = SSt/dft 

Mean square error (MSE) = SSE/dfe 

Finally, theoretical table of ANOVA (analysis of variance) can be describe as 

follows. 

Source of 

Variation 

Degree of 

freedom 

Sum square 

(SS) 

Mean square 

(MS) 

Fstatistic 

Treatment t – 1 SSt SSt/(t – 1) MSt/MSE 

Error N – t SSE SSE/(N – t)  

Total N – 1 SST   
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Significance of the test is by comparing Fsatistic from Ftable, where Ftable in 

R can be scripted as qf(p, dft, dfe) or qf(0.95, 3, 16) if the alpha = 0.05. 

 

> qf(0.95, 3, 16) 

[1] 3.238872 

> 

 

Data of body weight gain of broiler of 4 weeks of age treated with four different 

ration (T1, T2, T3, and T4) are presented in table below. 

Replication 
Treatments 

T1 T2 T3 T4 

1 0.7651 1.3113 1.452 1.6298 

2 1.0150 1.3034 1.8463 1.5055 

3 1.2759 1.5975 1.2639 1.7790 

4 0.9837 0.6453 1.3987 1.4540 

5 0.8557 1.1484 1.1541 1.4434 

 

Solution 1 : using excel 

Treatment BodyWeightGain (BWG) GroupAverage 

T1 0.7651   

T1 1.015   

T1 1.2759   

T1 0.9837   

T1 0.8557 0.9791 

T2 1.3113   

T2 1.3034   

T2 1.5975   

T2 0.6453   

T2 1.1484 1.2012 

T3 1.452   

T3 1.8463   

T3 1.2639   

T3 1.3987   

T3 1.1541 1.4230 

T4 1.6298   

T4 1.5055   

T4 1.779   

T4 1.454   

T4 1.4434 1.5623 

GrandAverage 1.2914  
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Treat Xij BWG Xi average (Xij–Xi av) (Xij–Xi av)^2 X average (Xi av–X av) (Xi av–X av)^2 (Xij – X av) (Xij – X av)^2 

T1 X11 0.7651 0.9791 -0.214 0.045796 1.2914 -0.3123 0.09753129 -0.5263 0.27699 

T1 X12 1.015 0.9791 0.0359 0.00128881 1.2914 -0.3123 0.09753129 -0.2764 0.0764 

T1 X13 1.2759 0.9791 0.2968 0.08809024 1.2914 -0.3123 0.09753129 -0.0155 0.00024 

T1 X14 0.9837 0.9791 0.0046 2.116E-05 1.2914 -0.3123 0.09753129 -0.3077 0.09468 

T1 X21 0.8557 0.9791 -0.1234 0.01522756 1.2914 -0.3123 0.09753129 -0.4357 0.18983 

T2 X22 1.3113 1.2012 0.1101 0.01212201 1.2914 -0.0902 0.00813604 0.0199 0.0004 

T2 X23 1.3034 1.2012 0.1022 0.01044484 1.2914 -0.0902 0.00813604 0.012 0.00014 

T2 X24 1.5975 1.2012 0.3963 0.15705369 1.2914 -0.0902 0.00813604 0.3061 0.0937 

T2 X31 0.6453 1.2012 -0.5559 0.30902481 1.2914 -0.0902 0.00813604 -0.6461 0.41745 

T2 X32 1.1484 1.2012 -0.0528 0.00278784 1.2914 -0.0902 0.00813604 -0.143 0.02045 

T3 X33 1.452 1.423 0.029 0.000841 1.2914 0.1316 0.01731856 0.1606 0.02579 

T3 X34 1.8463 1.423 0.4233 0.17918289 1.2914 0.1316 0.01731856 0.5549 0.30791 

T3 X35 1.2639 1.423 -0.1591 0.02531281 1.2914 0.1316 0.01731856 -0.0275 0.00076 

T3 X36 1.3987 1.423 -0.0243 0.00059049 1.2914 0.1316 0.01731856 0.1073 0.01151 

T3 X37 1.1541 1.423 -0.2689 0.07230721 1.2914 0.1316 0.01731856 -0.1373 0.01885 

T4 X41 1.6298 1.5623 0.0675 0.00455625 1.2914 0.2709 0.07338681 0.3384 0.11451 

T4 X42 1.5055 1.5623 -0.0568 0.00322624 1.2914 0.2709 0.07338681 0.2141 0.04584 

T4 X43 1.779 1.5623 0.2167 0.04695889 1.2914 0.2709 0.07338681 0.4876 0.23775 

T4 X44 1.454 1.5623 -0.1083 0.01172889 1.2914 0.2709 0.07338681 0.1626 0.02644 

T4 X45 1.4434 1.5623 -0.1189 0.01413721 1.2914 0.2709 0.07338681 0.152 0.0231 

Sum     SSE=1.0006  0 SSt=0.9819 0 SST=1.9827 

 

Solution 2 : manually, but using R 

> data=read.csv("crd1.csv", header=TRUE) 

> head(data) 

  Treatment BodyWeightGain 

1        T1         0.7651 

2        T1         1.0150 

3        T1         1.2759 

4        T1         0.9837 

5        T1         0.8557 

6        T2         1.3113 

> tail(data) 

   Treatment BodyWeightGain 

15        T3          1.154 

16        T4          1.630 

17        T4          1.505 

18        T4          1.779 

19        T4          1.454 

20        T4          1.443 

> GrandMean=mean(data$BodyWeightGain) 
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> GrandMean 

[1] 1.291 

> SST=sum((data$BodyWeightGain-GrandMean)^2) 

> SST 

[1] 1.983 

> SSt=5*((mean(data[1:5,2])-GrandMean)^2+ 

(mean(data[6:10,2])-GrandMean)^2+ 

  (mean(data[11:15,2])-GrandMean)^2+ 

(mean(data[16:20,2])-GrandMean)^2) 

> SSt 

[1] 0.9821 

> SSE=SST-SSt 

> SSE 

[1] 1.001 

 

Solution 3 : short cut computation manually, but using R  

Correction Factor (CF) = (ΣY..)2/t.r  

> CF=(sum(data[,2]))^2/(4*5) 

> CF 

[1] 33.35 

 

SST = ΣYij2 – CF 

> SST=sum(data[,2]^2) - CF 

> SST 

[1] 1.983 

 

SSt = Σ(Yi.)2/r – CF 

> SSt=(((sum(data[1:5,2]))^2+(sum(data[6:10,2]))^2+ 

(sum(data[11:15,2]))^2+(sum(data[16:20,2]))^2)/5)-CF 

> SSt 

[1] 0.9821 

 

SSE = SST – SSE  

> SSE=SST-SSt 

> SSE 

[1] 1.001 

 

Mean square for each variation can be calculated as below. 

> MSt=SSt/3 

> MSt 

[1] 0.3274 

> MSE=SSE/16 

> MSE 

[1] 0.06254 



14 
 

> Fstatistic=MSt/MSE 

> Fstatistic 

[1] 5.235 

> qf(0.95,3,16) ##alpha=0.05 

[1] 3.239 

> qf(0.99,3,16) ##alpha=0.01 

[1] 5.292 

> 

 

Based on solution 1, solution 2, and solution 3, ANOVA table can be describe 

as follows: 

Table. ANOVA 

Source of 

Variation 

Degree of 

freedom 

Sum square 

(SS) 

Mean square 

(MS) 

Fstatistic 

Treatment 4 – 1 0.9821 0.3274 5.235* 

Error 20 – 4 1.001 0.06254  

Total 20 – 1 1.983   

Alpha 0.05 = 3.239; alpha 0.01 = 5.292 

Solution 4 : using R 

> data=read.csv("crd1.csv", header=TRUE) 

> head(data) 

  Treatment BodyWeightGain 

1        T1         0.7651 

2        T1         1.0150 

3        T1         1.2759 

4        T1         0.9837 

5        T1         0.8557 

6        T2         1.3113 

> data ## all data are displayed 

   Treatment BodyWeightGain 

1         T1         0.7651 

2         T1         1.0150 

3         T1         1.2759 

4         T1         0.9837 

5         T1         0.8557 

6         T2         1.3113 

7         T2         1.3034 

8         T2         1.5975 

9         T2         0.6453 

10        T2         1.1484 

11        T3         1.4521 

12        T3         1.8463 

13        T3         1.2639 

14        T3         1.3987 

15        T3         1.1541 

16        T4         1.6298 
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17        T4         1.5055 

18        T4         1.7790 

19        T4         1.4540 

20        T4         1.4434 

> modelCRD=aov(BodyWeightGain~Treatment, data=data) 

> summary(modelCRD) 

 

            Df Sum Sq Mean Sq F value Pr(>F)   

Treatment    3  0.982   0.327    5.23   0.01 * 

Residuals   16  1.001   0.063                  

--- 

Signif.codes:0‘***’0.001‘**’0.01‘*’ 0.05‘.’ 0.1‘ ’ 1 

 

The data above is written in csv file in excel with file name crd1.csv which is 

saved in a folder where we work in. Actually we can directly write data and script 

together in R console or in R editor, as follows. 

 

> Treatment2 <- rep(c("T1","T2","T3","T4"), each=5) 

> Treatment2 

 [1] "T1" "T1" "T1" "T1" "T1" "T2" "T2" "T2" "T2" 

"T2" "T3" "T3" "T3" "T3" "T3" 

[16] "T4" "T4" "T4" "T4" "T4" 

> BodyWeightGain2 <- 

c(0.7651,1.0150,1.2759,0.9837,0.8557,1.3113, 

+    

1.3034,1.5975,0.6453,1.1484,1.4521,1.8463,1.2639,1.

3987,1.1541, 

+    1.6298,1.5055,1.7790,1.4540,1.4434) 

> BodyWeightGain2 

 [1] 0.7651 1.0150 1.2759 0.9837 0.8557 1.3113 1.3034 

1.5975 0.6453 1.1484 

[11] 1.4521 1.8463 1.2639 1.3987 1.1541 1.6298 1.5055 

1.7790 1.4540 1.4434 

> dat=aov(BodyWeightGain2~Treatment2) 
> summary(dat) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Treatment2   3  0.982   0.327    5.23   0.01 * 

Residuals   16  1.001   0.063                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> 

 

Based on ANOVA table, it can be concluded that different treatment or 

addition of prebiotic in ration affected broiler performance (body weight gain). 

Which treatments are differed will be discussed in the next chapter (Multiple 
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Comparison). However, to check the difference effect of treatments visually, we can 

use boxplot, as below. 

 

> boxplot(BodyWeightGain~Treatment, data=data) 

> boxplot(BodyWeightGain~Treatment, col=c("red", 

+    "blue","green","yellow"),xlab="Treatments", 

+     ylab="Body weight gain (kg)",data=data) 

>  

 

Or 
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To check the reliability of the experiment, we can see the coefficient of 

variation (CV). The degree of precision with which the treatments are compared is 

influenced by the CV, the higher the CV value the lower the reliability of the 

experiment. If an experimental results has a CV value more than 30 % meaning that 

the experiment is to be viewed with caution. Coefficient of variation can be 

formulated as: 

𝐶𝑉 =
√𝑀𝑆𝐸

𝑌̅
 𝑥 100% 

 

where MSE is mean square error and 𝑌̅ is overall mean or grand mean. The 

above example we got MSE is 0.063 and grand mean is 1.291405. 

> MSE=0.063 

> ybar=mean(data$BodyWeightGain) 

> ybar 

[1] 1.291405 

> CV=(sqrt(MSE)/ybar)*100 

> CV 

[1] 19.43604 

> 

 

3.2 Unbalanced CRD 

If the data is unbalance for which the replication for each treatment is not the 

same, ANOVA can still be done. For example, in the previous research example, 

data for both T3 and T4 consist of 4 and 3 data, respectively, as in table below. 

 

Replication 
Treatments 

T1 T2 T3 T4 

1 0.7651 1.3113 1.452 1.6298 

2 1.0150 1.3034 1.8463 1.5055 

3 1.2759 1.5975 1.2639 1.7790 

4 0.9837 0.6453 1.3987 - 

5 0.8557 1.1484 - - 

 

In R: 

> data=read.csv("crd2.csv", header=TRUE) 

> data 

   Treatment BodyWeightGain 

1         T1      0.7650848 

2         T1      1.0149890 
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3         T1      1.2758507 

4         T1      0.9837027 

5         T1      0.8557105 

6         T2      1.3113046 

7         T2      1.3034288 

8         T2      1.5974956 

9         T2      0.6453479 

10        T2      1.1484184 

11        T3      1.4521396 

12        T3      1.8462775 

13        T3      1.2638854 

14        T3      1.3987220 

15        T4      1.6298013 

16        T4      1.5054732 

17        T4      1.7789886 

 

> modelCRD2=aov(BodyWeightGain~Treatment, data=data) 

> summary(modelCRD2) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Treatment    3 1.0453  0.3484   5.224 0.0138 * 

Residuals   13 0.8671  0.0667                  

--- 

Signif.codes:0‘***’ 0.001‘**’0.01‘*’ 0.05‘.’ 0.1‘ ’ 1 

 

Based on ANOVA table, treatments affected broiler performance (P<0.05). 
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IV. MULTIPLE COMPARISON 

 

4.1 Introduction 

F-test in ANOVA table tells us if there is a significant difference among groups 

or treatments. If the F-test is significant (H0 is rejected), the question is between which 

pairs of treatments differed significantly from one another. 

There are some procedures for pair-wise comparisons of means, for example, the 

Least Significance Difference (LSD), Tukey (honestly significant difference, HSD), 

Duncan’s Multiple Range Test (DMRT), Student-Newman-Keuls (SNK), Dunnett, 

Scheffe, and Bonferroni  test. Different researchers have offered some guidelines for 

choosing which test more appropriate, but actually there is no set rule for making 

decision to use a test. The following multiple test is example to be explained. 

 

4.2 Least Significance Difference (LSD) 

This procedure aims to test or compare the least difference between a pair of 

treatment means weather significant or not. If the difference of the two treatment 

means is greater than the LSD then this pair of treatment differ significantly. The 

advantage of the LSD, it has a low level of type II error and will most likely detect a 

difference if a difference really exists. The disadvantage of this test, it has a high level 

of type I error. Formula of LSD can be calculated as follows: 

𝐿𝑆𝐷12 = 𝑡𝛼/2,𝑑𝑓𝑒√𝑀𝑆𝐸 (
1

𝑛1
+

1

𝑛2
) 

where tα/2 is t table (qt(p, df), dfe is degree of freedom for error, MSE is mean 

square error, and n1 and n1 is replication or number of data of treatment 1 and 2, 

respectively. For example, data in chapter III can be used for treatment comparison, 

as below. 

> data=read.csv("crd1.csv", header=TRUE) 

> modelCRD=aov(BodyWeightGain~Treatment, data=data) 

> summary(modelCRD) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Treatment    3 0.9821  0.3274   5.235 0.0104 * 

Residuals   16 1.0006  0.0625                  

--- 

Signif.codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘ ’ 1 
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Based on ANOVA table above the MSE is 0.0625, so for example we want to 

compare between treatment 1 (T1) with mean of 0.9790 and treatment 4 (T4) with 

mean 1.5623. The LSD can be calculated as follows: 

> alpha=0.05 

> qt(1-alpha/2,16) 

[1] 2.119905 

> t=qt(1-alpha/2,16) 

> t 

[1] 2.119905 

> MSE=0.0625 

> LSD=t*sqrt((MSE*((1/5)+(1/5)))) 

> LSD 

[1] 0.3351865 

> T4=1.5623 

> T1=0.9791 

> T4-T1 

[1] 0.5832 

 

Based on the calculation above, the different between T1 and T4 is 0.5832 and 

LSD is 0.3352, meaning that the difference between T1 and T4 is greater than LSD. 

It can be concluded that the two treatment (T1 and T4) are different (P<0.05). By 

using R package agricolae, the LSD procedure can be done like below. 

> library(agricolae) 

> LSD.test(modelCRD,"Treatment",alpha=0.05,console=T) 

 

Study: modelCRD ~ "Treatment" 

 

LSD t Test for BodyWeightGain  

 

Mean Square Error:  0.06253821  

 

Treatment,  means and individual ( 95 %) CI 
 

   BodyWeightGain       std r       LCL      UCL       Min      Max 

T1      0.9790676 0.1939057 5 0.7419825 1.216153 0.7650848 1.275851 

T2      1.2011990 0.3504930 5 0.9641140 1.438284 0.6453479 1.597496 

T3      1.4230275 0.2637328 5 1.1859425 1.660113 1.1541131 1.846277 

T4      1.5623270 0.1419615 5 1.3252419 1.799412 1.4433824 1.778989 

 

Alpha: 0.05 ; DF Error: 16 

Critical Value of t: 2.119905  

 

least Significant Difference: 0.3352889  

 

Treatments with the same letter are not significantly 

different. 
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   BodyWeightGain groups 

T4      1.5623270      a 

T3      1.4230275     ab 

T2      1.2011990     bc 

T1      0.9790676      c 

 

4.3 Tukey Test (HSD) 

Tukey test is also known as the honestly significant difference (HSD). The 

advantage of this test, it has fewer incorrect conclusions of μ1 ≠ μ.. (type I errors) 

compared to the LSD, but the disadvantage of this test, there will be more incorrect μ1 

= μ.. conclusions (type II errors).  Tukey test is calculated from: 

 

𝐻𝑆𝐷12 = 𝑞𝛼(𝑡,dfe)√𝑀𝑆𝐸/𝑟 

where qα is chi-square table based on significance α and number of treatment 

(t) and degree of freedom for error (dfe) or in R (qtukey(p = 0.95, nmeans = 4, df = 

16)), MSE is mean square error, and r is number of replication. For example, data in 

chapter III can be used for treatment comparison, as below. 

> MSE=0.0625 

> r=5 

> alpha=0.05 

> q=qtukey(p = 0.95, nmeans = 4, df = 16) 

> q 

[1] 4.046093 

> HSD=q*sqrt(MSE/r) 

> HSD 

[1] 0.452367 

> T1=0.9791 

> T4=1.5623 

> T4-T1 

[1] 0.5832 

> 

Based on the calculation above, the different between T1 and T4 is 0.5832 and 

HSD is 0.4524, meaning that the difference between T1 and T4 is greater than HSD. 

It can be concluded that the two treatment (T1 and T4) are different (P<0.05). By 

using R package agricolae, the LSD procedure can be done like below. 

> TukeyHSD(modelCRD,conf.level=0.05) 

  Tukey multiple comparisons of means 

    5% family-wise confidence level 
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Fit: aov(formula=BodyWeightGain~Treatment,data=data) 

 

$`Treatment` 

           diff        lwr       upr     p adj 

T2-T1 0.2221315 0.13799198 0.3062710 0.5145986 

T3-T1 0.4439600 0.35982045 0.5280995 0.0554362 

T4-T1 0.5832594 0.49911993 0.6673989 0.0096706 

T3-T2 0.2218285 0.13768896 0.3059680 0.5157092 

T4-T2 0.3611279 0.27698844 0.4452675 0.1436508 

T4-T3 0.1392995 0.05515997 0.2234390 0.8147416 

 

> plot(TukeyHSD(modelCRD), conf.level=.95) 

 
 

 

If using R package agricolae, the HSD procedure can be done like below. 

> library(agricolae) 

>HSD.test(modelCRD,"Treatment",alpha=0.05,console=T) 

 

Study: modelCRD ~ "Treatment" 

 

HSD Test for BodyWeightGain  

 

Mean Square Error:  0.06253821  

 

Treatment,  means 
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   BodyWeightGain       std r       Min      Max 

T1      0.9790676 0.1939057 5 0.7650848 1.275851 

T2      1.2011990 0.3504930 5 0.6453479 1.597496 

T3      1.4230275 0.2637328 5 1.1541131 1.846277 

T4      1.5623270 0.1419615 5 1.4433824 1.778989 

 

Alpha: 0.05 ; DF Error: 16  

Critical Value of Studentized Range: 4.046093  

 

Minimun Significant Difference: 0.4525052  

 

Treatments with the same letter are not significantly 

different. 

 

   BodyWeightGain groups 

T4      1.5623270      a 

T3      1.4230275     ab 

T2      1.2011990     ab 

T1      0.9790676      b 

 

4.4 Duncan’s Multiple Range Test (DMRT) 

DMRT compare between the range of a subset of the sample means and a 

calculated least significant range (LSR). This LSR increases with the number of 

sample means in the subset. If the range of the subset is greater than the LSR then the 

two means or treatments differ significantly according to desired significance level. 

Because of this sequential test, so the subset with the largest range should be compared 

first, followed by smaller subsets. The LSR can be computed as follows. 

 

LSR = 𝐾𝑟√𝑀𝑆𝐸/𝑟 

Where Kr is obtained from Duncan’s table of significant ranges for a given α with df 

for experimental error (dfe). As previous example the MSE = 0.0625, r is 5 and Kr 

with alpha 0.05 and dfe 16 are  

> MSE=0.0625 

> r=5 

> Kr=c(2.998, 3.144, 3.235) 

> LSR=Kr*sqrt(MSE/r) 

> LSR 

[1] 0.3351866 0.3515099 0.3616840 

> sequence=aggregate(BodyWeightGain~Treatment, 

data=data, mean) 
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> sequence 

  Treatment BodyWeightGain 

1        T1      0.9790676 

2        T2      1.2011990 

3        T3      1.4230275 

4        T4      1.5623270 

> sort(sequence$BodyWeightGain) 

[1] 0.9790676 1.2011990 1.4230275 1.5623270 

> 

 

So the comparison of T1 vs T2, T2 vs T3 and T3 vs T4 should be compared to 

LSR 2 (0.3351866); comparison of T1 vs T3 and T2 vs T4 should be compared to 

LSR 3 (0.3515099), and comparison of T1 vs T4 should be compared to LSR 4 

(0.3616840). For example, the difference between T1 and T4 (T1 vs T4) is 

0.5832594 which is greater than  LSR 4 (0.3616840), meaning that treatment T1 

and T4 is different (P<0.05). By using agricolae package the DMRT can be done like 

below. 

> library(agricolae) 

> modelCRD=aov(BodyWeightGain~Treatment, data=data) 

> out=duncan.test(modelCRD, "Treatment", alpha=0.05, 

console=T) 

> out 

 

Study: modelCRD ~ "Treatment" 

 

Duncan's new multiple range test 

for BodyWeightGain  

 

Mean Square Error:  0.06253821  

 

Treatment,  means 

 

   BodyWeightGain       std r       Min      Max 

T1      0.9790676 0.1939057 5 0.7650848 1.275851 

T2      1.2011990 0.3504930 5 0.6453479 1.597496 

T3      1.4230275 0.2637328 5 1.1541131 1.846277 

T4      1.5623270 0.1419615 5 1.4433824 1.778989 

 

Alpha: 0.05 ; DF Error: 16  

 

Critical Range 

        2         3         4  

0.3352889 0.3515952 0.3617883  
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Means with the same letter are not significantly 

different. 

 

   BodyWeightGain groups 

T4      1.5623270      a 

T3      1.4230275     ab 

T2      1.2011990     bc 

T1      0.9790676      c 

> plot(out,variation="IQR") 

 
4.5 Student-Newman Keuls (SNK) 

Like DMRT, Student-Newman Keuls test is step down procedure where the 

difference between the largest and the smallest means are compared first and if there 

is significant different then continue to the next set of treatment pairs (the second 

largest vs the smallest or the second smallest vs the largest), or stop if the pair is not 

significant. The test is continued until founding a non-significant pair comparison of 

means. 

The SNK is based on the studentized range distribution. The SNK can be 

computed as follows. 
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SNK =
(𝑦̅1 − 𝑦̅2)

√𝑀𝑆𝐸
2 (

1
𝑟1

+
1

𝑟2)

 

where 𝑦̅1 is mean of treatment 1 (T1) and 𝑦̅2 is mean of treatment 2 (T2), MSE 

is mean square error, r1 and r2 is number of replication for treatment 1 and 2, 

respectively. For example, we want to compare between T1 (the smallest) and T4 (the 

largest). As previous example,  the MSE = 0.0625, r1 and r4 is 5 each and T1 mean is 

0.9791, while T4 mean is 1.5623. SNK can be calculated as follows. 

> MSE=0.0625 

> r1=5 

> r4=5 

> T1=0.9791 

> T4=1.5623 

> T2=1.2012 

> T3=1.4230 

> q=qtukey(p = 0.95, nmeans = 2:4, df = 16) 

> q 

[1] 2.997999 3.649139 4.046093 

> SNK=(T4-T1)/(sqrt((MSE/2)*((1/r4)+(1/r1)))) 

> SNK 

[1] 5.216299 

> SNK=(T2-T1)/(sqrt((MSE/2)*((1/r4)+(1/r1)))) 

> SNK 

[1] 1.986523 

> SNK=(T3-T1)/(sqrt((MSE/2)*((1/r4)+(1/r1)))) 

> SNK 

[1] 3.970362 

> SNK=(T3-T2)/(sqrt((MSE/2)*((1/r4)+(1/r1)))) 

> SNK 

[1] 1.98384 

> SNK=(T4-T2)/(sqrt((MSE/2)*((1/r4)+(1/r1)))) 

> SNK 

[1] 3.229777 

> 

Based on computation above it can be concluded that T4 and T1 is different with 

SNK (5.216299) which is greater than q (4.046093); T2 and T1 is not different 

with SNK (1.986523) which is not greater than q (2.997999); and soon, so that 

the overall comparison resulted in like below. 

T1   T2   T3   T4 

 

By using agricolae package, SNK test can be done like below. 
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> SNK.test(modelCRD,"Treatment",alpha=0.05,console=T) 

 

Study: modelCRD ~ "Treatment" 

 

Student Newman Keuls Test 

for BodyWeightGain  

 

Mean Square Error:  0.06253821  

 

Treatment,  means 

 

   BodyWeightGain       std r       Min      Max 

T1      0.9790676 0.1939057 5 0.7650848 1.275851 

T2      1.2011990 0.3504930 5 0.6453479 1.597496 

T3      1.4230275 0.2637328 5 1.1541131 1.846277 

T4      1.5623270 0.1419615 5 1.4433824 1.778989 

 

Alpha: 0.05 ; DF Error: 16  

 

Critical Range 

        2         3         4  

0.3352889 0.4081108 0.4525052  

 

Means with the same letter are not significantly 

different. 

 

   BodyWeightGain groups 

T4      1.5623270      a 

T3      1.4230275      a 

T2      1.2011990     ab 

T1      0.9790676      b 

 

The same thing with manual procedure, but in this agricolae package, critical 

range is for mean different. For example, mean different between T1 and T2 is 0.2221 

which is not different from critical range 0.3352889, but mean different between T4 

and T1 is 0.5832 which is different from critical range 0.4525052, and soon. Basically 

the result is the same weather using procedure manually or using agricolae package. 

 

4.6 Dunnett’s Test 

Sometimes we are only interested in the comparison between controls and other 

treatments. For example, comparing a local variety of rice with several new varieties. 

In this case we can use the Dunnet test. In the Dunnet test only one comparative value 
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is needed to compare the controls with other treatments. The Dunnet test is similar to 

LSD, but the t-value used is not the student-t used in the LSD test, Dunnet test uses a 

different t table, called Dunnet table (http://sciences.ucf.edu/biology/d4lab/wp-

content/uploads/sites/139/2016/11/Dunnetts-table.pdf). 

 

𝐷𝑢𝑛𝑛𝑒𝑡 =  𝑡𝛼/2(𝑑𝑓𝑡,𝑑𝑓𝑒)√
𝑀𝑆𝐸

𝑟
 

For example, using previous data with dft = 3 and dfe = 16, dunnet table is 2.59. 

Considering T1 as control, Dunnet test can be computed as below. 

 

> MSE=0.0625 

> r=5 

> t=2.59 ##alpha=0.05, dft = 3 and dfe = 16 

> T1=0.9791 

> T4=1.5623 

> T2=1.2012 

> T3=1.4230 

> Dunnet=t*sqrt(MSE/r) 

> Dunnet 

[1] 0.2895708 

> T2-T1 

[1] 0.2221 

> T3-T1 

[1] 0.4439 

> T4-T1 

[1] 0.5832 

> 

 

Based on Dunnet calculation, Dunnet test is 0.2895708, T1 and T2 (0.2221) 

is not different (P>0.05),  T1 and T3 (0.4439) is different (P<0.05) and T1 and T4 

(0.5832) is different (P<0.05). By using “DescTools” package Dunnet test can be 

done as below. 

 

> library(DescTools) 

> DunnettTest(BodyWeightGain ~ Treatment, data = data) 

 

  Dunnett's test for comparing several treatments with 

a control :   

    95% family-wise confidence level 

http://sciences.ucf.edu/biology/d4lab/wp-content/uploads/sites/139/2016/11/Dunnetts-table.pdf
http://sciences.ucf.edu/biology/d4lab/wp-content/uploads/sites/139/2016/11/Dunnetts-table.pdf
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$`T1` 

           diff      lwr.ci    upr.ci   pval     

T2-T1 0.2221315 -0.18792148 0.6321845 0.3856     

T3-T1 0.4439600  0.03390699 0.8540129 0.0325 *   

T4-T1 0.5832594  0.17320647 0.9933124 0.0054 **  

 

--- 

Signif.codes: 0'***'0.001'**'0.01'*'0.05'.'0.1' ' 1  

 

4.7 Scheffe Test 

This test aims to protect against a Type I error when all possible complex and 

simple comparisons are made. Scheffe test is used to make unplanned comparisons, 

rather than pre-planned comparisons. This test uses a different critical value (or at least 

it makes an adjustment to the critical value of F). The advantage of this test is flexibility 

to test any comparisons that appear interesting, but it has very low statistical power. 

Scheffe test (ST) formula can be written as below. 

ST = √(𝑘 − 1)𝑓𝑣𝑎𝑙𝑢𝑒 𝑀𝑆𝐸(1/𝑟1 +  1/𝑟2) 

Where k-1 is dft (degree of freedom between treatment), fvalue is from ANOVA, 

MSE is mean square error r1 and r2 is replication or number of data of treatment 1 and 

2, respectively. From previous example, ST can be computed as below. 

> data=read.csv("crd1.csv", header=TRUE) 

> modelCRD=aov(BodyWeightGain~Treatment, data=data) 

> summary(modelCRD) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Treatment    3 0.9821  0.3274   5.235 0.0104 * 

Residuals   16 1.0006  0.0625                  

--- 

Signif.codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘ ’ 1 

 

> dft=3 

> MSE=0.0625 

> fvalue=qf(0.95,3,16) 

> r1=5 

> r2=5 

> T1=0.9791 

> T4=1.5623 

> T2=1.2012 

> T3=1.4230 

> ST=sqrt(dft*fvalue*MSE*((1/r1)+(1/r2))) 

> ST 

[1] 0.4928644 
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> T2-T1 

[1] 0.2221 

> T3-T1 

[1] 0.4439 

> T4-T1 

[1] 0.5832 

> T3-T2 

[1] 0.2218 

> T4-T3 

[1] 0.1393 

> T4-T2 

[1] 0.3611 

 

> library(agricolae) 

> scheffe.test(modelCRD,"Treatment",alpha=0.05, 

console=T) 

 

Study: modelCRD ~ "Treatment" 

 

Scheffe Test for BodyWeightGain  

 

Mean Square Error  : 0.06253821  

 

Treatment,  means 

 

   BodyWeightGain       std r       Min      Max 

T1      0.9790676 0.1939057 5 0.7650848 1.275851 

T2      1.2011990 0.3504930 5 0.6453479 1.597496 

T3      1.4230275 0.2637328 5 1.1541131 1.846277 

T4      1.5623270 0.1419615 5 1.4433824 1.778989 

 

Alpha: 0.05 ; DF Error: 16  

Critical Value of F: 3.238872  

 

Minimum Significant Difference: 0.4930151  

 

Means with the same letter are not significantly 

different. 

 

   BodyWeightGain groups 

T4      1.5623270      a 

T3      1.4230275     ab 

T2      1.2011990     ab 

T1      0.9790676      b 

>  
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4.8 Boferroni Test 

Bonferroni test is conservative test that protects from Type I Error and prevent 

data from incorrectly appearing to be statistically significant by lowering the alpha 

value. Bonferroni test or Bonferroni correction considers p-value for each test is 

equal to alpha divided by the number of tests. The disadvantage of Bonferroni test is 

too conservative and may fail to catch some significant findings and vulnerable to 

Type II errors. 

For example, in previous example the α for LSD is 0.05 and the number of 

comparison is 6 (T1 vs T2, T1 Vs T3, T1 vs T4, T2 vs T3, T2 vs T4, and T3 vs T4), 

then critical value for Bonferroni correction will be 0.05/6 = 0.008333333. By using 

LSD test as the same as previous test, Bonferroni correction or adjustment will be 

like below. 

> LSD.test(modelCRD,"Treatment",alpha=0.05, console=TRUE) 

 

Study: modelCRD ~ "Treatment" 

 

LSD t Test for BodyWeightGain  

 

Mean Square Error:  0.06253821  

 

Treatment,  means and individual ( 95 %) CI 

 

   BodyWeightGain       std r       LCL      UCL       Min      Max 

T1      0.9790676 0.1939057 5 0.7419825 1.216153 0.7650848 1.275851 

T2      1.2011990 0.3504930 5 0.9641140 1.438284 0.6453479 1.597496 

T3      1.4230275 0.2637328 5 1.1859425 1.660113 1.1541131 1.846277 

T4      1.5623270 0.1419615 5 1.3252419 1.799412 1.4433824 1.778989 

 

Alpha: 0.05 ; DF Error: 16 

Critical Value of t: 2.119905  

 

least Significant Difference: 0.3352889  

 

Treatments with the same letter are not significantly different. 

 

   BodyWeightGain groups 

T4      1.5623270      a 

T3      1.4230275     ab 

T2      1.2011990     bc 

T1      0.9790676      c 

> LSD.test(modelCRD,"Treatment",alpha=0.05, p.adj="bonferroni", 

console=T) 

 

Study: modelCRD ~ "Treatment" 

 

LSD t Test for BodyWeightGain  

P value adjustment method: bonferroni  

 

Mean Square Error:  0.06253821  
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Treatment,  means and individual ( 95 %) CI 

 

   BodyWeightGain       std r       LCL      UCL       Min      Max 

T1      0.9790676 0.1939057 5 0.7419825 1.216153 0.7650848 1.275851 

T2      1.2011990 0.3504930 5 0.9641140 1.438284 0.6453479 1.597496 

T3      1.4230275 0.2637328 5 1.1859425 1.660113 1.1541131 1.846277 

T4      1.5623270 0.1419615 5 1.3252419 1.799412 1.4433824 1.778989 

 

Alpha: 0.05 ; DF Error: 16 

Critical Value of t: 3.008334  

 

Minimum Significant Difference: 0.4758047  

 

Treatments with the same letter are not significantly different. 

 

   BodyWeightGain groups 

T4      1.5623270      a 

T3      1.4230275     ab 

T2      1.2011990     ab 

T1      0.9790676      b 

 

If we do LSD test with alpha 0.008333333 will result in the same thing as 

Bonferroni correction. 

 
> LSD.test(modelCRD,"Treatment",alpha=0.008333333, console=TRUE) 

 

Study: modelCRD ~ "Treatment" 

 

LSD t Test for BodyWeightGain  

 

Mean Square Error:  0.06253821  

 

Treatment,  means and individual ( 99.16667 %) CI 

 

   BodyWeightGain       std r       LCL      UCL       Min      Max 

T1      0.9790676 0.1939057 5 0.6426228 1.315512 0.7650848 1.275851 

T2      1.2011990 0.3504930 5 0.8647543 1.537644 0.6453479 1.597496 

T3      1.4230275 0.2637328 5 1.0865828 1.759472 1.1541131 1.846277 

T4      1.5623270 0.1419615 5 1.2258823 1.898772 1.4433824 1.778989 

 

Alpha: 0.008333333 ; DF Error: 16 

Critical Value of t: 3.008334  

 

least Significant Difference: 0.4758047  

 

Treatments with the same letter are not significantly different. 

 

   BodyWeightGain groups 

T4      1.5623270      a 

T3      1.4230275     ab 

T2      1.2011990     ab 

T1      0.9790676      b 

> 

 

4.9 Orthogonal Comparison and Contrast 

Orthogonal contrast is a linear combination of variables whose total coefficients 

is zero which allow comparison of different treatments. For example, the first 

treatment will be compared with treatment 2,3,4, and treatment 2 will be compared 
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with treatment 3,4. and so on depending on the predetermined hypothesis. This mean 

test can be used for the planned comparison of the treatments. In previous example, 

for instance, we want to compare control (T1) versus prebiotic addition (T2, T3, T4) 

treatment, T2 versus T3 and T4, and T3 versus T4, as describe below. 

 
> modelCRD <- aov( BodyWeightGain ~ Treatment, data = data ) 

> summary(modelCRD) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Treatment    3 0.9821  0.3274   5.235 0.0104 * 

Residuals   16 1.0006  0.0625                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> comp1 <- c(3, -1, -1, -1) # T1 or control vs. T2, T3, and T4 

> comp2 <- c(0, 2, -1, -1) # T2 vs. T3 and T4 

> comp3 <- c(0, 0, 1, -1) # T3 vs. T4 

> comparison <- cbind(comp1,comp2,comp3) ##combine the three comparison 

> # tell R that the matrix to provide the contrasts that we want 

> contrasts(data$Treatment) <- comparison 

> modelCRD.new <- aov(BodyWeightGain ~ Treatment, data = data) 

> summary(modelCRD.new) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Treatment    3 0.9821  0.3274   5.235 0.0104 * 

Residuals   16 1.0006  0.0625                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary.aov(modelCRD.new, split=list(Treatment=list("T1 or control vs. 

prebiotic addition"=1, "T2 vs T3 & T4"=2, "T3 vs T4"=3)))  

                                                  Df Sum Sq Mean Sq F value 

Treatment                                          3 0.9821  0.3274   5.235 

  Treatment: T1 or control vs. prebiotic addition  1 0.6504  0.6504  10.399 

  Treatment: T2 vs T3 & T4                         1 0.2832  0.2832   4.528 

  Treatment: T3 vs T4                              1 0.0485  0.0485   0.776 

Residuals                                         16 1.0006  0.0625         

                                                   Pr(>F)    

Treatment                                         0.01042 *  

  Treatment: T1 or control vs. prebiotic addition 0.00529 ** 

  Treatment: T2 vs T3 & T4                        0.04923 *  

  Treatment: T3 vs T4                             0.39150    

Residuals                                                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary.lm(modelCRD.new) ##or use this script, the same thing 

 

Call: 

aov(formula = BodyWeightGain ~ Treatment, data = data) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.55585 -0.12005 -0.00984  0.10420  0.42325  

 

Coefficients: 

               Estimate Std. Error t value Pr(>|t|)     

(Intercept)     1.29141    0.05592  23.094 1.03e-13 *** 

Treatmentcomp1 -0.10411    0.03228  -3.225  0.00529 **  

Treatmentcomp2 -0.09716    0.04566  -2.128  0.04923 *   

Treatmentcomp3 -0.06965    0.07908  -0.881  0.39150     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.2501 on 16 degrees of freedom 

Multiple R-squared:  0.4953,    Adjusted R-squared:  0.4007  

F-statistic: 5.235 on 3 and 16 DF,  p-value: 0.01042 

 

> 

Based on the comparison above, control differ from prebiotic addition, T2 

differ from T3 and T4. 
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V. ANOVA ASSUMPTION 

 

5.1 Introduction 

Before doing analysis of variance there are several assumptions that should be 

fulfilled. ANOVA test can be applied only when the observations are obtained 

independently and randomly from the population, the experimental errors are normally 

distributed, and these normal populations have a common variance. What if we analyze 

data that actually does not meet the assumptions of variance analysis? If that happens, 

then the conclusions taken will not describe the actual situation and even misleading. 

Thus, before conducting a variance analysis, it is suggested to first check whether the 

data has met the basic assumptions of variance analysis or not. Violation to one of 

these assumptions will affect to bias conclusion of the research. 

 

5.2 Independency 

The sample we use should be selected randomly and independently. The residual 

value and data for each observation of the experimental unit must be free from each 

other, both in the treatment itself (within group) or between treatments (between 

groups). If this condition is not met, it will be difficult to detect any real differences 

that might exist. Independency test can use Durbin Watson Test, for example, by using 

previous example (chapter IV), the independency of the data can be detected as 

following. 

 

> durbinWatsonTest(modelCRD) 

 lag Autocorrelation D-W Statistic p-value 

   1      -0.2398849       2.41987   0.776 

 Alternative hypothesis: rho != 0 

 

We can see from p-value  (0.776) indicated that the data is independent and not auto 

correlate. The simplest graphical way to check for independence is by plotting the 

residuals, like below. If the points are symmetrically distributed around a horizontal 

line with a roughly constant variance meaning that the data is independent. 
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> plot(modelCRD$residuals) 

> abline(h = 0) 

 

5.3 Normality 

Normality means the residual value (εij) in each treatment (group) associated 

with the Yi observation value and this residual value should be normally distributed. 

If the residual value is normally distributed, then the Yi value will be normally 

distributed. If the sample size are the same and variance of each treatment are 

homogeneous, then the ANOVA test is very strong against this assumption, and even 

the impact of abnormalities is not too serious. However, if the abnormality is 

accompanied by heterogeneous variance, the problem can be serious on research 

conclusion taken. If the data size is large, normality assumption can be relaxed, but if 

the data size is very small then normality is very important. 

Normality assumption can be seen visually using qqplot, like below. 

> qqnorm(data$BodyWeightGain) 

> qqline(data$BodyWeightGain,col="red") 
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The closer the spot of data to the red line the better meaning data are normally 

distributed. To make sure that data is normally distributed, we can use Shapiro.test like 

below. 

> shapiro.test(modelCRD$residuals) 

 

        Shapiro-Wilk normality test 

 

data:  modelCRD$residuals 

W = 0.9669, p-value = 0.6885 

 

> 

Based on Shapiro.test it can be seen that p-value is 0.6885 which is greater than 

0.05, meaning not significant (P>0.05). This result indicated that data is normally 

distributed. 

 

5.4 Homogeneity of Variance 

Another assumption underlying the analysis of variance is homogeneity of the 

variance or it is called assumption of homoscedasticity. Homoscedasticity means that 

the variance of residual values is constant. The assumption of homogeneity requires 

that the residual distribution for each treatment or group must have the same variance. 
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In practice, this means that the value of Yij at each level of the independent variable 

varies around the mean value. Testing for equal variances between treatments is 

levenTest for one-way ANOVA or barlett.test, like below. Bartlett’s test can be used 

to test homogeneity of variances in k samples that can be more than two. While 

leveneTest is more robust than bartlett.test when the distributions of the data are not 

normal, and fligner.test is another test for homogeneity of variances which is the most 

robust test. 

 

> library(car) 

Loading required package: carData 

> leveneTest(BodyWeightGain~Treatment, data=data) 

 

Levene's Test for Homogeneity of Variance (center = 

median) 

      Df F value Pr(>F) 

group  3   0.417 0.7432 

      16                

 

> ##or 

> bartlett.test(BodyWeightGain~Treatment, data=data) 

 

        Bartlett test of homogeneity of variances 

 

data:  BodyWeightGain by Treatment 

Bartlett's K-squared = 3.1145, df = 3, p-value = 0.3743 

 

>##or 

> fligner.test(BodyWeightGain~Treatment, data=data) 

 

  Fligner-Killeen test of homogeneity of variances 

 

data:  BodyWeightGain by Treatment 

Fligner-Killeen:med chi-squared = 1.2826, df = 3, p-

value = 0.7333 

> 

 

Based on levenTest with p-value 0.7432, barlett.test with p-value 0.3743, and 

fligner.test with p-value 0.7333, all of them are greater than 0.05, meaning that residual 

variance of each treatment are homogeneous. 

Or we can see the homogeneity of residual by plotting them, like below. 

> plot(modelCRD, 1) 
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This plot shows the pattern of residuals, ideally the residuals should show similar 

scatter for each condition of treatments. It can be seen that there is a similarity of 

residuals with the larger fitted values. This is called homoscedasticity meaning that 

variance in the response equal across groups or treatments. 

> plot(modelCRD, 3) 
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This is like the first plot but now to specifically test if the residuals increase with the 

fitted values. The plot shows that residuals does not increase with the fitted value, 

meaning residual variances are homogeneous among the treatments. 

 

> plot(modelCRD, 5) 

 

 

This plot shows which levels of the treatment are best fitted, T4 is best fitted. 

Checking all assumption can use script like below. 

 

> check <- par(mfrow=c(2,2),cex=.8) 

> plot(modelCRD) 

> par(check) 
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VI. DATA TRANSFORMATION 

 

6.1 Introduction 

Transformation is an effort carried out with the main goal of changing the scale 

of measurement of original data into another form so that the new data can meet the 

assumptions underlying the variance analysis. In other words, data transformation is 

needed when the data violates ANOVA assumption in order to achieve the assumption 

so that the conclusions taken describe the actual situation and not misleading. Data 

transformation usually deals with normalizing or scaling data and handling skewness. 

 

6.2 Data Transformation 

Data transformation can be a form of natural logarithm, common logarithm, 

square root, cube root, reciprocal, reciprocal square root, sine, arcsine, power of 3, etc. 

Which one is appropriate depending on the data condition. In general, data 

transformation is to make a variable linear. Therefore, various transformations can be 

tried and tested for linearity using tests for normality, as well as visual displays, Q-

plots, etc.  

Other test that can be used to check our data is looking at the skewness of the 

data. If  the value of skewness lies above +1 or below -1, data is highly skewed (need 

transformation), between +0.5 to -0.5 is moderately skewed (need transformation), and 

if the value is 0, then the data is symmetric (no need transformation) (Vadali, 2017). 

Skewness test for previous example is like below. 

> data=read.csv("crd1.csv", header=TRUE) 

> library(e1071) 

> checkData<-skewness(data$BodyWeightGain)  

> checkData 

[1] -0.2621765 

> 

Based on the test above it can be concluded that the data is not skewness meaning 

relatively symmetric or normally distributed. 

 

6.3 Examples of Data Transformation 

Data like growth rates usually use exponential and log transforms, and this type 

of transformation is appropriate particularly if the variance increases with the mean. If 
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a log transform does not normalize our data we could try a reciprocal (1/x) 

transformation. This is often used for enzyme reaction rate data. For count data, for 

example,  blood cells on a haemocytometer or woodlice in a garden, square root 

transformation is often used. While arcsine transformation is useful for data like 

percentage, ages and proportions. 

Tabachnick and Fidell (2007) and Howell (2007) suggested the following 

guidelines to transform data (see table).  

 

Data condition Suggested data transformation 

Moderately positive skewness Square root 

newX = sqrt(X) 

Substantially positive skewness Logarithmic (Log 10) 

newX = log10(X) 

Substantially positive skewness (with zero 

value 

Logarithmic (Log 10) 

newX = log10(X + C) 

Moderately negative skewness Square root 

newX = sqrt(K – X) 

Substantially negative skewness Logarithmic (Log 10) 

newX = log10(K – X) 
C = a constant added to each score so that the smallest score is 1.  

K = a constant from which each score is subtracted so that the smallest score is 1; usually equal to the 

largest score + 1.  

 

Below is an example to make data transformation. There are three feed 

treatment, A is conventional feed, B and C new introducing feed. The three ration are  

given to turkey for two month trial (0-60 days of age). Body weight at 60 days of age 

is presented in table below. Is there any different body weight of turkey treated with 

the different feed?  

 

Table. Body weight (60 days) of turkey fed 3 different ration 

Turkey 
Ration 

A B C 

1 2 5 3 

2 3 6 5 

3 2 5 4 

4 2 4 10 

 

Before checking the assumption, we can do ANOVA to see the result look like. 

The data of body weight of turkey can be  arranged and read like below. 
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> data=read.csv("bodyWeight.csv", header=T) 

> data 

   Treatment BodyWeight 

1          A          2 

2          A          3 

3          A          2 

4          A          2 

5          B          5 

6          B          6 

7          B          5 

8          B          4 

9          C          3 

10         C          5 

11         C          4 

12         C         10 

 

> fit=aov(BodyWeight~Treatment, data=data) 

> summary(fit) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Treatment    2  24.50  12.250   3.472 0.0763 . 

Residuals    9  31.75   3.528                  

--- 

Signif.codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’ 0.1 ‘ ’ 1 

 

 

> library(agricolae) 

> LSD.test(fit, "Treatment", alpha=0.05, console=T) 

 

Study: fit ~ "Treatment" 

 

LSD t Test for BodyWeight  

 

Mean Square Error:  3.527778  

 

Treatment,  means and individual ( 95 %) CI 

 

  BodyWeight       std r       LCL      UCL Min Max 

A       2.25 0.5000000 4 0.1255653 4.374435   2   3 

B       5.00 0.8164966 4 2.8755653 7.124435   4   6 

C       5.50 3.1091264 4 3.3755653 7.624435   3  10 

 

Alpha: 0.05 ; DF Error: 9 

Critical Value of t: 2.262157  

 

least Significant Difference: 3.004404  
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Treatments with the same letter are not significantly 

different. 

 

  BodyWeight groups 

C       5.50      a 

B       5.00     ab 

A       2.25      b 

> range(data$BodyWeight) 

[1]  2 10 

>  

 

The range is quite far (2 and 10) and mean of treatment A and B or C is quite 

different, but the result of ANOVA is not significant (P>0.05). Thus, there is 

something that need to be checked. 

 

> #homogeneity variance 

> bartlett.test(BodyWeight~Treatment, data=data) 

 

        Bartlett test of homogeneity of variances 

 

data:  BodyWeight by Treatment 

Bartlett's K-squared = 8.6359, df = 2, p-value = 

0.01333 

 

> #normality 

> shapiro.test(fit$residuals) 

 

        Shapiro-Wilk normality test 

 

data:  fit$residuals 

W = 0.84396, p-value = 0.03095 

 

>  

>  

> library(e1071) 

> checkData<-skewness(data$BodyWeight)  

> checkData 

[1] 1.496461 

> 

 

> #Independency 

> boxplot(BodyWeight~Treatment, data=data) 
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> durbinWatsonTest(fit) 

 lag Autocorrelation D-W Statistic p-value 

   1     -0.08070866      1.521654    0.11 

 Alternative hypothesis: rho != 0 

> plot(fit$residuals) 

> abline(h=0) 

 
 

A B C

2
4

6
8

1
0

2 4 6 8 10 12

-2
-1

0
1

2
3

4

Index

fi
t$
re
s
id
u
a
ls



46 
 

Based on homogeneity test (0.0133), normality test (0.03095) , skewness test 

(1.496461, highly skewed), and residual plot (negative skewed), it can be concluded 

that the data violated the ANOVA assumption, although independency test showed 

that the data is independent (0.11, P>0.05). Thus, data transformation is needed. 

 

a. Reciprocal square root transformation 

> data$BWtrans=1/sqrt(data$BodyWeight+0.5) 
> checkData<-skewness(data$BWtrans)  

> checkData 

[1] 0.08445666 

> bartlett.test(BWtrans~Treatment, data=data) 

 

        Bartlett test of homogeneity of variances 

 

data:  BWtrans by Treatment 

Bartlett's K-squared = 3.0234, df = 2, p-value = 0.2205 

 

> boxplot(BWtrans~Treatment, data=data) 

 

 
> fit2=aov(BWtrans~Treatment, data=data) 

> summary(fit2) 

            Df  Sum Sq Mean Sq F value  Pr(>F)    

A B C
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Treatment    2 0.08249 0.04125   9.863 0.00539 ** 

Residuals    9 0.03764 0.00418                    

--- 

Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1 ‘ ’ 1 

> LSD.test(fit2, "Treatment", alpha=0.05, console=T) 

 

Study: fit2 ~ "Treatment" 

 

LSD t Test for BWtrans  

 

Mean Square Error:  0.004181736  

 

Treatment,  means and individual ( 95 %) CI 

 
    BWtrans        std r       LCL       UCL       Min       Max 

A 0.6079723 0.04896652 4 0.5348296 0.6811150 0.5345225 0.6324555 

B 0.4291099 0.03247289 4 0.3559672 0.5022526 0.3922323 0.4714045 

C 0.4352338 0.09535722 4 0.3620911 0.5083765 0.3086067 0.5345225 

 

Alpha: 0.05 ; DF Error: 9 

Critical Value of t: 2.262157  

 

least Significant Difference: 0.1034394  

 

Treatments with the same letter are not significantly 

different. 

 

    BWtrans groups 

A 0.6079723      a 

C 0.4352338      b 

B 0.4291099      b 

> require(car) 

> durbinWatsonTest(fit2) 

 lag Autocorrelation D-W Statistic p-value 

   1      -0.1210421      1.800113   0.284 

 Alternative hypothesis: rho != 0 

 

> shapiro.test(fit2$residuals) 

 

        Shapiro-Wilk normality test 

 

data:  fit2$residuals 

W = 0.93843, p-value = 0.478 

 

> plot(fit2$residuals) 
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Although  the data transformed to reciprocal square root meet all the ANOVA 

assumption (independent, homogeneous variance, and normally distributed), but based 

on LSD.test it is not plausible because the smallest mean of original data change to the 

largest mean after transformation. 

 

b. Square root transformation 

> data$BWtrans=sqrt(data$BodyWeight) 
> data 

   Treatment BodyWeight  BWtrans 

1          A          2 1.414214 

2          A          3 1.732051 

3          A          2 1.414214 

4          A          2 1.414214 

5          B          5 2.236068 

6          B          6 2.449490 

7          B          5 2.236068 

8          B          4 2.000000 

9          C          3 1.732051 

10         C          5 2.236068 

11         C          4 2.000000 

12         C         10 3.162278 

> checkData<-skewness(data$BWtrans)  

> checkData 

[1] 0.6422686 

> bartlett.test(BWtrans~Treatment, data=data) 
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        Bartlett test of homogeneity of variances 

 

data:  BWtrans by Treatment 

Bartlett's K-squared = 6.001, df = 2, p-value = 0.04976 

> boxplot(BWtrans~Treatment, data=data) 

 
 

> fit2=aov(BWtrans~Treatment, data=data) 

> summary(fit2) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Treatment    2  1.557  0.7786   5.246 0.0309 * 

Residuals    9  1.336  0.1484                  

--- 

Signif. codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘ ’ 1 

> LSD.test(fit2, "Treatment", alpha=0.05, console=T) 

 

Study: fit2 ~ "Treatment" 

 

LSD t Test for BWtrans  

 

Mean Square Error:  0.148431  

 

Treatment,  means and individual ( 95 %) CI 

 
   BWtrans       std r      LCL      UCL      Min      Max 

A 1.493673 0.1589186 4 1.057905 1.929441 1.414214 1.732051 

A B C

1
.5

2
.0

2
.5

3
.0
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B 2.230406 0.1836198 4 1.794639 2.666174 2.000000 2.449490 

C 2.282599 0.6215478 4 1.846831 2.718367 1.732051 3.162278 

 

Alpha: 0.05 ; DF Error: 9 

Critical Value of t: 2.262157  

 

least Significant Difference: 0.6162687  

 

Treatments with the same letter are not significantly 

different. 

 

   BWtrans groups 

C 2.282599      a 

B 2.230406      a 

A 1.493673      b 

> require(car) 

> durbinWatsonTest(fit2) 

 lag Autocorrelation D-W Statistic p-value 

   1     -0.08520361      1.586411   0.178 

 Alternative hypothesis: rho != 0 

> shapiro.test(fit2$residuals) 

 

        Shapiro-Wilk normality test 

 

data:  fit2$residuals 

W = 0.87967, p-value = 0.08679 

 

> plot(fit2$residuals) 
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The result indicated that after transformation into square root the data is still 

skew and not normally distributed, variance is not homogeneous, although the data is 

independent and ANOVA is significant with fair mean comparison. 

 

c. Log transformation 

 

> data$BWtrans=log10(data$BodyWeight) 

> checkData<-skewness(data$BWtrans)  

> checkData 

[1] 0.2448218 

> bartlett.test(BWtrans~Treatment, data=data) 

 

        Bartlett test of homogeneity of variances 

 

data:  BWtrans by Treatment 

Bartlett's K-squared = 3.9602, df = 2, p-value = 0.1381 

 

>  

> boxplot(BWtrans~Treatment, data=data) 

 

 
> fit3=aov(BWtrans~Treatment, data=data) 

> summary(fit3) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Treatment    2 0.3257 0.16285   7.797 0.0108 * 

Residuals    9 0.1880 0.02089                  

--- 

Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1 ‘ ’ 1 
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> LSD.test(fit3, "Treatment", alpha=0.05, console=T) 

 

Study: fit3 ~ "Treatment" 

 

LSD t Test for BWtrans  

 

Mean Square Error:  0.02088752  

 

Treatment,  means and individual ( 95 %) CI 

 
    BWtrans        std r       LCL       UCL       Min       Max 

A 0.3450528 0.08804563 4 0.1815835 0.5085221 0.3010300 0.4771213 

B 0.6945378 0.07207090 4 0.5310685 0.8580071 0.6020600 0.7781513 

C 0.6945378 0.22297152 4 0.5310685 0.8580071 0.4771213 1.0000000 

 

Alpha: 0.05 ; DF Error: 9 

Critical Value of t: 2.262157  

 

least Significant Difference: 0.2311805  

 

Treatments with the same letter are not significantly 

different. 

 

    BWtrans groups 

B 0.6945378      a 

C 0.6945378      a 

A 0.3450528      b 

> require(car) 

> durbinWatsonTest(fit3) 

 

 

 lag Autocorrelation D-W Statistic p-value 

   1      -0.1014409      1.696225   0.218 

 Alternative hypothesis: rho != 0 

 

 

> shapiro.test(fit3$residuals) 

 

        Shapiro-Wilk normality test 

 

data:  fit3$residuals 

W = 0.91999, p-value = 0.2858 

 

> plot(fit3$residuals) 

 



53 
 

 
Finally, by using log transformation the data meet all ANOVA assumption and 

the ANOVA result is significant with reasonable mean comparison. 
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VII. RANDIMIZED COMPLETE BLOCK DESIGN (RCBD) 

 

7.1 Introduction 

Randomized Complete Block Designs (RCBD) is a standard design for 

agricultural experiments where factor levels are randomly applied to separate 

experimental units within each block. Block is not factor that we want to investigate, 

but block is only a way to reduce error variation which is caused by not homogeneity 

of the background of the experimental unit. In this design the different background of 

the experimental unit is grouped into several groups where within the groups the 

experimental unit is homogeneous. Treatment or factor levels then is applied to 

experimental unit within each block. Randomization for the RCBD is done only to 

experimental units within each block, while in CRD randomization is done to all 

experimental units. 

For example, a research is conducted to investigate the effect of prebiotic 

addition in ration on broiler performance (body weight gain). There are 4 treatments 

applied to broiler chicken, those are base ration (T1), T1 plus 0.2% prebiotic addition 

(T2), T1 plus 0.4% prebiotic addition (T3), and T1 plus 0.6% prebiotic addition (T4), 

and in this experiment there are five broiler strains, those are S1, S2, S3, S4, and S5. 

Here we suspect that different strain of broiler has different effect on body weight gain, 

so we consider to localize the effect of strain by separating each strain as blocks. 

Hypothesis for this design is H0 : µ1 = µ2 = µ3 = µ4= µ5 or H0 : τ1 = τ2 = τ3 = τ4= 

τ5; and H1: at least one of the means are different from the others. 

 

7.2 Linear Model and randomization in RCBD 

Linear model for the RCBD is 

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝜀𝑖𝑗.                i = 1,...,t;    j = 1,...,r 

where: 

yij = an observation in treatment i and block j 

μ = the overall mean 

τi = the effect of treatment i 

βj = the fixed effect of block j 

εij = random error 

t = the number of treatments; r = the number of blocks 
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Total sum of squares of RCBD can be sum square of block, treatment and residual, 

as below. 

SST = SSt +  SSb +  SSE 

where  

SST = ∑ ∑ (𝑦𝑖𝑗 − 𝑦̅. . )2

𝑗𝑖
 

SSt = ∑ ∑ (𝑦̅𝑖. − 𝑦̅. . )2

𝑗𝑖
 

SSb = ∑ ∑ (𝑦̅. 𝑗 − 𝑦̅. . )2

𝑗𝑖
 

SSE = ∑ ∑ (𝑦𝑖𝑗 − 𝑦̅𝑖. − 𝑦̅. 𝑗 +  𝑦̅. . )2

𝑗𝑖
 =  𝑆𝑆𝑇 −  𝑆𝑆𝑡 −  𝑆𝑆𝑏 

Sums of squares above can be calculated using computation below. 

CF =
(∑ ∑ 𝑦𝑖𝑗𝑗𝑖 )

2

𝑡. 𝑟
 

SST = ∑ ∑ 𝑦𝑖𝑗2

𝑗𝑖
 − 𝐶𝐹 

SSt = ∑
(∑ 𝑦𝑖𝑗𝑗 )

2

𝑟𝑖
 −  𝐶𝐹 

SSb = ∑
(∑ 𝑦𝑖𝑗𝑖 )2

𝑡𝑗
 −  𝐶𝐹 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 −  𝑆𝑆𝑡 −  𝑆𝑆𝑏 

The corresponding degrees of freedom of SST = SSt + SSb + SSE are: 

(tr – 1) = (t – 1) + (r – 1) + (t – 1)(r – 1), 

then mean square can be calculated as below. 

MSt = SSt/dft = SSt/(t-1) 

MSb = SSb/dfb =SSb/(r-1) 

MSE = SSE/dfe = SSE/(t-1)(r-1) 

F staistic = MSt/MSE compared to F table with (t-1) and (t-1)(r-1) degrees of 

freedom for critical value. For an α level of significance H0 is rejected if F statistic > 

Fα,(t-1),(t-1)(r-1). 
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ANOVA table can be describe as below. 

Source of variation df SS MS=SS/df F 

Treatment t-1 SSt MSt MSt/MSE 

Block r-1 SSb MSb MSb/MSE 

Residual (t-1)(r-1) SSE MSE  

Total tr-1 SST   

 

Randomization for 4 treatments and 5 blocks, which is 20 experimental units 

can be done like below. 

> sample(1:4,size=4,replace=FALSE) 

[1] 2 1 4 3 

> sample(1:4,size=4,replace=FALSE) 

[1] 4 3 1 2 

> sample(1:4,size=4,replace=FALSE) 

[1] 2 1 4 3 

> sample(1:4,size=4,replace=FALSE) 

[1] 3 4 2 1 

> sample(1:4,size=4,replace=FALSE) 

[1] 4 2 3 1 

> 

 

So the first experimental unit in Strain 1 is filled by treatment T2, the second 

experimental unit in Strain 1 is filled by treatment T1, and soon until twenty 

experimental units, as below. 

Table. Randomization 

Strain Treatments 

1 T2 T1 T4 T3 

2 T4 T3 T1 T2 

3 T2 T1 T4 T3 

4 T3 T4 T2 T1 

5 T4 T2 T3 T1 

 

 

After getting research data for easier analysis we arrange table like below. 
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Table. Data arrangement for data analysis 

Strain 
Treatments 

T1 T2 T3 T4 

1 T1 T2 T3 T4 

2 T1 T2 T3 T4 

3 T1 T2 T3 T4 

4 T1 T2 T3 T4 

5 T1 T2 T3 T4 

 

 

7.3 Example of RCBD 

Example 1. The result of the effect of prebiotic addition in ration on broiler 

performance (body weight gain) treated with four different ration applied to five 

broiler strains is presented in table below. 

 

Table. Body weight gain of broiler treated with different prebiotic addition in 

ration 

Strain 
Treatments 

Mean strain Total strain 
T1 T2 T3 T4 

1 0.765 1.311 1.452 1.630 1.290 5.158 

2 1.015 1.303 1.846 1.505 1.418 5.670 

3 1.276 1.597 1.264 1.779 1.479 5.916 

4 0.984 0.645 1.399 1.454 1.120 4.482 

5 0.856 1.148 1.154 1.443 1.150 4.602 

Mean treatment 0.979 1.201 1.423 1.562 
Total = 25.828 

Total treatment 4.895 6.006 7.115 7.812 

 

Computation for ANOVA is like below. 

CF =
(∑ ∑ 𝑦𝑖𝑗𝑗𝑖 )

2

𝑡. 𝑟
=

25.8282

4.5
= 33.355 

SST = ∑ ∑ 𝑦𝑖𝑗2

𝑗𝑖
 − 𝐶𝐹 = (0.7652+. . . +1.4432) − CF = 1.983 

SSt = ∑
(∑ 𝑦𝑖𝑗𝑗 )

2

𝑟𝑖
− 𝐶𝐹 =

(4.8952+. . . +7.8122)

5
− CF = 0.982 

SSb = ∑
(∑ 𝑦𝑖𝑗𝑖 )2

𝑡𝑗
− 𝐶𝐹 =

(5.1582+. . . +4.6022)

4
− CF = 0.401 
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𝑆𝑆𝐸 = 𝑆𝑆𝑇 −  𝑆𝑆𝑡 −  𝑆𝑆𝑏 = 1.983 − 0.982 − 0.621 = 0.600 

 

dfT = t.r-1=4*5-1 = 19 

dft = t-1 = 4-1 = 3 

dfb = r-1 = 5-1 = 4 

dfe = (t-1)(r-1) = 3*4 = 12 

 

Manually using R: 

> CF=(sum(data[,3])^2)/(4*5) 

> CF 

[1] 33.35455 

> SST=(sum(data[,3]^2))-CF 

> SST 

[1] 1.982686 

> SSt=(((sum(data[1:5,3])^2)+(sum(data[6:10,3])^2)+ 

+ (sum(data[11:15,3])^2)+(sum(data[16:20,3])^2) 

+ )/5)-CF 

> SSt 

[1] 0.982075 

> newdata <- data[order(data$Strain),] 

> newdata 

   Treatment Strain BodyWeightGain 

1         T1     S1      0.7650848 

6         T2     S1      1.3113046 

11        T3     S1      1.4521396 

16        T4     S1      1.6298013 

2         T1     S2      1.0149890 

7         T2     S2      1.3034288 

12        T3     S2      1.8462775 

17        T4     S2      1.5054732 

3         T1     S3      1.2758507 

8         T2     S3      1.5974956 

13        T3     S3      1.2638854 

18        T4     S3      1.7789886 

4         T1     S4      0.9837027 

9         T2     S4      0.6453479 

14        T3     S4      1.3987220 

19        T4     S4      1.4539894 

5         T1     S5      0.8557105 

10        T2     S5      1.1484184 

15        T3     S5      1.1541131 

20        T4     S5      1.4433824 

>  

> SSb=(((sum(newdata[1:4,3])^2)+(sum(newdata[5:8,3] 



59 
 

+ )^2)+(sum(newdata[9:12,3])^2)+(sum(newdata[13:16, 

+ 3])^2)+(sum(newdata[17:20,3])^2))/4)-CF 

> SSb 

[1] 0.4009439 

> SSE=SST-SSt-SSb 

> SSE 

[1] 0.5996673 

> MSt=SSt/3 

> MSt 

[1] 0.3273583 

> MSb=SSb/4 

> MSb 

[1] 0.100236 

> MSE=SSE/(3*4) 

> MSE 

[1] 0.04997228 

>  

> Fstatistic_t=MSt/MSE 

> Fstatistic_t 

[1] 6.550799 

> Fstatistic_b=MSb/MSE 

> Fstatistic_b 

[1] 2.005832 

>  

> qf(0.95,3,12) 

[1] 3.490295 

> qf(0.99,3,12) 

[1] 5.952545 

> qf(0.95,4,12) 

[1] 3.259167 

> qf(0.99,4,12) 

[1] 5.411951 

>  

 

Based on computation above, ANOVA table can be arranged as below 

Table. ANOVA 

Source of variance df SS MS F statistic 

SSt 3 0.982 0.327 6.551** 

SSb 4 0.401 0.100 2.006n.s 

SSE 12 0.600 0.050  
SST 19 1.983   

 

In R 

> data=read.csv("rcbd1.csv", header=T) 

> data 

   Treatment Strain BodyWeightGain 
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1         T1     S1      0.7650848 

2         T1     S2      1.0149890 

3         T1     S3      1.2758507 

4         T1     S4      0.9837027 

5         T1     S5      0.8557105 

6         T2     S1      1.3113046 

7         T2     S2      1.3034288 

8         T2     S3      1.5974956 

9         T2     S4      0.6453479 

10        T2     S5      1.1484184 

11        T3     S1      1.4521396 

12        T3     S2      1.8462775 

13        T3     S3      1.2638854 

14        T3     S4      1.3987220 

15        T3     S5      1.1541131 

16        T4     S1      1.6298013 

17        T4     S2      1.5054732 

18        T4     S3      1.7789886 

19        T4     S4      1.4539894 

20        T4     S5      1.4433824 

> modelRCBD=aov(BodyWeightGain~Treatment+Strain, 

+ data=data) 

> summary(modelRCBD) 

            Df Sum Sq Mean Sq F value  Pr(>F)    

Treatment    3 0.9821  0.3274   6.551 0.00715 ** 

Strain       4 0.4009  0.1002   2.006 0.15772    

Residuals   12 0.5997  0.0500                    

--- 

Signif.codes:0‘***’0.001‘**’0.01‘*’0.05 ‘.’ 0.1 ‘ ’ 1 

> library(agricolae) 

> duncan.test(modelRCBD, "Treatment", alpha=0.05, 

+ console=T) 

 

Study: modelRCBD ~ "Treatment" 

 

Duncan's new multiple range test 

for BodyWeightGain  

 

Mean Square Error:  0.04997228  

 

Treatment,  means 

 

   BodyWeightGain       std r       Min      Max 

T1      0.9790676 0.1939057 5 0.7650848 1.275851 

T2      1.2011990 0.3504930 5 0.6453479 1.597496 

T3      1.4230275 0.2637328 5 1.1541131 1.846277 

T4      1.5623270 0.1419615 5 1.4433824 1.778989 

 

Alpha: 0.05 ; DF Error: 12  
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Critical Range 

        2         3         4  

0.3080452 0.3224349 0.3311535  

 

Means with the same letter are not significantly 

different. 

 

   BodyWeightGain groups 

T4      1.5623270      a 

T3      1.4230275     ab 

T2      1.2011990     bc 

T1      0.9790676      c 

>  

If we use ExpDes package we will get assumption, ANOVA and further test 

together, like below. 

> library(ExpDes) 

 

Attaching package: ‘ExpDes’ 

 

The following objects are masked from ‘package:agricolae’: 

 

    lastC, order.group, tapply.stat 

 

The following object is masked from ‘package:stats’: 

 

    ccf 

 

Warning message: 

package ‘ExpDes’ was built under R version 3.5.2  

> rbd(data$Treatment, data$Strain, data$BodyWeightGain,  

+  quali = TRUE, mcomp='duncan', hvar='oneillmathews',  

+  sigT = 0.05, sigF = 0.05) 

--------------------------------------------------------------- 

Analysis of Variance Table 

--------------------------------------------------------------- 

           DF      SS      MS     Fc   Pr>Fc 

Treatament  3 0.98208 0.32736 6.5508 0.00715 

Block       4 0.40094 0.10024 2.0058 0.15772 

Residuals  12 0.59967 0.04997                

Total      19 1.98269                        

--------------------------------------------------------------- 
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CV = 17.31 % 

 

--------------------------------------------------------------- 

Shapiro-Wilk normality test 

p-value:  0.3119083  

According to Shapiro-Wilk normality test at 5% of significance, 

residuals can be considered normal. 

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

Homogeneity of variances test 

p-value:  0.4910947  

According to the test of oneillmathews at 5% of significance, 

the variances can be considered homocedastic. 

--------------------------------------------------------------- 

 

Duncan's test  

--------------------------------------------------------------- 

Groups  Treatments  Means 

a        T4          1.562327  

ab       T3          1.423028  

 bc      T2          1.201199  

  c      T1          0.9790676  

--------------------------------------------------------------- 

 

Example 2. The following RCBD example is hypothetical data about the effect 

of three types of ration given to two breeds of sheep during pregnancy on birth weights 

of their lambs. Breed or type of sheep here is as a group or block so it uses a 

randomized complete block design (RCBD). 

Table. Birth weight of two breed of lambs treated with three different types of 

ration during dam pregnancy. 

Obervation 

Ration 

1 2 3 

Merino Dorset Merino Dorset Merino Dorset 

1 5.667 6.998 3.989 5.054 2.850 5.654 

2 6.819 7.106 3.640 7.044 1.898 6.707 

3 4.179 7.760 3.899 3.724 1.878 4.505 

4 6.038 11.199 4.177 6.828 3.990 8.226 

5 4.784 8.488 2.949 6.180 3.527 5.751 
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First we write the data directly in the R editor as below. 

> ration <- c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,    

     +  2,2,3,3,3,3,3,3,3,3,3,3) 

> breed <- c(1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,2,2,2, 

+  2,2,1,1,1,1,1,2,2,2,2,2) 

> bw <- c(5.667,6.819,4.179,6.038,4.784,6.998,7.106, 

+  7.760,11.199,8.488,3.989,3.640,3.899,4.177, 

+  2.949,5.054,7.044,3.724,6.828,6.180,2.850, 

+  1.898,1.878,3.990,3.527,5.654,6.710,4.505, 

+   8.226,5.751) 

>  

> ration <- as.factor(ration) 

> breed <- as.factor(breed) 

> data <- data.frame(ration, breed, bw) 

> fit <- aov(bw~ration+breed) 

> anova(fit) 

 

Analysis of Variance Table 

 

Response: bw 

          Df Sum Sq Mean Sq F value    Pr(>F)     

ration     2 34.972  17.486  11.906 0.0002134 *** 

breed      1 55.878  55.878  38.047 1.598e-06 *** 

Residuals 26 38.185   1.469                       

---Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘’1 

 

> TukeyHSD(fit,"ration") 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = bw ~ ration + breed) 

 

$`ration` 

       diff       lwr        upr     p adj 

2-1 -2.1554 -3.502128 -0.8086716 0.0013950 

3-1 -2.4049 -3.751628 -1.0581716 0.0004228 

3-2 -0.2495 -1.596228  1.0972284 0.8902374 

 

> #Or by reading excel file 

> data <- read.csv('rcbd.csv', header=T) 

> data 

   ration breed        bw 

1       a     m  5.667092 

2       a     m  6.818530 

3       a     m  4.179033 

4       a     m  6.038148 

5       a     m  4.784378 
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6       a     d  6.998002 

7       a     d  7.106330 

8       a     d  7.759698 

9       a     d 11.199271 

10      a     d  8.487953 

11      b     m  3.988762 

12      b     m  3.639712 

13      b     m  3.899011 

14      b     m  4.176846 

15      b     m  2.949012 

16      b     d  5.053727 

17      b     d  7.043697 

18      b     d  3.724377 

19      b     d  6.828300 

20      b     d  6.180444 

21      c     m  2.849605 

22      c     m  1.898496 

23      c     m  1.878447 

24      c     m  3.989679 

25      c     m  3.527487 

26      c     d  5.654328 

27      c     d  6.706697 

28      c     d  4.504877 

29      c     d  8.225741 

30      c     d  5.751020 

> fit2 <- aov(bw ~ ration + breed, data=data) 

> anova(fit2) 

 

Analysis of Variance Table 

 

Response: bw 

          Df Sum Sq Mean Sq F value    Pr(>F)     

ration     2 34.978  17.489  11.912 0.0002128 *** 

breed      1 55.870  55.870  38.054 1.595e-06 *** 

Residuals 26 38.173   1.468                       

---Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘ ’1 

 

> TukeyHSD(fit2, "ration") 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = bw ~ ration + breed, data = data) 

 

$`ration` 

          diff       lwr        upr     p adj 

b-a -2.1554547 -3.501981 -0.8089285 0.0013925 

c-a -2.4052060 -3.751732 -1.0586798 0.0004215 

c-b -0.2497513 -1.596277  1.0967748 0.8899988 
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> par(mfrow=c(2,2)) 

> boxplot(bw~ration, notch=FALSE,col=c("gold", 

+ "darkgreen","tomato"), 

+ main="Birth Weight of Sheep with Different Ration", 

+ xlab="Ration", ylab="Weight (kg)", data=data) 

>  

> boxplot(bw~breed, data=data, notch=TRUE, 

+   col=c("gold","darkgreen"), 

+   main="Birth Weight of Breed Sheep", xlab="Breed", 

+   ylab="Weight (kg)")  

>  

 

> boxplot(bw~ration*breed, data=data, notch=FALSE, 

+   col=c("gold","darkgreen"), 

+   main="Birth Weight of Breed Sheep",  

+   xlab="Breed and ration", ylab="Weight (kg)") 

>  

> boxplot(bw~ration*breed, range = 1.5, width = NULL, 

+   varwidth = FALSE, notch = FALSE, outline = TRUE, 

+   names, plot = TRUE, border = par("fg"),  

+   col = c("turquoise","tomato","orange"), log = "", 

+   pars = list(boxwex = 0.8, staplewex = 0.5,  

+   outwex = 0.5), horizontal = FALSE, add = FALSE, 

+   at = NULL, xlab="Breed and ration", 

+   ylab="Weight (kg)",  

+   main="Birth Weight of Breed Sheep", data=data) 

> 
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The results as shown above indicated that the ration affected the birth weights of 

lambs (P<0.05), and also that we have correctly classified breeds as blocks (P<0.05) 

meaning that using RCBD has been already correct or appropriate . The results of 

further tests showed that only rations 2 and 3 which was not significantly different, 

while the others (rations 1 and 2, and rations 1 and 3) were significantly different 

(P<0.05). 

Tukey test above resulted in no notation yet, even though it could actually be 

made manually. Therefore, we use the Agricolae package as below to find out the 

notation directly. 

 

a b c
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a.d b.d c.d a.m b.m c.m

2
4

6
8

Birth Weight of Breed Sheep

Breed and ration

W
e
ig

h
t
 
(
k
g
)



67 
 

> library(agricolae) 

> HSD.test(fit2, "ration",alpha=0.05, console=TRUE) 

 

Study: fit2 ~ "ration" 

 

HSD Test for bw  

 

Mean Square Error:  1.468196  

 

ration,  means 

 

        bw      std  r      Min       Max 

a 6.903844 1.998484 10 4.179033 11.199271 

b 4.748389 1.448338 10 2.949012  7.043697 

c 4.498638 2.087491 10 1.878447  8.225741 

 

Alpha: 0.05 ; DF Error: 26  

Critical Value of Studentized Range: 3.514171  

 

Minimun Significant Difference: 1.346526  

 

Treatments with the same letter are not significantly 

different. 

 

        Bw      groups 

a  6.903844         a 

b  4.748389         b 

c  4.498638         b 

> 

 

The conclusion is that different rations (A, B and C) affect the birth weight of 

lambs. Judging from Tukey's advanced test, it turned out that ration A was significantly 

different (P <0.05) from rations B and C, but the ration B and C were not significantly 

different (P> 0.05) in influencing the birth weight of the lamb. 

We can use ExpDes package as the following. 

> library(ExpDes) 

> rbd(data$ration, data$breed, data$bw, quali = TRUE, mcomp='tukey', 

+ hvar='oneillmathews', sigT = 0.05, sigF = 0.05) 

------------------------------------------------------------------------ 

Analysis of Variance Table 

------------------------------------------------------------------------ 

           DF      SS     MS     Fc     Pr>Fc 

Treatament  2  34.978 17.489 11.912 2.128e-04 

Block       1  55.870 55.870 38.054 1.595e-06 

Residuals  26  38.173  1.468                  

Total      29 129.021                         
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------------------------------------------------------------------------ 

CV = 22.51 % 

 

------------------------------------------------------------------------ 

Shapiro-Wilk normality test 

p-value:  0.4088082  

According to Shapiro-Wilk normality test at 5% of significance, residuals can 

be considered normal. 

------------------------------------------------------------------------ 

 

------------------------------------------------------------------------ 

Homogeneity of variances test 

p-value:  1  

According to the test of oneillmathews at 5% of significance, the variances can 

be considered homocedastic. 

------------------------------------------------------------------------ 

 

Tukey's test 

------------------------------------------------------------------------ 

Groups Treatments Means 

a        a       6.903844  

 b       b       4.748389  

 b       c       4.498638  

------------------------------------------------------------------------ 

> 

 

7.4 Randomized Complete Block Design with Two or More Experimental Units 

per Treatment and Block 

 

In previous RCBD there is only one experimental unit per treatment x block 

combination. For repeated block and treatment in RCBD mean that there will be more 

than one experimental unit per treatment x block combination. For example, consider 

we have five blocks, four treatments, and ten animals per block, that is, two animals 

per block x treatment combination. In this design treatments are randomly allocated to 

5x2 experimental units in each block. Each treatment is assigned to 2 experimental 

units within each block, like below. 

 

> sample(rep(1:4,size=4,each=2),replace=FALSE) 

[1] 3 2 4 4 1 2 3 1 

> sample(rep(1:4,size=4,each=2),replace=FALSE) 

[1] 1 4 1 3 3 2 2 4 

> sample(rep(1:4,size=4,each=2),replace=FALSE) 

[1] 1 3 4 3 2 2 1 4 

> sample(rep(1:4,size=4,each=2),replace=FALSE) 
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[1] 2 4 1 4 2 1 3 3 

> sample(rep(1:4,size=4,each=2),replace=FALSE) 

[1] 1 2 3 4 3 4 1 2 

>  

 

 Strain or block 

1 2 3 4 5 

No. of 

animal & 

treatment 

No.1(T3) No.9(T1) No.17(T1) No.25(T2) No.33(T1) 

No.2(T2) No.10(T4) No.18(T3) No.26(T4) No.34(T2) 

No.3(T4) No.11(T1) No.19(T4) No.27(T1) No.35(T3) 

No.4(T4) No.12(T3) No.20(T3) No.28(T4) No.36(T4) 

No.5(T1) No.13(T3) No.21(T2) No.29(T2) No.37(T3) 

No.6(T2) No.14(T2) No.22(T2) No.30(T1) No.38(T4) 

No.7(T3) No.15(T2) No.23(T1) No.31(T3) No.39(T1) 

No.8(T1) No.16(T4) No.24(T4) No.32(T3) No.40(T2) 

 

For companion in ANOVA the table can be arranged as follows. 

 Strain or block 

 1 2 3 4 5 

T1 
y111 y121 y131 y141 y151 

y112 y122 y132 y142 y152 

T2 
y211 y221 y231 y241 y251 

y212 y222 y232 y242 y252 

T3 
y311 y321 y331 y341 y351 

y312 y322 y332 y342 y352 

T4 
y411 y421 y431 y441 y451 

y412 y422 y432 y442 y452 

 

The linear model for this design is: 

yijk = μ + τi + βj + τβij + εijk             i = 1,...,t;   j = 1,...,b;   k = 1,…,n 

where: 

yijk = observation k in treatment i and block j 

μ = the overall mean 

τi = the effect of treatment i 

βj = the effect of block j 

τβij = the interaction effect of treatment i and block j. 

εijk = random error 

t = number of treatments 

b = number of blocks 



70 
 

n = number of observations in each treatment x block combination. 

 

Total sum square variation for this design will be as follows. 

SST =  SSt +  SSb +  SSt ∗ SSb +  SSE,  

with corresponding degrees of freedom as follows. 

(tbn – 1) = (t – 1) + (b – 1) + (t – 1)(b – 1) + tb(n – 1) 

Where: 

SST = ∑ ∑ ∑(𝑦𝑖𝑗𝑘 − 𝑦̅. . . )2

𝑛

𝑖=1

𝑏

𝑗=1

𝑡

𝑖=1

 

SSt = ∑ ∑ ∑(𝑦̅𝑖. . − 𝑦̅. . . )2

𝑛

𝑖=1

𝑏

𝑗=1

𝑡

𝑖=1

 

SSb = ∑ ∑ ∑(𝑦̅. 𝑗. − 𝑦̅. . . )2

𝑛

𝑖=1

𝑏

𝑗=1

𝑡

𝑖=1

 

SStb = 𝑛 ∑ ∑(𝑦̅𝑖𝑗. − 𝑦̅. . . )2

𝑏

𝑖=1

𝑡

𝑖=1

−  𝑆𝑆𝑡 −  𝑆𝑆𝑏 

SSE = ∑ ∑ ∑(𝑦𝑖𝑗𝑘 −  𝑦̅𝑖𝑗. )2

𝑛

𝑖=1

𝑏

𝑗=1

𝑡

𝑖=1

 

Sum squares above can be computed as below 

CF =
(∑ ∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗𝑖 )

2

𝑡. 𝑟. 𝑛
 

SST = ∑ ∑ ∑ 𝑦𝑖𝑗𝑘2

𝑘𝑗𝑖
 − 𝐶𝐹 

SSt = ∑
(∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗 )

2

𝑛. 𝑟𝑖
 −  𝐶𝐹 

SSb = ∑
(∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑖 )2

𝑛. 𝑡𝑗
 –  𝐶𝐹 

SStb = ∑ ∑
(∑ 𝑦𝑖𝑗𝑘𝑘 )2

𝑛𝑗𝑖
 − 𝑆𝑆𝑡 − 𝑆𝑆𝑏 − 𝐶𝐹 
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𝑆𝑆𝐸 = 𝑆𝑆𝑇 −  𝑆𝑆𝑡 −  𝑆𝑆𝑏 −  𝑆𝑆𝑡𝑏 

Mean squares (MS) of each variation can be calculated as below. 

MSt = SSt/dft = SSt/(t-1) 

MSb = SSb/dfb = SSb/(r-1) 

MStb = SStb/dftb = SStb/(t-1)(r-1) 

MSE = SSE/dfe = SSE/(tr(n-1)) 

 

Example 1. The result of the effect of prebiotic addition in ration on broiler 

performance (body weight gain) treated with four different ration applied to five 

broiler strains is presented in table below. 

 

Strain 
Treatments 

Mean Strain Total Strain T1 T2 T3 T4 

1 0.765 1.101 1.252 1.630 1.189 9.515 

  0.876 1.112 1.224 1.555     

2 1.015 1.303 1.446 1.505 1.341 10.728 

  1.124 1.264 1.416 1.655     

3 1.276 1.597 1.464 1.779 1.512 12.097 

  1.213 1.444 1.544 1.780     

4 1.284 1.345 1.599 1.854 1.547 12.373 

  1.322 1.422 1.658 1.889     

5 1.456 1.648 1.954 1.943 1.776 14.208 

  1.534 1.736 1.956 1.981     

Mean treatment 1.186 1.397 1.551 1.757     

Total treatment 11.865 13.972 15.513 17.571   58.921 

 

 

Sum squares above can be computed as below 

CF =
(∑ ∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗𝑖 )

2

𝑡. 𝑟. 𝑛
=

58.9232

4.5.2
= 86.792 

SST = ∑ ∑ ∑ 𝑦𝑖𝑗𝑘2

𝑘𝑗𝑖
 − 𝐶𝐹 = 0.7652+. . . +1.9812 − 𝐶𝐹

= 3.520 
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SSt = ∑
(∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗 )

2

𝑛. 𝑟𝑖
 −  𝐶𝐹 =

11.8642+. . . +17.5722

2.5
− 𝐶𝐹

= 1.747 

SSb = ∑
(∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑖 )2

𝑛. 𝑡𝑗
 –  𝐶𝐹 =

9.5152+. . . +14.2092

2.4
− 𝐶𝐹

= 1.573 

SStb = ∑ ∑
(∑ 𝑦𝑖𝑗𝑘𝑘 )2

𝑛𝑗𝑖
 − 𝑆𝑆𝑡 − 𝑆𝑆𝑏 − 𝐶𝐹

=
(0.765 + 0.876)2+. . . +(1.943 + 1.981)2

2
− 𝑆𝑆𝑡

− 𝑆𝑆𝑏 − 𝐶𝐹 = 0.142 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 −  𝑆𝑆𝑡 −  𝑆𝑆𝑏 −  𝑆𝑆𝑡𝑏 = 0.058 

MSt = SSt/dft =1.747/3 = 0.582 

MSb = SSb/dfb = 1.573/4 = 0.393 

MStb = SStb/dftb = 0.142/12 = 0.012 

MSE = SSE/dfe = 0.058/20 = 0.003 

Fstatistic_t = MSt/MSE = 0.582/0.003 = 199.419 

Fstatistic_b = MSb/MSE = 0.393/0.003 = 134.691 

F table for alpha = 0.05: Treatment (dft, dfe), block (dfb, dfe) and interaction 

between treatment and block (dftb, dfe) can be computed using R as follows. 

 

> qf(0.95, 3, 20) 

[1] 3.098391 

> qf(0.95, 4, 20) 

[1] 2.866081 

> qf(0.95, 12, 20) 

[1] 2.277581 

> 

 

In R 

> data=read.csv("rcbd3.csv", header=T) 

> head(data) 

  Treatment Strain BodyWeightGain 

1        T1     S1          0.765 

2        T1     S1          0.876 
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3        T1     S2          1.015 

4        T1     S2          1.124 

5        T1     S3          1.276 

6        T1     S3          1.213 

> tail(data) 

   Treatment Strain BodyWeightGain 

35        T4     S3          1.779 

36        T4     S3          1.780 

37        T4     S4          1.854 

38        T4     S4          1.889 

39        T4     S5          1.943 

40        T4     S5          1.981 

> 

> fit=aov(BodyWeightGain~Treatment*Strain, data=data) 

> summary(fit) 

                 Df Sum Sq Mean Sq F value   Pr(>F)     

Treatment         3 1.7467  0.5822 199.419 4.57e-15 *** 

Strain            4 1.5730  0.3933 134.691 3.67e-14 *** 

Treatment:Strain 12 0.1416  0.0118   4.042  0.00292 **  

Residuals        20 0.0584  0.0029                      

--- 

Signif.codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’ 0.1 ‘ ’ 1 

> 

 

Based on ANOVA above, it can be concluded that treatment, block or strain 

and interaction between treatment and block significantly (P<0.05) affected body 

weight gain of broiler. In addition that there is increasing of body weight gain with 

treatment and strain of broiler, as describe by figure below.  

 

> interaction.plot(x.factor = data$Treatment, 

+      trace.factor = data$Strain, 

+      response     = data$BodyWeightGain, 

+      fun = mean, 

+      type="b", 

+      col=c("black","red","green","blue","purple"), 

+      pch=c(19, 17, 15),  

+      fixed=TRUE,        

+      leg.bty = "o") 

> 
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VIII. LATIN SQUARE DESIGN 

 

8.1 Introduction 

Latin square design is experimental design that control two sources of error 

variation simultaneously related to rows and columns, it is also known as double 

blocking design. In this design number of rows and columns are the same as the 

number of treatment levels. In this design n x n table is filled with n different symbols 

in such a way that each symbol occurs exactly once in each row and exactly once in 

each column. It is also assumed that there is no interaction between rows and columns 

and the treatment under study. For example, a research is conducted to investigate the 

effect of milk replacer on growth rate of calf of beef cattle. There are two other factors 

influencing the growth rate, but they are not interesting for researcher to be 

investigated, so the effect of these two factors are localized by blocking them. These 

two factors are parity and birth weight. They grouped parity and birth weight into 

homogeneous blocks so that within each block the experimental units are 

homogeneous. 

 

8.2 Lay-out and Randomization 

Randomization for Latin square design can be first randomly permute the 

columns, then randomly permute the rows, and finally assign the treatments to the 

Latin letters in a random way. Example of randomization for Latin square is described 

as follows. 

Latin square 3 x 3 Latin square 4 x 4 

B C A  C A D B 

A B C  D C B A 

C A B  B D A C 

    A B C D 

        

C B A  B C A D 

B A C  D B C A 

A C B  A D B C 

    C A D B 
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Take for example the first Latin square 4x4 to make randomization. 

C A D B 

D C B A 

B D A C 

A B C D 

 

> column=sample(1:4,size=4,replace=FALSE) 

> column 

[1] 3 4 1 2 

> row=sample(1:4,size=4,replace=FALSE) 

> row 

[1] 2 3 1 4 

> 

 

Based on column randomization, for column 3 is converted to column 1, 

column 4 is converted to column 2, column 1 is converted to column 3 and column 2 

is converted to column 4, as like below. 

 

D B C A 

B A D C 

A C B D 

C D A B 

 

Based on row randomization, row 2 convert to row 1, row 3 convert to row 2, 

row 1 convert to row 3 and row 4 remain in row 4, as like below. 

 

B A D C 

A C B D 

D B C A 

C D A B 
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Then the final structure will be like below. 

 

T2 T1 T4 T3 

T1 T3 T2 T4 

T4 T2 T3 T1 

T3 T4 T1 T2 

 

For example a research is conducted to investigate the effect of four milk 

replacer on growth rate of calf of beef cattle. There are four parity and four group of 

birth weight: 1(25-28), 2(29-32), 3(33-36), 4(37-40) kg.  Structure of the data is like 

below. 

 

Row 

(Parity) 

Column (group of birth weight) 

1 2 3 4 

1 T2 T1 T4 T3 

2 T1 T3 T2 T4 

3 T4 T2 T3 T1 

4 T3 T4 T1 T2 

 

For easier analysis, after getting research data we can tabulate the data like 

table below. 

Row 

(Parity) 

Column (group of birth weight) 

1 2 3 4 

1 y11(T2) y12(T1) y13(T4) y14(T3) 

2 y21(T1) y22(T3) y23(T2) y24(T4) 

3 y31(T4) y32(T2) y33(T3) y34(T1) 

4 y41(T3) y42(T4) y43(T1) y44(T2) 

 

where y11(T2) is observation in row 1, column 1 and T2; y21(T1) is 

observation in row 2, column 1 and T1; and soon.  The linear model for Latin square 

is: 
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yij(k) = μ + Ri + Cj + τ(k) + εij(k)            i,j,k  = 1,...,r 

where: 

yij(k) = observation in row i  col j and treatment (k) 

μ = the overall mean 

Ri = the effect of row i 

Cj = the effect of column j 

τ(k) = the fixed effect of treatment k 

εij(k) = random error 

r = the number of treatments, rows and columns 

Sum of squares total is sum of squares of columns, rows, treatments and 

residual: 

SST =  SSR +  SSC +  SSt +  SSE 

The Degrees of freedom of corresponding sum square above are: 

r2 – 1 = (r – 1) + (r – 1) + (r – 1) + (r – 1)(r – 2) 

The sums of squares above can be formulated as below. 

where  

SST = ∑ ∑ (𝑦𝑖𝑗(𝑘)  − 𝑦̅. . )2

𝑗𝑖
 

SSR = r ∑ (𝑦̅𝑖. − 𝑦̅. . )2

𝑖
 

SSC = r ∑ (𝑦̅. 𝑗 − 𝑦̅. . )2

𝑗
 

SSt = r ∑ (𝑦̅𝑘 − 𝑦̅. . )2

𝑘
 

SSE = ∑ ∑ (𝑦̅𝑖𝑗 − 𝑦̅𝑖. − 𝑦̅. 𝑗 −  𝑦̅𝑘 +  2𝑦̅. . )2

𝑗𝑖
 

Sums of squares above can be calculated using computation below. 

CF =
(∑ ∑ 𝑦𝑖𝑗𝑘𝑗𝑖 )

2

𝑟2
 

SST = ∑ ∑ 𝑦𝑖𝑗𝑘2

𝑗𝑖
 − 𝐶𝐹 
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SSR = ∑
(∑ 𝑦𝑖𝑗𝑘𝑗 )

2

𝑟𝑖
 −  𝐶𝐹 

SSC = ∑
(∑ 𝑦𝑖𝑗𝑘𝑖 )2

𝑟𝑗
 –  𝐶𝐹 

SSt = ∑
(∑ ∑ 𝑦𝑖𝑗𝑘𝑗𝑖 )

2

𝑟𝑘
 –  𝐶𝐹 

 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 −  𝑆𝑆𝑅 −  𝑆𝑆𝐶 −  𝑆𝑆𝑡 

Mean square (MS) can be calculated as below. 

MSt = SSt/dft = SSt/(r-1) 

MSR = SSR/dfr =SSR/(r-1) 

MSC = SSC/dfc = SSC/(r-1) 

MSE = SSE/dfe = SSE/(r-1)(r-2) 

The null and alternative hypotheses are: 

H0: τ1 = τ2 =... = τr, treatment effects are the same 

H1: τi ≠ τr, at least the effects of one pair of treatment is different 

F statistic = MSt/MSE compared to F table with (r-1) and (r-1)(r-2) degrees of 

freedom for critical value. For an α level of significance H0 is rejected if F statistic > 

Fα,(r-1),(r-1)(r-2). 

The results ANOVA can be summarized in table below. 

Source of variation df SS MS=SS/df F 

Row r-1 SSR MSR MSR/MSE 

Column r-1 SSC MSC MSC/MSE 

Treatment r-1 SSt MSt MSt/MSE 

Residual (r-1)(r-2) SSE MSE  

Total r2-1 SST   

 

8.3 Example of Latin Square Design 

For example a research is conducted to investigate the effect of four milk 

replacer on growth rate of calf (2-4 month of age) of beef cattle. There are four parity 

and four group of birth weight: 1(25-28), 2(29-32), 3(33-36), 4(37-40) kg.  Structure 

of the data is like below. 
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Table. Average growth rate (g) from 2-4 month of age given four different 

milk replacer with different parity and birth weight group. 

Row (Parity) 
Column (group of birth weight) 

Total Row 
1 2 3 4 

1 222(T2) 198(T1) 243(T4) 234(T3) 897 

2 200(T1) 232(T3) 234(T2) 248(T4) 914 

3 238(T4) 232(T2) 233(T3) 220(T1) 923 

4 241(T3) 242(T4) 220(T1) 244(T2) 947 

Total Column 901 904 930 946  

Total Treatment T1=838 T2=932 T3=940 T4=971 Total=3681 
 

 

CF =
(∑ ∑ 𝑦𝑖𝑗𝑘𝑗𝑖 )

2

𝑟2
=

(3681)2

42
= 846,860.0625 

SST = ∑ ∑ 𝑦𝑖𝑗𝑘2

𝑗𝑖
 − 𝐶𝐹 = (2222+. . . + 2442) − 𝐶𝐹

= 3254.9375 

SSR = ∑
(∑ 𝑦𝑖𝑗𝑘𝑗 )

2

𝑟𝑖
 −  𝐶𝐹 =

(8972+. . . + 9472)

4
− 𝐶𝐹

= 325.6875 

SSC = ∑
(∑ 𝑦𝑖𝑗𝑘𝑖 )2

𝑟𝑗
 –  𝐶𝐹 =

(9012+. . . + 9462)

4
− 𝐶𝐹

= 348.1875  

SSt = ∑
(∑ ∑ 𝑦𝑖𝑗𝑘𝑗𝑖 )

2

𝑟𝑘
 –  𝐶𝐹 =

(8382+. . . + 9712)

4
− 𝐶𝐹

= 2,467.1875 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 −  𝑆𝑆𝑅 −  𝑆𝑆𝐶 −  𝑆𝑆𝑡 = 113.875 

Mean square (MS) can be calculated as below. 

MSt = SSt/dft = SSt/(r-1) = 2,467.1875/3 = 822.396 

MSR = SSR/dfr =SSR/(r-1) = 325.6875/3 = 108.563 

MSC = SSC/dfc = SSC/(r-1) = 348.1875/3 = 116.0625 

MSE = SSE/dfe = SSE/(r-1)(r-2) = 113.875/6 = 18.979 

Fstatistic_t = MSt/MSE = 822.396/18.979 = 43.332 
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Fstatistic_R = MSt/MSE = 108.563/18.979 = 5.720 

Fstatistic_C = MSt/MSE = 116.0625/18.979 = 6.115 

 

> qf(0.95,3,6) 

[1] 4.757063 

> 

 

Source of variation df SS MS=SS/df F 

Row 3 325.6875 108.563 5.720* 

Column 3 348.1875 116.0625 6.115* 

Treatment 3 2467.1875 822.396 43.332** 

Residual 6 113.875 18.979  

Total 15 3254.9375   

 

In R: 

> data=read.csv("latin.csv",header=T) 

> data 

   Treatment Row Column GrowthRate 

1         T2   1      1        222 

2         T1   2      1        200 

3         T4   3      1        238 

4         T3   4      1        241 

5         T1   1      2        198 

6         T3   2      2        232 

7         T2   3      2        232 

8         T4   4      2        242 

9         T4   1      3        243 

10        T2   2      3        234 

11        T3   3      3        233 

12        T1   4      3        220 

13        T3   1      4        234 

14        T4   2      4        248 

15        T1   3      4        220 

16        T2   4      4        244 

> str(data) 
'data.frame':   16 obs. of  4 variables: 

 $ Treatment : Factor w/ 4 levels "T1","T2","T3",..: 2 1 4 3  ... 

 $ Row       : int  1 2 3 4 1 2 3 4 1 2 ... 

 $ Column    : int  1 1 1 1 2 2 2 2 3 3 ... 

 $ GrowthRate: int  222 200 238 241 198 232 232 242 243 234 ... 

> data$Row=as.factor(data$Row) 

> data$Column=as.factor(data$Column) 

> 

modelLatin=aov(GrowthRate~Row+Column+Treatment, 

data=data) 

> summary(modelLatin) 
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            Df Sum Sq Mean Sq F value   Pr(>F)     

Row          3  325.7   108.6   5.720 0.034123 *   

Column       3  348.2   116.1   6.115 0.029551 *   

Treatment    3 2467.2   822.4  43.332 0.000185 *** 

Residuals    6  113.9    19.0                      

--- 

Signif.codes: 0 ‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘ ’1 

> library(agricolae) 

> duncan.test(modelLatin, "Treatment", alpha=0.05, 

console=T) 

 

Study: modelLatin ~ "Treatment" 

 

Duncan's new multiple range test 

for GrowthRate  

 

Mean Square Error:  18.97917  

 

Treatment,  means 

 

   GrowthRate       std r Min Max 

T1     209.50 12.151817 4 198 220 

T2     233.00  9.018500 4 222 244 

T3     235.00  4.082483 4 232 241 

T4     242.75  4.112988 4 238 248 

 

Alpha: 0.05 ; DF Error: 6  

 

Critical Range 

       2        3        4  

7.537752 7.812304 7.948306  

 

Means with the same letter are not significantly 

different. 

 

   GrowthRate groups 

T4     242.75      a 

T3     235.00      b 

T2     233.00      b 

T1     209.50      c 

>  

 

 

Or we can use ExpDes package, as follows. 

 

 

 



83 
 

> library(ExpDes) 

> latsd(data$Treatment, data$Row, data$Column, data$GrowthRate,  

+     quali = TRUE, mcomp = "duncan", sigT = 0.05, sigF = 0.05) 

--------------------------------------------------------------- 

Analysis of Variance Table 

--------------------------------------------------------------- 

           DF     SS     MS     Fc    Pr>Fc 

Treatament  3 2467.2 822.40 43.332 0.000185 

Row         3  325.7 108.56  5.720 0.034123 

Column      3  348.2 116.06  6.115 0.029551 

Residuals   6  113.9  18.98                 

Total      15 3254.9                        

--------------------------------------------------------------- 

CV = 1.89 % 

 

--------------------------------------------------------------- 

Shapiro-Wilk normality test 

p-value:  0.7721845  

According to Shapiro-Wilk normality test at 5% of significance, 

residuals can be considered normal. 

--------------------------------------------------------------- 

 

Duncan's test  

--------------------------------------------------------------- 

Groups  Treatments  Means 

a        T4          242.75  

 b       T3          235  

 b       T2          233  

  c      T1          209.5  

--------------------------------------------------------------- 

> 
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IX. CROSSOVER DESIGN 

 

9.1 Simple Crossover Design 

Crossover design or also known as change-over design is experimental design 

where two or more treatments applied to the same subject  (usually animal) in different 

periods sequentially. In this design, measurement of each animal is more than once, 

and each measurement is correspond to a different treatment with random order of the 

treatment. An animal here is used as a block and usually called a subject. For example, 

an experiment is conducted to test three different treatments (T1, T2 and T3) on milk 

production using six cows. Lay out of the experiment can be seen as below. 

 

Period cow 1 cow 2 cow 3 cow 4 cow 5 cow 6 

1 T2 T1 T2 T1 T3 T3 

2 T1 T3 T3 T2 T1 T2 

3 T3 T2 T1 T3 T2 T1 

 

If subjects is considered as blocks, the model is similar to a randomized block design 

model, with the subject effect defined as random: 

yij = μ + τi + Sj + εij i = 1,...,t;   j = 1,...,n; 

where: 

yij = observation on subject (cow) j in treatment i 

τi = the fixed effect of treatment i 

Sj = the random effect of subject (cow) j 

εij = random error 

t = number of treatments 

n = number of subjects (cows) 

 

Randomization for crossover design can be assigned randomly to treatment order 

in every subject with period. Example of randomization for crossover design is 

described as follows. 

> cow1=sample(1:3,size=3,replace=FALSE) 

> cow1 

[1] 2 1 3 
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> cow2=sample(1:3,size=3,replace=FALSE) 

> cow2 

[1] 1 3 2 

> 

 

Based on treatment order randomization, the order of treatment for cow 1 is T2 

in period 1, T1 in period 2 and T3 in period 3; the order for cow 2 is T1 in period 1, 

T3 in period 2 and T2 in period 3; and soon shown in table above. 

Total sum of squares is sums of squares between subjects and within subjects: 

SST = SSs + SSws 

Sum of squares within subjects is sums of treatment sum of squares and 

residual sum of squares: 

SSws = SSt + SSE 

Thus, the total sum of squares is: 

SST = SSs + SSt + SSE 

with corresponding degrees of freedom: 

(tn – 1) = (n – 1) + (t – 1) + (n – 1)(t – 1) 

The sums of squares above can be formulated as below. 

SST = ∑ ∑ (𝑦𝑖𝑗 − 𝑦̅. . )2

𝑗𝑖
 

SSs = ∑ ∑ (𝑦̅. 𝑗 − 𝑦̅. . )2

𝑗𝑖
 

SSt = ∑ ∑ (𝑦̅𝑖. − 𝑦̅. . )2

𝑗𝑖
 

SSws = ∑ ∑ (𝑦̅𝑖𝑗 −  𝑦̅. 𝑗)2

𝑗𝑖
 

SSE = ∑ ∑ (𝑦𝑖𝑗 − 𝑦̅𝑖. − 𝑦̅. 𝑗 + 𝑦̅. . )2

𝑗𝑖
 

Mean square (MS) can be calculated as below. 

MSt = SSt/dft = SSt/(t-1) 

MSs = SSs/dfs =SSs/(n-1) 

MSws = SSws/dfws = SSws/n(t-1) 

MSE = SSE/dfe = SSE/(t-1)(n-1) 

The null and alternative hypotheses are: 
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H0: τ1 = τ2 =... = τr, treatment effects are the same 

H1: τi ≠ τr, at least the effects of one pair of treatment is different 

F statistic = MSt/MSE compared to F table with (t-1) and (t-1)(n-1) degrees of 

freedom for critical value. For an α level of significance H0 is rejected if F statistic > 

Fα,(t-1),(t-1)(n-1). 

The results ANOVA can be summarized in table below. 

Source of variation df SS MS=SS/df F 

Between subject s-1 SSs MSs  

Within subject n(t-1) SSws MSws  

Treatment t-1 SSt MSt MSt/MSE 

Residual (t-1)(n-1) SSE MSE  

 

For example, an experiment is conducted to test three different treatments (T1, 

T2 and T3) on milk production using six cows. Measurement is taken in month two, 

three and four during lactation. Milk production per month of the six cows for three 

month (2nd , 3rd and 4th month) can be seen as below. 

 

Table. Milk production (kg) per month of six cows during 2nd, 3rd and 4th 

month of lactation. 

Period cow 1 cow 2 cow 3 cow 4 cow 5 cow 6 

1 T2(680) T1(600) T2(670) T1(620) T3(700) T3(680) 

2 T1(650) T3(700) T3(710) T2(680) T1(640) T2(700) 

3 T3(730) T2(700) T1(700) T3(740) T2(710) T1(680) 

 

ANOVA for the above table is like RCBD or Latin square analysis, where cow 

and period as blocks. 

In R: 

> data = read.csv("crossover4.csv", header=T) 

> data 

   Cow Period Treatment MilkProduction 

1    1      1        T2            680 

2    1      2        T1            650 

3    1      3        T3            730 

4    2      1        T1            600 

5    2      2        T3            700 

6    2      3        T2            700 

7    3      1        T2            670 

8    3      2        T3            710 
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9    3      3        T1            700 

10   4      1        T1            620 

11   4      2        T2            680 

12   4      3        T3            740 

13   5      1        T3            700 

14   5      2        T1            640 

15   5      3        T2            710 

16   6      1        T3            680 

17   6      2        T2            700 

18   6      3        T1            680 

> str(data) 

'data.frame':   18 obs. of  4 variables: 

 $ Cow           : int  1 1 1 2 2 2 3 3 3 4 ... 

 $ Period        : int  1 2 3 1 2 3 1 2 3 1 ... 

 $ Treatment     : Factor w/ 3 levels "T1","T2","T3": 

2 1 3 1 3 2 2 3 1 1 ... 

 $ MilkProduction: int  680 650 730 600 700 700 670 

710 700 620 ... 

> data$Cow=as.factor(data$Cow) 

> data$Period=as.factor(data$Period) 

> data$Treatment=as.factor(data$Treatment) 

> str(data) 

'data.frame':   18 obs. of  4 variables: 

 $ Cow           : Factor w/ 6 levels "1","2","3","4",..: 

1 1 1 2 2 2 3 3 3 4 ... 

 $ Period        : Factor w/ 3 levels "1","2","3": 1 

2 3 1 2 3 1 2 3 1 ... 

 $ Treatment     : Factor w/ 3 levels "T1","T2","T3": 

2 1 3 1 3 2 2 3 1 1 ... 

 $ MilkProduction: int  680 650 730 600 700 700 670 

710 700 620 ... 

> xover=aov(MilkProduction~Cow+Treatment, data=data) 

> summary(xover) 

            Df Sum Sq Mean Sq F value Pr(>F)   

Cow          5   1228     246   0.265 0.9220   

Treatment    2  11878    5939   6.417 0.0161 * 

Residuals   10   9256     926                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 

0.1 ‘ ’ 1 

> library(agricolae) 

> duncan.test(xover, "Treatment", alpha=0.05, 

console=T) 

 

Study: xover ~ "Treatment" 

 

Duncan's new multiple range test 

for MilkProduction  
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Mean Square Error:  925.5556  

 

Treatment,  means 

 

   MilkProduction      std r Min Max 

T1       648.3333 37.10346 6 600 700 

T2       690.0000 15.49193 6 670 710 

T3       710.0000 21.90890 6 680 740 

 

Alpha: 0.05 ; DF Error: 10  

 

Critical Range 

       2        3  

39.13658 40.89737  

 

Means with the same letter are not significantly 

different. 

 

   MilkProduction groups 

T3       710.0000      a 

T2       690.0000      a 

T1       648.3333      b 

> 

 

Based on ANOVA result it can be concluded that different milk replacer affected 

the growth rate of calf with T3 is the largest effect. We can use ExpDes package for 

this case, as below. 

> library(ExpDes) 

> rbd(data$Treatment, data$Cow, data$MilkProduction, quali = TRUE,  

+   mcomp='duncan',hvar='oneillmathews', sigT = 0.05, sigF = 0.05) 

---------------------------------------------------------------------- 

Analysis of Variance Table 

---------------------------------------------------------------------- 

           DF      SS     MS     Fc   Pr>Fc 

Treatament  2 11877.8 5938.9 6.4166 0.01611 

Block       5  1227.8  245.6 0.2653 0.92200 

Residuals  10  9255.6  925.6                

Total      17 22361.1                       

---------------------------------------------------------------------- 

CV = 4.46 % 

 

---------------------------------------------------------------------- 

Shapiro-Wilk normality test 

p-value:  0.4500391  
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According to Shapiro-Wilk normality test at 5% of significance, residuals 

can be considered normal. 

---------------------------------------------------------------------- 

 

---------------------------------------------------------------------- 

Homogeneity of variances test 

p-value:  0.767789  

According to the test of oneillmathews at 5% of significance, the 

variances can be considered homocedastic. 

---------------------------------------------------------------------- 

 

Duncan's test  

---------------------------------------------------------------------- 

Groups  Treatments  Means 

a        T3          710  

a        T2          690  

 b       T1          648.3333  

---------------------------------------------------------------------- 

> 

 

9.2 Crossover Design with Periods and Sequences Effects 

The next example is crossover design using Latin square to investigate four 

different drug (A, B, C and D) on cortisol level of women. This experiment used eight 

women for two round. Each of the first four women are exposed to a different drug 

with randomly assigned order, then a time (three days) is allowed to pass and the 

observation is recorded. Then a washout period (three days) passes to eliminate the 

effects of the first drug, and each of the woman are treated with a second different drug 

in the second time period. This is repeated until the Latin square is complete. The 

experiment is performed using two rounds, where the first round is completed using 

the first four women and the second round is completed using the remaining women. 

 

Table. Cortisol level (micrograms per deciliter (ug/dl)) of women exposed to 

four different drug 

Sequence/round Periode 
Women 

1 2 3 4 

1 

1 C(13) A(8.6) D(11) B(9) 

2 D(11.4) C(13.5) B(9.4) A(8.9) 

3 B(9.6) D(11.6) A(9) C(13.8) 

4 A(8.8) B(10) C(14) D(12) 
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  Women 
  5 6 7 8 

2 

1 B(9) C(13) A(8) D(11.4) 

2 D(11.3) B(9.2) C(13.5) A(8.4) 

3 A(8.8) D(11.4) B(9.4) C(13.8) 

4 C(13.8) A(9) D(11.5) B(9.8) 

 

In R: 

> data = read.csv("crossover5.csv", header=T) 

> data 

   Sequence Period Women Drug Cortisol 

1         1      1     1    C     13.0 

2         1      2     1    D     11.4 

3         1      3     1    B      9.6 

4         1      4     1    A      8.8 

5         1      1     2    A      8.6 

6         1      2     2    C     13.5 

7         1      3     2    D     11.6 

8         1      4     2    B     10.0 

9         1      1     3    D     11.0 

10        1      2     3    B      9.4 

11        1      3     3    A      9.0 

12        1      4     3    C     14.0 

13        1      1     4    B      9.0 

14        1      2     4    A      8.9 

15        1      3     4    C     13.8 

16        1      4     4    D     12.0 

17        2      1     5    B      9.0 

18        2      2     5    D     11.3 

19        2      3     5    A      8.8 

20        2      4     5    C     13.8 

21        2      1     6    C     13.0 

22        2      2     6    B      9.2 

23        2      3     6    D     11.4 

24        2      4     6    A      9.0 

25        2      1     7    A      8.0 

26        2      2     7    C     13.5 

27        2      3     7    B      9.4 

28        2      4     7    D     11.5 

29        2      1     8    D     11.4 

30        2      2     8    A      8.4 

31        2      3     8    C     13.8 

32        2      4     8    B      9.8 

> str(data) 
'data.frame':   32 obs. of  5 variables: 

 $ Sequence: int  1 1 1 1 1 1 1 1 1 1 ... 

 $ Period  : int  1 2 3 4 1 2 3 4 1 2 ... 

 $ Women   : int  1 1 1 1 2 2 2 2 3 3 ... 
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 $ Drug    : Factor w/ 4 levels "A","B","C","D": 3 4 2 1 1 3 4 2 4 2 ... 

 $ Cortisol: num  13 11.4 9.6 8.8 8.6 13.5 11.6 10 11 9.4 ... 

> data$Sequence=as.factor(data$Sequence) 

> data$Period=as.factor(data$Period) 

> data$Women=as.factor(data$Women) 

> str(data) 

'data.frame':   32 obs. of  5 variables: 

 $ Sequence: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ... 

 $ Period  : Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 4 1 2 ... 

 $ Women   : Factor w/ 8 levels "1","2","3","4",..: 1 1 1 1 2 2 2 2 3 3 

... 

 $ Drug    : Factor w/ 4 levels "A","B","C","D": 3 4 2 1 1 3 4 2 4 2 ... 

 $ Cortisol: num  13 11.4 9.6 8.8 8.6 13.5 11.6 10 11 9.4 ... 

> xover=aov(Cortisol~Sequence+Period+Women+Drug, data=data) 

> summary(xover) 

            Df Sum Sq Mean Sq  F value   Pr(>F)     

Sequence     1   0.17    0.17    6.677   0.0187 *   

Period       3   2.42    0.81   32.529 1.76e-07 *** 

Women        6   0.28    0.05    1.864   0.1428     

Drug         3 114.69   38.23 1544.226  < 2e-16 *** 

Residuals   18   0.45    0.02                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> library(agricolae) 

> LSD.test(xover, "Drug", alpha=0.05, console=T) 

 

Study: xover ~ "Drug" 

 

LSD t Test for Cortisol  

 

Mean Square Error:  0.02475694  

 

Drug,  means and individual ( 95 %) CI 

 

  Cortisol       std r       LCL       UCL Min Max 

A   8.6875 0.3440826 8  8.570627  8.804373   8   9 

B   9.4250 0.3615443 8  9.308127  9.541873   9  10 

C  13.5500 0.3779645 8 13.433127 13.666873  13  14 

D  11.4500 0.2828427 8 11.333127 11.566873  11  12 

 

Alpha: 0.05 ; DF Error: 18 

Critical Value of t: 2.100922  

 

least Significant Difference: 0.1652831  

 

Treatments with the same letter are not significantly 

different. 

 

  Cortisol groups 

C  13.5500      a 

D  11.4500      b 

B   9.4250      c 

A   8.6875      d 

> 
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Based on ANOVA result it can be concluded that different drug affected the 

cortisol level of women with drug C had the highest affect. 
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X. FACTORIAL DESIGN 

 

10.1 Introduction 

Factorial design is experimental design where two or more sets of treatments 

with their levels are analysed at the same time. This design is actually an extension of 

single factor ANOVA designs with addition of other factors, so that treatment level 

combination, which is called interaction, between the two or more factors are 

generated.  

There are main factor effect and simple (interaction) effect in this design. If the 

interaction effect is significant, all combinations of factor levels are tested. However, 

if there is no interaction effect, the main factor effect should be focused and tested in 

the experiment. Randomization in this design is that all combinations of factors are 

randomly applied to experimental units. 

 

10.2 Simple Factorial Design (2x2) 

Suppose there are two factors A and B in an experiment with a levels of factor A 

and b levels of factor B and n is the number of experimental units for each A x B 

combination. Linear model with two factors A and B is like below. 

yijk = μ + Ai + Bj +(AB)ij + εijk        i = 1,…,a;  j = 1,…,b;  k = 1,…,n 

where: 

yijk = observation k in level i of factor A and level j of factor B 

μ = the overall mean 

Ai = the effect of level i of factor A 

Bj = the effect of level j of factor B 

(AB)ij = the interaction effect of level i of factor A with level j of factor B 

εijk = random error 

a = number of levels of factor A 

b = number of levels of factor B 

n = number of observations for each A x B combination. 

Factorial 2 x 2 is the simplest factorial experimental design which mean there 

are two factors with 2 levels for each factor. Factorial 3 x 2 is factorial experimental 

design with two factors where the first factor consists of three levels and the second 
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factor consists of two levels, and soon. Combination of factorial 2 x 2 can be seen at 

table below. 

Table. Factorial 2 x 2 with factor A and factor B consist of two levels each 

 Factor A 

Factor B A1 A2 

B1 A1B1 A2B1 

B2 A1B2 A2B2 

 

Possible combination of the two factors above with n replication can be describe 

as table below. 

A1 A2 

B1 B2 B1 B2 

y111 y121 y211 y221 

y112 y122 y212 y222 

… … … … 

y11n y12n y21n y22n 

Note: yijk denotes measurement k of level i of factor A and level j of factor B. 

Sum square of factorial 2 x 2 with factor A and factor B is 

SST =  SSA +  SSB +  SSAB +  SSE 

The corresponding degrees of freedom is 

(abn-1) = (a-1) + (b-1) + (a-1)(b-1) + ab(n-1) 

The sums of squares above can be formulated as below. 

where  

SST = ∑ ∑ ∑ (𝑦𝑖𝑗𝑘 − 𝑦̅. . . )2

𝑘𝑗𝑖
 

SSA = ∑ ∑ ∑ (𝑦̅𝑖. . − 𝑦̅. . . )2

𝑘𝑗𝑖
 

SSB = ∑ ∑ ∑ (𝑦̅. 𝑗. − 𝑦̅. . . )2

𝑘𝑗𝑖
 

SSAB = n ∑ ∑ (𝑦̅𝑖𝑗. − 𝑦̅. . . )2

𝑗
− 𝑆𝑆𝐴 − 𝑆𝑆𝐵

𝑖
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SSE = ∑ ∑ ∑ (𝑦̅𝑖𝑗𝑘 − 𝑦̅𝑖𝑗. )2

𝑘𝑗𝑖
 

Sums of squares above can be calculated using computation below. 

CF =
(∑ ∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗𝑖 )

2

𝑎𝑏𝑛
 

SST = ∑ ∑ ∑ 𝑦𝑖𝑗𝑘2

𝑘𝑗𝑖
 − 𝐶𝐹 

SSA = ∑
(∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗 )

2

𝑏𝑛𝑖
 −  𝐶𝐹 

SSB = ∑
(∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑖 )2

𝑎𝑛𝑗
 −  𝐶𝐹 

SSAB = ∑ ∑
(∑ 𝑦𝑖𝑗𝑘𝑘 )2

𝑛𝑗𝑖
 –  𝑆𝑆𝐴 – 𝑆𝑆𝐵 – 𝐶𝐹 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 −  𝑆𝑆𝐴 −  𝑆𝑆𝐵 −  𝑆𝑆𝐴𝐵 

Mean square (MS) can be calculated as below. 

MSA = SSt/dfa = SSA/(a-1) 

MSB = SSR/dfb =SSB/(b-1) 

MSAB = SSAB/dfab = SSAB/(a-1)(b-1) 

MSE = SSE/dfe = SSE/ab(n-1) 

There are three null and alternative hypotheses, those are: 

For factor A: H0: τ1 = τ2 =... = τi, treatment effects are the same 

 H1: τi ≠ τa, at least the effects of one pair of treatment is different 

For factor B: H0: τ1 = τ2 =... = τj, treatment effects are the same 

 H1: τi ≠ τb, at least the effects of one pair of treatment is different 

For factor A: H0: τ11 = τ12 =... = τij, treatment effects are the same 

 H1: τi ≠ τab, at least the effects of one pair of treatment combination is 

different 

There are three tests for factorial design, F statistic = MSA/MSE compared to F 

table with (a-1) and ab(n-1) degrees of freedom for critical value of Factor A, F statistic 

= MSB/MSE compared to F table with (b-1) and ab(n-1) degrees of freedom for critical 

value of Factor B, and F statistic = MSAB/MSE compared to F table with (a-1)(b-1) 



96 
 

and ab(n-1) degrees of freedom for critical value of interaction A x B. For an α level 

of significance H0 is rejected if F statistic > Fα,(a-1),ab(n-1), F statistic > Fα,(b-1),ab(n-1), F 

statistic > Fα,(a-1)(b-1),ab(n-1), respectively for Factor A, Factor B and interaction A x B. 

However if there is significant interaction effect we do not need to test further for the 

main factor (factor A and or factor B), but we need to test further between combination 

effects. 

The results ANOVA can be summarized in table below. 

Source of variation df SS MS=SS/df F 

A a-1 SSA MSA MSA/MSE 

B b-1 SSB MSB MSB/MSE 

AxB (a-1)(b-1) SSAB MSAB MSAB/MSE 

Residual ab(n-1) SSE MSE  

Total abn-1 SST   

 

A study wanted to know the interaction between two types of feed (B, basal ratio 

and C, basal ration plus concentrate) and breed of sheep on birth weights of lambs. 

Pregnancy ewes are fed with the two different ration for four months before delivering 

lambs. The research is design using factorial design 2 x 2. Data from the research 

results (hypothetical) are presented in the following table.  

 

Table. Birth weight of Merino and Dorset lambs whose their dam fed with two 

different ration. 

Observation 

Ration 

B C 

Merino Dorset Merino Dorset 

1 4.5 5.2 4.8 6.5 

2 4.5 5 5.2 6.2 

3 3.8 4.7 5.3 6.4 

4 4.2 4.8 4.9 6.7 

5 4.4 5.2 5 6.2 

 

In R: 

> data <- read.csv('factorial1.csv', header=T) 

> data 

   ration breed  bw 

1       B     M 4.5 

2       B     M 4.5 

3       B     M 3.8 

4       B     M 4.2 
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5       B     M 4.4 

6       B     D 5.2 

7       B     D 5.0 

8       B     D 4.7 

9       B     D 4.8 

10      B     D 5.2 

11      C     M 4.8 

12      C     M 5.2 

13      C     M 5.3 

14      C     M 4.9 

15      C     M 5.0 

16      C     D 6.5 

17      C     D 6.2 

18      C     D 6.4 

19      C     D 6.7 

20      C     D 6.2 

> plot.design(data)  

 

 
 

> fit <- aov(bw ~ ration*breed, data=data) 

> summary(fit) 

             Df Sum Sq Mean Sq F value   Pr(>F)     

ration        1  5.941   5.941 104.678 2.00e-08 *** 

breed         1  5.305   5.305  93.471 4.38e-08 *** 

ration:breed  1  0.544   0.544   9.595  0.00692 **  

Residuals    16  0.908   0.057                      

--- 

Signif. codes:0 ‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘ ’1 
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> par(mfrow=c(1,2)) 

> par(mfrow=c(1,2)) 

> interaction.plot(x.factor = data$ration,  

+   trace.factor = data$breed,response = data$bw, 

+   fun = mean,type="b", col=c("black","blue"),  

+   pch=c(19, 17),fixed=TRUE,leg.bty = "o") 

> interaction.plot(x.factor = data$breed, 

+   trace.factor = data$ration, response = data$bw, 

+   fun = mean,type="b", col=c("red","green"),  

+   pch=c(19, 17), fixed=TRUE,leg.bty = "o") 

 

 

> HSD.test(fit, c("ration","breed"), alpha=0.05, 

+   console=T) 

 

Study: fit ~ c("ration", "breed") 

 

HSD Test for bw  

 

Mean Square Error:  0.05675  

 

ration:breed,  means 

 

      bw       std r Min Max 

B:D 4.98 0.2280351 5 4.7 5.2 

B:M 4.28 0.2949576 5 3.8 4.5 

C:D 6.40 0.2121320 5 6.2 6.7 

C:M 5.04 0.2073644 5 4.8 5.3 

 

Alpha: 0.05 ; DF Error: 16  

Critical Value of Studentized Range: 4.046093  

 

Minimun Significant Difference: 0.4310561  

 

Treatments with the same letter are not significantly 

different. 
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      bw groups 

C:D 6.40      a 

C:M 5.04      b 

B:D 4.98      b 

B:M 4.28      c 

> 

 

Based on ANOVA and HSD test it can be concluded that there is significant 

interaction between ration and breed on birth weight of lambs with C and D 

combination (basal ration plus concentrate and Dorset lamb) had the highest effect. 

Description of the data graphically can be shown as following boxplot. 

> par(mfrow=c(1,3)) 

> boxplot(bw~breed, main="Birth Weight of Breed", 

+   xlab="Breed", ylab="Weight (kg)", data=data) 

> boxplot(bw~ration, main="Birth Weight with different 

Ration", 

+   xlab="Ration", ylab="Weight (kg)", data=data) 

> boxplot(bw~breed*ration, main="Birth Weight of 

Breed-Ration interaction", 

+   xlab="Breed-Ration", ylab="Weight (kg)", 

col=c("red","tomato", 

+   "darkgreen","lightgreen"),data=data) 

 

 

 

> leveneTest(bw~ration*breed, data=data) 

Levene's Test for Homogeneity of Variance (center = median) 

      Df F value Pr(>F) 

group  3  0.0789 0.9705 

      16    
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10.3 Factorial Design 3x3 

The experiment was conducted to investigate the effect of three factors, namely 

percentage: protein ration level, methionine supplementation, and lysine 

supplementation. The experiment was carried out with RCBD with 2 replications. The 

data recorded is the average body weight gain per day of bulls, as listed in the following 

table: 

Table. Body weight gain of bulls fed ration with different level of protein, 

methionine and lysin supplementation (kg/day/head) 

Lysin Methionine Protein Replication Total treatments 

   1 2  

0 0 12 

14 

1.11 

1.52 

0.97 

1.45 

2.08 

2.97 

0.025 12 

14 

1.09 

1.27 

0.99 

1.22 

2.08 

2.49 

0.05 12 

14 

0.85 

1.67 

1.21 

1.24 

2.06 

2.91 

0.05 0 12 

14 

1.30 

1.55 

1.00 

1.55 

2.30 

3.10 

0.025 12 

14 

1.03 

1.24 

1.21 

1.34 

2.24 

2.58 

0.05 12 

14 

1.12 

1.76 

0.96 

1.27 

2.08 

3.03 

0.10 0 12 

14 

1.22 

1.38 

1.13 

1.08 

2.35 

2.46 

0.025 12 

14 

1.34 

1.40 

1.41 

1.21 

2.75 

2.61 

0.05 12 

14 

1.34 

1.46 

1.19 

1.39 

2.53 

2.85 

0.15 0 12 

14 

1.19 

0.80 

1.03 

1.29 

2.22 

2.09 

0.025 12 

14 

1.36 

1.42 

1.16 

1.39 

2.52 

2.81 

0.05 12 

14 

1.46 

1.62 

1.07 

1.27 

2.53 

2.89 

Total 31.50 29.03 60.53 

 

In R: 

> data <- read.csv('factorial2.csv', header=T) 

> data 

   Lysine Methionine Protein Block Gain 

1    0.00      0.000      12     1 1.11 

2    0.00      0.000      14     1 1.52 

3    0.00      0.025      12     1 1.09 
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4    0.00      0.025      14     1 1.27 

5    0.00      0.050      12     1 0.85 

6    0.00      0.050      14     1 1.67 

7    0.05      0.000      12     1 1.30 

8    0.05      0.000      14     1 1.55 

9    0.05      0.025      12     1 1.03 

10   0.05      0.025      14     1 1.24 

11   0.05      0.050      12     1 1.12 

12   0.05      0.050      14     1 1.76 

13   0.10      0.000      12     1 1.22 

14   0.10      0.000      14     1 1.38 

15   0.10      0.025      12     1 1.34 

16   0.10      0.025      14     1 1.40 

17   0.10      0.050      12     1 1.34 

18   0.10      0.050      14     1 1.46 

19   0.15      0.000      12     1 1.19 

20   0.15      0.000      14     1 0.80 

21   0.15      0.025      12     1 1.36 

22   0.15      0.025      14     1 1.42 

23   0.15      0.050      12     1 1.46 

24   0.15      0.050      14     1 1.62 

25   0.00      0.000      12     2 0.97 

26   0.00      0.000      14     2 1.45 

27   0.00      0.025      12     2 0.99 

28   0.00      0.025      14     2 1.22 

29   0.00      0.050      12     2 1.21 

30   0.00      0.050      14     2 1.24 

31   0.05      0.000      12     2 1.00 

32   0.05      0.000      14     2 1.55 

33   0.05      0.025      12     2 1.21 

34   0.05      0.025      14     2 1.34 

35   0.05      0.050      12     2 0.96 

36   0.05      0.050      14     2 1.27 

37   0.10      0.000      12     2 1.13 

38   0.10      0.000      14     2 1.08 

39   0.10      0.025      12     2 1.41 

40   0.10      0.025      14     2 1.21 

41   0.10      0.050      12     2 1.19 

42   0.10      0.050      14     2 1.39 

43   0.15      0.000      12     2 1.03 

44   0.15      0.000      14     2 1.29 

45   0.15      0.025      12     2 1.16 

46   0.15      0.025      14     2 1.39 

47   0.15      0.050      12     2 1.07 

48   0.15      0.050      14     2 1.27 

> str(data) 

'data.frame':   48 obs. of  5 variables: 

 $ Lysine    : num  0 0 0 0 0 0 0.05 0.05 0.05 0.05 

... 
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 $ Methionine: num  0 0 0.025 0.025 0.05 0.05 0 0 0.025 

0.025 ... 

 $ Protein   : int  12 14 12 14 12 14 12 14 12 14 ... 

 $ Block     : int  1 1 1 1 1 1 1 1 1 1 ... 

 $ Gain      : num  1.11 1.52 1.09 1.27 0.85 1.67 1.3 

1.55 1.03 1.24 ... 

> data$Lysine=as.factor(data$Lysine) 

> data$Methionine=as.factor(data$Methionine) 

> data$Protein=as.factor(data$Protein) 

> data$Block=as.factor(data$Block) 

> str(data) 

'data.frame':   48 obs. of  5 variables: 

 $ Lysine    : Factor w/ 4 levels "0","0.05","0.1",..: 

1 1 1 1 1 1 2 2 2 2 ... 

 $ Methionine: Factor w/ 3 levels "0","0.025","0.05": 

1 1 2 2 3 3 1 1 2 2 ... 

 $ Protein   : Factor w/ 2 levels "12","14": 1 2 1 2 

1 2 1 2 1 2 ... 

 $ Block     : Factor w/ 2 levels "1","2": 1 1 1 1 1 

1 1 1 1 1 ... 

 $ Gain      : num  1.11 1.52 1.09 1.27 0.85 1.67 1.3 

1.55 1.03 1.24 ... 

> plot.design(data) 

 
> fit <- aov(Gain ~ Lysine*Methionine*Protein +Block,  

+   data=data) 

> summary(fit) 
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                          Df Sum Sq Mean Sq F value   Pr(>F)     

Lysine                     3 0.0427  0.0142   0.527 0.668031     

Methionine                 2 0.0545  0.0273   1.008 0.380353     

Protein                    1 0.5313  0.5313  19.661 0.000191 *** 

Block                      1 0.1271  0.1271   4.703 0.040692 *   

Lysine:Methionine          6 0.2630  0.0438   1.622 0.186248     

Lysine:Protein             3 0.2475  0.0825   3.052 0.048819 *   

Methionine:Protein         2 0.0780  0.0390   1.444 0.256655     

Lysine:Methionine:Protein  6 0.0696  0.0116   0.429 0.851839     

Residuals                 23 0.6215  0.0270                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> par(mfrow=c(1,3)) 

> interaction.plot(x.factor = data$Lysine,trace.factor =  

+   data$Methionine, response = data$Gain,fun = mean, 

+   type="b", col=c("black","blue","red","green"),  

+   pch=c(19, 17, 15),fixed=TRUE,leg.bty = "o") 

> interaction.plot(x.factor = data$Lysine,trace.factor =  

+   data$Protein, response = data$Gain,fun = mean,type="b", 

+   col=c("black","blue","red","green"),  

+   pch=c(19, 17, 15), fixed=TRUE,leg.bty = "o") 

> interaction.plot(x.factor = data$Methionine, 

+   trace.factor = data$Protein, response = data$Gain, 

+   fun = mean,type="b",col=c("black","blue","red",  

+   "green"), pch=c(19, 17, 15), fixed=TRUE,leg.bty = "o") 

 

 
 

 

> par(mfrow=c(1,2)) 

> interaction.plot(x.factor = data$Lysine,trace.factor =  

+   data$Protein, response = data$Gain,fun = mean,type="b", 

+  col=c("black","blue","red","green"), pch=c(19, 17,  

+  15),fixed=TRUE,leg.bty = "o") 

> interaction.plot(x.factor = data$Protein,trace.factor =  

+  data$Lysine, response = data$Gain,fun = mean,type="b", 

+  col=c("black","blue","red","green"), pch=c(19, 17, 15),  

+  fixed=TRUE,leg.bty = "o") 
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> HSD.test(fit, c("Lysine","Protein"), alpha=0.05,  

+  console=T) 

 

Study: fit ~ c("Lysine", "Protein") 

 

HSD Test for Gain  

 

Mean Square Error:  0.02702382  

 

Lysine:Protein,  means 

 

            Gain       std r  Min  Max 

0.05:12 1.103333 0.1318585 6 0.96 1.30 

0.05:14 1.451667 0.2023281 6 1.24 1.76 

0.1:12  1.271667 0.1075949 6 1.13 1.41 

0.1:14  1.320000 0.1443607 6 1.08 1.46 

0.15:12 1.211667 0.1672623 6 1.03 1.46 

0.15:14 1.298333 0.2741836 6 0.80 1.62 

0:12    1.036667 0.1262801 6 0.85 1.21 

0:14    1.395000 0.1814111 6 1.22 1.67 

 

Alpha: 0.05 ; DF Error: 23  

Critical Value of Studentized Range: 4.701848  

 

Minimum Significant Difference: 0.3155487  

 

Treatments with the same letter are not significantly 

different. 

 

            Gain groups 

0.05:14 1.451667      a 

0:14    1.395000     ab 

0.1:14  1.320000    abc 

0.15:14 1.298333    abc 

0.1:12  1.271667    abc 

0.15:12 1.211667    abc 
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0.05:12 1.103333     bc 

0:12    1.036667      c 

 

> par(mfrow=c(1,2)) 

> boxplot(Gain~Lysine, main="Body Weight Gain with  

+   different Lysine",xlab="Lysine", ylab="Gain (kg)", 

+   data=data) 

> boxplot(Gain~Protein, main="Body Weight Gain with  

+   different Protein", xlab="Protein", ylab="Gain (kg)",  

+   data=data) 

 

 
 

> par(mfrow=c(1,1)) 

> boxplot(Gain~Lysine*Protein, main="Body Weight Gain of  

+   Lysine-Protein interaction", xlab="Lysine-Protein", 

+   ylab="Gain (kg)", col=c("red","tomato", 

+   "darkgreen","lightgreen"),data=data) 
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Based on ANOVA and HSD test it can be concluded that level protein affected body 

weight gain of bulls, and this level of protein interact with level of lysine with protein 

14% and lysine 0.05% in ration had the highest effect on the bull gain. 
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XI. SPLIT PLOT DESIGN 

 

11.1 Introduction 

Split plot design is experimental design where experimental material is divided 

into several main units (main plots), and then each of the main units is divided also 

into several sub units (sub plots). Split plot design is usually used in agricultural 

research. For example, suppose an experiment is conducted to investigate the effect of 

three levels of fertilizer and four rice varieties on rice production. This experiment can 

be designed using large land by dividing the land into three plots for main plot of three 

levels of fertilizer, therefore, randomization is assigned for the three levels of fertilizer. 

Each main plot is again divided into four sub plots for four rice varieties, and then this 

four rice varieties is randomly assigned into the sub plots. Fertilizer level is considered 

as main plot because it is hard to assign different level of fertilizer into sub plots, while 

many varieties of rice can be assigned into sub plots easily. Replication can be made 

according to our design by making several blocks of land because the split plot design 

can use CRD, RCBD, or Latin square designs, that can be assigned either on main 

plots or sub plots. 

Split plot design can be used if one of the factors needs more experiment material 

than the second factor. Like in previous example, factor of fertilizer levels need large 

experimental units, and this factor is applied on the main plots. Whilst rice varieties 

can be applied or compared on sub plots. Furthermore, plot size and precision of 

measurement of effects are not the same for both factors. It is very important that the 

assignment of a particular factor to either the main plot or the sub-plot. Suggestion to 

choose a specific factor either as main or sub plot can be considered as the following 

guidelines.  

First, if we want factor B is more precise than factor A, assign factor B to the 

sub-plot and factor A to the main plot. For example, as a plant breeder evaluating five 

new rice varieties with three levels of fertilization maybe want to have greater 

precision for varietal comparison than for fertilizer response. In this case, variety 

should be assigned as the sub-plot factor and fertilizer as the main plot factor. 

However, as an agronomist maybe assign variety to main plot and fertilizer to sub-plot 

if he wants greater precision for fertilizer response than variety effect.  
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Second, if we want to detect the main effect of factor A is expected to be much 

larger and easier than that of factor B, then factor A can be assigned to the main plot 

and factor B to the sub-plot. In this case the chance of detecting the difference among 

levels of factor B which has a smaller effect will increase. 

Third, if there is difficulties in the execution of other designs, for example, an 

experiment to evaluate water management and rice varieties. In this case, water 

management is desirable to be as the main plot to minimize water movement between 

adjacent plots and reduce border effects. 

 

11.2 Split Plot Design with Main Plots in a Completely Randomized Design 

Suppose factor A with three levels (A1, A2, and A3) is assigned randomly on 12 

plots (four replications). Factor B with two levels (B1 and B2) is assigned randomly 

in each level of factor A in such a way forming a design as below: 

 

A2 A1 A3 A3 A2 A1 A2 A3 A1 A1 A2 A3 

B2 B1 B1 B2 B1 B2 B2 B1 B2 B1 B1 B2 

B1 B2 B2 B1 B2 B1 B1 B2 B1 B2 B2 B1 

 

The model for the design is: 

yijk = μ + Ai + δik + Bj +(AB)ij + εijk        i = 1,...,a;    j = 1,...,b;     k = 1,...,n 

where: 

yijk = observation k in level i of factor A and level j of factor B 

μ = overall mean 

Ai = effect of level i of factor A 

Bj = effect of level j of factor B 

(AB)ij = effect of the ijth interaction of A x B 

δik = error a (Ea), the main plot error (the main plots within factor A) 

εijk = error b (Eb), the split plot error 

μij = μ + Ai + Bj +(AB)ij = the mean of the ijth A x B interaction 

a = number of levels of factor A 

b = number of levels of factor B 

n = number of replications 
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Table of ANOVA for the design with three levels of factor A, two levels of 

factor B and four replications is presented in the following table. 

Source of variation Degree of freedom 

Factor A (a – 1) =                                    3 – 1 = 2 

Main plot error (Ea) a(n – 1) =                             3(4 – 1) = 9 

Factor B (b – 1) =                                    2 – 1 = 1 

AxB (a – 1)(b – 1) =            (3 – 1)(2 – 1) = 2 

Split plot error (Eb) a(b – 1)(n – 1) =        3(2 – 1)(4 – 1) = 9 

Total (abn – 1) =                      (3.2.4 – 1) = 23 

 

F statistic for factor A is 

F =
𝑀𝑆𝐴

𝑀𝑆𝐸𝑎
 

F statistic for factor B is 

F =
𝑀𝑆𝐵

𝑀𝑆𝐸𝑏
 

F statistic for the AxB interaction is 

F =
𝑀𝑆𝐴𝐵

𝑀𝑆𝐸𝑏
 

 

Example for this design, suppose an experiment is conducted to investigate the 

effect of three levels of fertilizer and two rice varieties on rice production. Fertilizer 

level is considered as main plot and varieties of rice is assigned into sub plots. Data on 

rice production is presented in the following table. 

Table. Production (ton/ha) of four rice varieties using three levels of fertilizer 

Plot Fertilizer Variety Production Plot Fertilizer Variety Production 

1 2 2 6.3 7 3 2 7.8 

1 2 1 5.9 7 3 1 7.5 

2 3 1 7.0 8 2 2 6.2 

2 3 2 7.3 8 2 1 6.0 

3 1 1 5.5 9 1 1 5.7 

3 1 2 5.7 9 1 2 5.9 

4 2 2 6.6 10 2 1 6.2 

4 2 1 6.1 10 2 2 6.1 

5 1 2 5.9 11 3 2 8.4 

5 1 1 5.6 11 3 1 7.9 

6 3 2 7.5 12 1 1 5.4 

6 3 1 7.2 12 1 2 5.7 
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In R: 

> data=read.csv('splitplot11.csv', header=T) 

> data 

   Plot Block Fertilizer Variety Production 

1     1     1          2       2        6.3 

2     1     1          2       1        5.9 

3     2     1          3       1        7.0 

4     2     1          3       2        8.3 

5     3     1          1       1        5.5 

6     3     1          1       2        5.7 

7     4     2          2       2        6.6 

8     4     2          2       1        6.1 

9     5     2          1       2        5.9 

10    5     2          1       1        5.6 

11    6     2          3       2        7.5 

12    6     2          3       1        7.0 

13    7     3          3       2        7.8 

14    7     3          3       1        7.0 

15    8     3          2       2        6.2 

16    8     3          2       1        6.0 

17    9     3          1       1        5.7 

18    9     3          1       2        5.9 

19   10     4          2       1        6.2 

20   10     4          2       2        6.1 

21   11     4          3       2        8.4 

22   11     4          3       1        7.9 

23   12     4          1       1        5.4 

24   12     4          1       2        5.7 

> str(data) 

'data.frame':   24 obs. of  5 variables: 

 $ Plot      : int  1 1 2 2 3 3 4 4 5 5 ... 

 $ Block     : int  1 1 1 1 1 1 2 2 2 2 ... 

 $ Fertilizer: int  2 2 3 3 1 1 2 2 1 1 ... 

 $ Variety   : int  2 1 1 2 1 2 2 1 2 1 ... 

 $ Production: num  6.3 5.9 7 8.3 5.5 5.7 6.6 6.1 5.9 5.6 ... 

> data$Plot=as.factor(data$Plot) 

> data$Block=as.factor(data$Block) 

> data$Fertilizer=as.factor(data$Fertilizer) 

> data$Variety=as.factor(data$Variety) 

> str(data) 

'data.frame':   24 obs. of  5 variables: 

 $ Plot      : Factor w/ 12 levels "1","2","3","4",..: 1 1 2 2 

3 3 4 4 5 5 ... 

 $ Block     : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 

2 2 2 2 ... 

 $ Fertilizer: Factor w/ 3 levels "1","2","3": 2 2 3 3 1 1 2 2 

1 1 ... 

 $ Variety   : Factor w/ 2 levels "1","2": 2 1 1 2 1 2 2 1 2 1 

... 

 $ Production: num  6.3 5.9 7 8.3 5.5 5.7 6.6 6.1 5.9 5.6 ... 

> #splitplot crd 

> modela <- aov(Production~Fertilizer*Variety+Error(Plot), 

data=data) 
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> summary(modela) 

 

Error: Plot 

           Df Sum Sq Mean Sq F value   Pr(>F)     

Fertilizer  2 16.187   8.094      66 4.19e-06 *** 

Residuals   9  1.104   0.123                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Error: Within 

                   Df Sum Sq Mean Sq F value   Pr(>F)     

Variety             1 1.0838  1.0838  30.127 0.000386 *** 

Fertilizer:Variety  2 0.3675  0.1837   5.108 0.032930 *   

Residuals           9 0.3238  0.0360                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> 

Based on ANOVA table it can be concluded that fertilizer, rice variety and 

interaction between fertilizer and rice variety affected on rice production. 

 

11.3 Split Plot Design with Main Plots in a Randomized Completely Block Design 

Similar with split plot design with plots in a CRD, but replication is treated as 

block in split plot design with main plot in a RCBD. Suppose factor A with three levels 

(A1, A2, and A3) is assigned randomly on 12 plots (four replications). Factor B with 

two levels (B1 and B2) is assigned randomly in each level of factor A in such a way 

forming a design as below: 

 

Block I Block II Block III Block IV 

A2 A1 A3 A3 A2 A1 A2 A3 A1 A1 A2 A3 

B2 B1 B1 B2 B1 B2 B2 B1 B2 B1 B1 B2 

B1 B2 B2 B1 B2 B1 B1 B2 B1 B2 B2 B1 

 

The model for the design is: 

yijk = μ + Blockk + Ai + δik + Bj +(AB)ij + εijk        i = 1,...,a;  j = 1,...,b;  k = 1,...,n 

where: 

yijk = observation k in level i of factor A and level j of factor B 

μ = overall mean 

Blockk = effect of the kth of block 

Ai = effect of level i of factor A 



112 
 

Bj = effect of level j of factor B 

(AB)ij = effect of the ijth interaction of A x B 

δik = error a (Ea), the main plot error (the main plots within factor A) 

εijk = error b (Eb), the split plot error 

μij = μ + Ai + Bj +(AB)ij = the mean of the ijth A x B interaction 

a = number of levels of factor A 

b = number of levels of factor B 

n = number of replications 

 

Table of ANOVA for the design with three levels of factor A, two levels of 

factor B and four replications is presented in the following table. 

Source of variation Degree of freedom 

Block (n – 1) =                                    4 – 1 = 3 

Factor A (a – 1) =                                    3 – 1 = 2 

Main plot error (Ea) (n – 1)(a – 1) =            (4 – 1)(3 – 1) = 6 

Factor B (b – 1) =                                    2 – 1 = 1 

AxB (a – 1)(b – 1) =            (3 – 1)(2 – 1) = 2 

Split plot error (Eb) a(b – 1)(n – 1) =        3(2 – 1)(4 – 1) = 9 

Total (abn – 1) =                      (3.2.4 – 1) = 23 

 

F statistic for factor A is 

F =
𝑀𝑆𝐴

𝑀𝑆𝐸𝑎
 

F statistic for factor B is 

F =
𝑀𝑆𝐵

𝑀𝑆𝐸𝑏
 

F statistic for the AxB interaction is 

F =
𝑀𝑆𝐴𝐵

𝑀𝑆𝐸𝑏
 

 

Data on rice production with replication as block is presented in the following 

table. 
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Table. Production (ton/ha) of four rice varieties using three levels of fertilizer 

Plot Block Fertilizer Variety Production Plot Block Fertilizer Variety Production 

1 1 2 2 6.3 7 3 3 2 7.8 

1 1 2 1 5.9 7 3 3 1 7.5 

2 1 3 1 7.0 8 3 2 2 6.2 

2 1 3 2 7.3 8 3 2 1 6.0 

3 1 1 1 5.5 9 3 1 1 5.7 

3 1 1 2 5.7 9 3 1 2 5.9 

4 2 2 2 6.6 10 4 2 1 6.2 

4 2 2 1 6.1 10 4 2 2 6.1 

5 2 1 2 5.9 11 4 3 2 8.4 

5 2 1 1 5.6 11 4 3 1 7.9 

6 2 3 2 7.5 12 4 1 1 5.4 

6 2 3 1 7.2 12 4 1 2 5.7 

 

In R: 

> modelb <- aov(Production~Block+Fertilizer*Variety+ 

Error(Plot), data=data) 

> summary(modelb) 

 

Error: Plot 

           Df Sum Sq Mean Sq F value  Pr(>F)     

Block       3  0.135   0.045   0.278 0.83979     

Fertilizer  2 16.187   8.094  50.107 0.00018 *** 

Residuals   6  0.969   0.162                     

--- 

Signif.codes:0 ‘***’0.001‘**’0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Error: Within 

                   Df Sum Sq Mean Sq F value   Pr(>F)     

Variety             1 1.0838  1.0838  30.127 0.000386 *** 

Fertilizer:Variety  2 0.3675  0.1837   5.108 0.032930 *   

Residuals           9 0.3238  0.0360                      

--- 

Signif.codes:0‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The script below is using package “Agricolae”, the result is the same thing. 

 
> library(agricolae) 

> attach(data) 

> modelb <- sp.plot(Block,Fertilizer,Variety,Production) 

 

ANALYSIS SPLIT PLOT:  Production  

Class level information 

 

Fertilizer      :  2 3 1  

Variety         :  2 1  

Block   :  1 2 3 4  
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Number of observations:  24  

 

Analysis of Variance Table 

 

Response: Production 

                   Df  Sum Sq Mean Sq F value    Pr(>F)     

Block               3  0.1346  0.0449  0.2777 0.8397921     

Fertilizer          2 16.1875  8.0938 50.1075 0.0001803 *** 

Ea                  6  0.9692  0.1615                       

Variety             1  1.0838  1.0838 30.1274 0.0003857 *** 

Fertilizer:Variety  2  0.3675  0.1837  5.1081 0.0329296 *   

Eb                  9  0.3238  0.0360                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

cv(a) = 6.2 %, cv(b) = 2.9 %, Mean = 6.4875  

 

> 

 

11.4 Split-split-plot Design 

 

Split-split-plot design is an extension of the split plot design with addition of 

other factor (third factor). This design has characteristic that there are three plot sizes, 

namely main plot (the largest plot), sub plot (intermediate plot) and sub-subplot (the 

smallest plot). In addition, there are three levels of precision, with the main-plot factor 

having the lowest degree of precision and the sub-subplot factor having the highest 

degree of precision.  

The following example is grain yields of three rice varieties grown under three 

management practices and five nitrogen levels (Gomez and Gomez, 1984). The 

experiment is designed in a split-split-plot design with nitrogen as main-plot, 

management practice as subplot, and variety as sub-subplot factors, with three 

replications. 

 

Management 

Variety 

V1 V2 V2 

Rep.I Rep.II Rep.III Rep.I Rep.II Rep.III Rep.I Rep.II Rep.III 

 N1 (0 kg N/ha) 

M1 3.320 3.864 4.507 6.101 5.122 4.815 5.355 5.536 5.244 

M2 3.766 4.311 4.875 5.096 4.873 4.166 7.442 6.462 5.584 

M3 4.660 5.915 5.400 6.573 5.495 4.225 7.018 8.020 7.642 

 N2 (50 kg N/ha) 

M1 3.188 4.752 4.756 5.595 6780 5.390 6.706 6.546 7.092 

M2 3.625 4.809 5.295 6.357 5.925 5.163 8.592 7.646 7.212 



115 
 

M3 5.232 5.170 6.046 7.016 7.442 4.478 8.480 9.942 8.714 

 N3 (80 kg N/ha) 

M1 5.468 5.788 4.422 5.442 5.988 6.509 8.452 6.698 8.650 

M2 5.759 6.130 5.308 6.398 6.533 6.560 8.662 8.526 8.514 

M3 6.215 7.106 6.318 6.953 6.914 7.991 9.112 9.140 9.320 

 N4 (110 kg N/ha) 

M1 4.246 4.842 4.863 6.209 6.768 5.779 8.042 7.414 6.902 

M2 5.255 5.742 5.345 6.992 7.856 6.164 9.080 9.016 7.778 

M3 6.829 5.869 6.011 7.565 7.626 7.362 9.660 8.966 9.128 

 N5 (140 kg N/ha) 

M1 3.132 4.375 4.678 6.860 6.894 6.573 9.314 8.508 8.032 

M2 5.389 4.315 5.896 6.857 6.974 7.422 9.224 9.680 9.294 

M3 5.217 5.389 7.309 7.254 7.812 8.950 10.360 9.896 9.712 

 

In R: 
> data <- read.csv('splitsplitplot.csv', header=T) 

> data 

    Management Variety Nitrogen Block  yield 

1           M1      V1       N1    R1  3.320 

2           M2      V1       N1    R1  3.766 

3           M3      V1       N1    R1  4.660 

4           M1      V1       N2    R1  3.188 

5           M2      V1       N2    R1  3.625 

6           M3      V1       N2    R1  5.232 

7           M1      V1       N3    R1  5.468 

8           M2      V1       N3    R1  5.759 

9           M3      V1       N3    R1  6.215 

10          M1      V1       N4    R1  4.246 

11          M2      V1       N4    R1  5.255 

12          M3      V1       N4    R1  6.829 

13          M1      V1       N5    R1  3.132 

14          M2      V1       N5    R1  5.389 

15          M3      V1       N5    R1  5.217 

16          M1      V1       N1    R2  3.864 

17          M2      V1       N1    R2  4.311 

18          M3      V1       N1    R2  5.915 

19          M1      V1       N2    R2  4.752 

20          M2      V1       N2    R2  4.809 

21          M3      V1       N2    R2  5.170 

22          M1      V1       N3    R2  5.788 

23          M2      V1       N3    R2  6.130 

24          M3      V1       N3    R2  7.106 

25          M1      V1       N4    R2  4.842 

26          M2      V1       N4    R2  5.742 

27          M3      V1       N4    R2  5.869 

28          M1      V1       N5    R2  4.375 

29          M2      V1       N5    R2  4.315 
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30          M3      V1       N5    R2  5.389 

31          M1      V1       N1    R3  4.507 

32          M2      V1       N1    R3  4.875 

33          M3      V1       N1    R3  5.400 

34          M1      V1       N2    R3  4.756 

35          M2      V1       N2    R3  5.295 

36          M3      V1       N2    R3  6.046 

37          M1      V1       N3    R3  4.422 

38          M2      V1       N3    R3  5.308 

39          M3      V1       N3    R3  6.318 

40          M1      V1       N4    R3  4.863 

41          M2      V1       N4    R3  5.345 

42          M3      V1       N4    R3  6.011 

43          M1      V1       N5    R3  4.678 

44          M2      V1       N5    R3  5.896 

45          M3      V1       N5    R3  7.309 

46          M1      V2       N1    R1  6.101 

47          M2      V2       N1    R1  5.096 

48          M3      V2       N1    R1  6.573 

49          M1      V2       N2    R1  5.595 

50          M2      V2       N2    R1  6.357 

51          M3      V2       N2    R1  7.016 

52          M1      V2       N3    R1  5.442 

53          M2      V2       N3    R1  6.398 

54          M3      V2       N3    R1  6.953 

55          M1      V2       N4    R1  6.209 

56          M2      V2       N4    R1  6.992 

57          M3      V2       N4    R1  7.565 

58          M1      V2       N5    R1  6.860 

59          M2      V2       N5    R1  6.857 

60          M3      V2       N5    R1  7.254 

61          M1      V2       N1    R2  5.122 

62          M2      V2       N1    R2  4.873 

63          M3      V2       N1    R2  5.495 

64          M1      V2       N2    R2  6.780 

65          M2      V2       N2    R2  5.925 

66          M3      V2       N2    R2  7.442 

67          M1      V2       N3    R2  5.988 

68          M2      V2       N3    R2  6.533 

69          M3      V2       N3    R2  6.914 

70          M1      V2       N4    R2  6.768 

71          M2      V2       N4    R2  7.856 

72          M3      V2       N4    R2  7.626 

73          M1      V2       N5    R2  6.894 

74          M2      V2       N5    R2  6.974 

75          M3      V2       N5    R2  7.812 

76          M1      V2       N1    R3  4.815 

77          M2      V2       N1    R3  4.166 

78          M3      V2       N1    R3  4.225 
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79          M1      V2       N2    R3  5.390 

80          M2      V2       N2    R3  5.163 

81          M3      V2       N2    R3  4.478 

82          M1      V2       N3    R3  6.509 

83          M2      V2       N3    R3  6.569 

84          M3      V2       N3    R3  7.991 

85          M1      V2       N4    R3  5.779 

86          M2      V2       N4    R3  6.164 

87          M3      V2       N4    R3  7.362 

88          M1      V2       N5    R3  6.573 

89          M2      V2       N5    R3  7.422 

90          M3      V2       N5    R3  8.950 

91          M1      V3       N1    R1  5.355 

92          M2      V3       N1    R1  7.442 

93          M3      V3       N1    R1  7.018 

94          M1      V3       N2    R1  6.706 

95          M2      V3       N2    R1  8.592 

96          M3      V3       N2    R1  8.480 

97          M1      V3       N3    R1  8.452 

98          M2      V3       N3    R1  8.662 

99          M3      V3       N3    R1  9.112 

100         M1      V3       N4    R1  8.042 

101         M2      V3       N4    R1  9.080 

102         M3      V3       N4    R1  9.660 

103         M1      V3       N5    R1  9.314 

104         M2      V3       N5    R1  9.224 

105         M3      V3       N5    R1 10.360 

106         M1      V3       N1    R2  5.536 

107         M2      V3       N1    R2  6.462 

108         M3      V3       N1    R2  8.020 

109         M1      V3       N2    R2  6.546 

110         M2      V3       N2    R2  7.646 

111         M3      V3       N2    R2  9.942 

112         M1      V3       N3    R2  6.698 

113         M2      V3       N3    R2  8.526 

114         M3      V3       N3    R2  9.140 

115         M1      V3       N4    R2  7.414 

116         M2      V3       N4    R2  9.016 

117         M3      V3       N4    R2  8.966 

118         M1      V3       N5    R2  8.508 

119         M2      V3       N5    R2  9.680 

120         M3      V3       N5    R2  9.896 

121         M1      V3       N1    R3  5.244 

122         M2      V3       N1    R3  5.584 

123         M3      V3       N1    R3  7.642 

124         M1      V3       N2    R3  7.092 

125         M2      V3       N2    R3  7.212 

126         M3      V3       N2    R3  8.714 

127         M1      V3       N3    R3  8.650 
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128         M2      V3       N3    R3  8.514 

129         M3      V3       N3    R3  9.320 

130         M1      V3       N4    R3  6.902 

131         M2      V3       N4    R3  7.778 

132         M3      V3       N4    R3  9.128 

133         M1      V3       N5    R3  8.032 

134         M2      V3       N5    R3  9.294 

135         M3      V3       N5    R3  9.712 
> str(data) 

'data.frame':   135 obs. of  5 variables: 

 $ Management: Factor w/ 3 levels "M1","M2","M3": 1 2 3 1 2 3 1 2 3 1 ... 

 $ Variety   : Factor w/ 3 levels "V1","V2","V3": 1 1 1 1 1 1 1 1 1 1 ... 

 $ Nitrogen  : Factor w/ 5 levels "N1","N2","N3",..: 1 1 1 2 2 2 3 3 3 4 ... 

 $ Block     : Factor w/ 3 levels "R1","R2","R3": 1 1 1 1 1 1 1 1 1 1 ... 

 $ yield     : num  3.32 3.77 4.66 3.19 3.62 ... 

>  

> #splitplot rcbd 

> fit <- aov(yield ~  Block + Nitrogen*Management* Variety + 

Error(Block/Nitrogen/Management),data=data) 

> summary(fit) 

 

Error: Block 

      Df Sum Sq Mean Sq 

Block  2  0.732   0.366 

 

Error: Block:Nitrogen 

          Df Sum Sq Mean Sq F value   Pr(>F)     

Nitrogen   4  61.64  15.410    27.7 9.73e-05 *** 

Residuals  8   4.45   0.556                      

--- 

Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1 ‘ ’ 1 

 

Error: Block:Nitrogen:Management 

                   Df Sum Sq Mean Sq F value  Pr(>F)     

Management          2  42.94  21.468  81.996 2.3e-10 *** 

Nitrogen:Management 8   1.10   0.138   0.527   0.823     

Residuals          20   5.24   0.262                     

--- 

Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1 ‘ ’ 1 

 

Error: Within 

                            Df Sum Sq Mean Sq F value  Pr(>F)     

Variety                      2 206.01  103.01 207.867 < 2e-16 *** 

Nitrogen:Variety             8  14.14    1.77   3.568 0.00192 **  

Management:Variety           4   3.85    0.96   1.943 0.11490     

Nitrogen:Management:Variety 16   3.70    0.23   0.467 0.95376     

Residuals                   60  29.73    0.50                     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

>  

 

Using Agricolae package resulted in the same thing. 

 
> library(agricolae) 

> attach(data) 

The following objects are masked from data (pos = 3): 

 

    Block, Variety 

 

> modelb <- ssp.plot(Block,Nitrogen,Management,Variety,yield) 

 

ANALYSIS SPLIT-SPLIT PLOT:  yield  

Class level information 

 

Nitrogen        :  N1 N2 N3 N4 N5  

Management      :  M1 M2 M3  

Variety         :  V1 V2 V3  

Block   :  R1 R2 R3  
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Number of observations:  135  

 

Analysis of Variance Table 

 

Response: yield 

                            Df  Sum Sq Mean Sq  F value    Pr(>F)     

Block                        2   0.732   0.366   0.6578  0.543910     

Nitrogen                     4  61.641  15.410  27.6953 9.734e-05 *** 

Ea                           8   4.451   0.556                        

Management                   2  42.936  21.468  81.9965 2.303e-10 *** 

Nitrogen:Management          8   1.103   0.138   0.5266  0.822648     

Eb                          20   5.236   0.262                        

Variety                      2 206.013 103.007 207.8667 < 2.2e-16 *** 

Variety:Nitrogen             8  14.145   1.768   3.5679  0.001916 **  

Variety:Management           4   3.852   0.963   1.9432  0.114899     

Variety:Nitrogen:Management 16   3.699   0.231   0.4666  0.953759     

Ec                          60  29.732   0.496                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

cv(a) = 11.4 %, cv(b) = 7.8 %, cv(c) = 10.7 %, Mean = 6.554415  

 

> 

11.5 Strip Plot Design 

Strip plot design is when each of two factors require larger experimental units to 

be tested in the same experiment. For example, factor A is applied to whole plots like 

the usual split plot designs but factor B is also applied to strips which are actually a 

new set of whole plots orthogonal to the original plots used for factor A. These designs 

are also called Split Block Designs. Figure below  is an example of strip plot design 

where factor A has four levels and factor B has three levels. 

 

Factor B 
Factor A 

A4 A2 A1 A3 

B2 A4B2 A2B2 A1B2 A3B2 

B3 A4B3 A2B3 A1B3 A3B3 

B1 A4B1 A2B1 A1B1 A3B1 

 

Precision of  the interaction effect between the two factors is higher than that of 

the main effect of either one of the 
 
two factors. In other words, the degrees of precision 

of the main effects of the two factors are sacrificed in order to improve the precision 

of the interaction effect. Experimental units for these design are the units for effects of 

factor A and B which are equal to whole plot of each factor and the experimental unit 

for interaction AB which is a subplot or the intersection of the two whole plots. So the 

model for this design is: 
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𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖+ 𝛽𝑗+ (𝜏𝛽)𝑖𝑗+ 𝛾𝑘+ (𝜏𝛾)𝑖𝑘+ (𝛽𝛾)𝑗𝑘+ 𝜀𝑖𝑗𝑘                         i = 

1,...,a;  j = 1,...,r;  k = 1,...,b 

whrere 

yijk = observation of ith level of factor A, kth level of factor B and jth replication  

μ = general mean 

βj = jth block effect  

τi = ith level of factor A effect 

γk = kth level of factor B effect 

(τγ)ik : interaction between ith level of factor A and the kth level of factor B 

(τβ)ij , (τγ)ik and εijk are the errors to be used to test Factor A, Factor B and 

interaction AB, respectively. 

 

ANOVA table for this design will be like table below. 

 

Source of variation df Sum of squares F statistik 

Replication (blocks) r – 1 SSblock  

A a – 1 SSA MSA/MSwpA 

Whole plot error A (r – 1)(a – 1) SSwpA  

B b – 1 SSB MSB/MSwpB 

Whole plot error B (r – 1)(b – 1) SSwpB  

AB (a – 1)(b – 1) SSAB MSAB/MSsp 

Sub plot error (r – 1)(a – 1)(b – 

1) 

SSsp  

Total rab – 1 SST  

 

For example, we use data of grain yield of six varieties of rice, broadcast seeded 

and grown with three nitrogen rates in a strip plot design with three replications, as 

shown in table below (Gomez and Gomez, 1984). 

Nitrogen rate (kg/ha) 
Grain yield (kg/ha) 

Rep.I Rep.II Rep.III 

 IR8 (V1) 

0 (N1) 2373 3958 4384 

60 (N2) 4076 6431 4889 

120 (N3) 7254 6808 8582 

 IR127-80 (V2) 

0 (N1) 4007 5795 5001 

60 (N2) 5630 7334 7177 

120 (N3) 7053 8284 6297 

 IR305-4-12 (V3) 

0 (N1) 2620 4508 5621 

60 (N2) 4676 6672 7019 

120 (N3) 7666 7328 8611 

 IR400-2-5 (V4) 

0 (N1) 2726 5630 3821 
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60 (N2) 4838 7007 4816 

120 (N3) 6881 7735 6667 

 IR665-58 (V5) 

0 (N1) 4447 3276 4582 

60 (N2) 5549 5340 6011 

120 (N3) 6880 5080 6076 

 Peta (V6) 

0 (N1) 2572 3724 3326 

60 (N2) 3896 2822 4425 

120 (N3) 1556 2706 3214 

 

In R: 
> data=read.csv("stripplot.csv", header=T) 

> head(data) 

  Nitrogen Variety Replication Yield 

1       N1      V1       Rep.I  2373 

2       N2      V1       Rep.I  4076 

3       N3      V1       Rep.I  7254 

4       N1      V2       Rep.I  4007 

5       N2      V2       Rep.I  5630 

6       N3      V2       Rep.I  7053 

> data 

   Nitrogen Variety Replication Yield 

1        N1      V1       Rep.I  2373 

2        N2      V1       Rep.I  4076 

3        N3      V1       Rep.I  7254 

4        N1      V2       Rep.I  4007 

5        N2      V2       Rep.I  5630 

6        N3      V2       Rep.I  7053 

7        N1      V3       Rep.I  2620 

8        N2      V3       Rep.I  4676 

9        N3      V3       Rep.I  7666 

10       N1      V4       Rep.I  2726 

11       N2      V4       Rep.I  4838 

12       N3      V4       Rep.I  6881 

13       N1      V5       Rep.I  4447 

14       N2      V5       Rep.I  5549 

15       N3      V5       Rep.I  6880 

16       N1      V6       Rep.I  2572 

17       N2      V6       Rep.I  3896 

18       N3      V6       Rep.I  1556 

19       N1      V1      Rep.II  3958 

20       N2      V1      Rep.II  6431 

21       N3      V1      Rep.II  6808 

22       N1      V2      Rep.II  5795 

23       N2      V2      Rep.II  7334 

24       N3      V2      Rep.II  8284 

25       N1      V3      Rep.II  4508 
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26       N2      V3      Rep.II  6672 

27       N3      V3      Rep.II  7328 

28       N1      V4      Rep.II  5630 

29       N2      V4      Rep.II  7007 

30       N3      V4      Rep.II  7735 

31       N1      V5      Rep.II  3276 

32       N2      V5      Rep.II  5340 

33       N3      V5      Rep.II  5080 

34       N1      V6      Rep.II  3724 

35       N2      V6      Rep.II  2822 

36       N3      V6      Rep.II  2706 

37       N1      V1     Rep.III  4384 

38       N2      V1     Rep.III  4889 

39       N3      V1     Rep.III  8582 

40       N1      V2     Rep.III  5001 

41       N2      V2     Rep.III  7177 

42       N3      V2     Rep.III  6297 

43       N1      V3     Rep.III  5621 

44       N2      V3     Rep.III  7019 

45       N3      V3     Rep.III  8611 

46       N1      V4     Rep.III  3821 

47       N2      V4     Rep.III  4816 

48       N3      V4     Rep.III  6667 

49       N1      V5     Rep.III  4582 

50       N2      V5     Rep.III  6011 

51       N3      V5     Rep.III  6076 

52       N1      V6     Rep.III  3326 

53       N2      V6     Rep.III  4425 

54       N3      V6     Rep.III  3214 

> stripplot <- aov(Yield ~ Variety * Nitrogen + 

Error(Replication + Replication:Variety + 

Replication:Nitrogen), data=data) 

> summary(stripplot) 

 

Error: Replication 

          Df  Sum Sq Mean Sq F value Pr(>F) 

Residuals  2 9220962 4610481                

 

Error: Replication:Variety 

          Df   Sum Sq  Mean Sq F value  Pr(>F)    

Variety    5 57100201 11420040   7.653 0.00337 ** 

Residuals 10 14922619  1492262                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

‘ ’ 1 

 

Error: Replication:Nitrogen 

          Df   Sum Sq  Mean Sq F value  Pr(>F)    

Nitrogen   2 50676061 25338031   34.07 0.00307 ** 
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Residuals  4  2974908   743727                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

‘ ’ 1 

 

Error: Within 

                 Df   Sum Sq Mean Sq F value   Pr(>F)     

Variety:Nitrogen 10 23877979 2387798   5.801 0.000427 *** 

Residuals        20  8232917  411646                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

‘ ’ 1 

>  

 

If using Agricolae package: 
 

> library(agricolae) 

> with(data, strip.plot(Replication, Nitrogen, Variety, 

Yield)) 

 

ANALYSIS STRIP PLOT:  Yield  

Class level information 

 

Nitrogen        :  N1 N2 N3  

Variety         :  V1 V2 V3 V4 V5 V6  

Replication     :  Rep.I Rep.II Rep.III  

 

Number of observations:  54  

 

model Y: Yield ~ Replication + Nitrogen + Ea + Variety + 

Eb + Variety:Nitrogen + Ec  

 

Analysis of Variance Table 

 

Response: Yield 

                 Df   Sum Sq  Mean Sq F value    Pr(>F)     

Replication       2  9220962  4610481 11.2001 0.0005453 *** 

Nitrogen          2 50676061 25338031 34.0690 0.0030746 **  

Ea                4  2974908   743727  1.8067 0.1671590     

Variety           5 57100201 11420040  7.6528 0.0033722 **  

Eb               10 14922619  1492262  3.6251 0.0068604 **  

Variety:Nitrogen 10 23877979  2387798  5.8006 0.0004271 *** 

Ec               20  8232917   411646                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

cv(a) = 16.3 %, cv(b) = 23.1 %, cv(c) = 12.1 %, Mean = 5289.944  

 

> 
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11.6 Strip Split Plot Design 

 

 

Strip split plot design is an extension of the strip plot design where the 

intersection plot is divided into subplots for the third factor. For example, we use grain 

yields of six rice varieties which is treated under two planting methods and three 

nitrogen rates in a strip split plot design with three replications, as shown in table below 

(Gomez and Gomez, 1984). 

 

Variety 

Grain yield (kg/ha) 

P1 (Broadcast) P2 (Transplanted) 

Rep.I Rep.II Rep.III Rep.I Rep.II Rep.III 

 N1 (0 kg N/ha) 

V1(IR8) 2373 3958 4384 2293 3528 2538 

V2((IR127-8-1-10) 4007 5795 5001 4035 4885 4583 

V3(IR305-4-12-1-3) 2620 4508 5621 4527 4866 3628 

V4(IR400-2-5-3-3-2) 2726 5630 3821 5274 6200 4038 

V5(IR665-58) 4447 3276 4582 4655 2796 3739 

V6(Peta) 2572 3724 3326 4535 5457 3537 

 N2 (60 kg N/ha) 

V1 4076 6431 4889 3085 7502 4362 

V2 5630 7334 7177 3728 7424 5377 

V3 4676 6672 7019 4946 7611 6142 

V4 4838 7007 4816 4878 6928 4829 

V5 5549 5340 6011 4646 5006 4666 

V6 3896 2822 4425 4627 4461 4774 

 N3 (120 kg N/ha) 

V1 7254 6808 8582 6661 6353 7759 

V2 7053 8284 6297 6440 7648 5736 

V3 7666 7328 8611 8632 7101 7416 

V4 6881 7735 6667 6545 9838 7253 

V5 6880 5080 6076 6995 4486 6564 

V6 1556 2706 3214 5374 7218 6369 

 

In R: 
> data=read.csv("stripsplitplot.csv", header=T) 

> head(data) 

  Method Variety Nitrogen Replication Yield 

1     MB      V1       N1       Rep.I  2373 

2     MB      V2       N1       Rep.I  4007 

3     MB      V3       N1       Rep.I  2620 

4     MB      V4       N1       Rep.I  2726 

5     MB      V5       N1       Rep.I  4447 
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6     MB      V6       N1       Rep.I  2572 

> data 

    Method Variety Nitrogen Replication Yield 

1       MB      V1       N1       Rep.I  2373 

2       MB      V2       N1       Rep.I  4007 

3       MB      V3       N1       Rep.I  2620 

4       MB      V4       N1       Rep.I  2726 

5       MB      V5       N1       Rep.I  4447 

6       MB      V6       N1       Rep.I  2572 

7       MB      V1       N2       Rep.I  4076 

8       MB      V2       N2       Rep.I  5630 

9       MB      V3       N2       Rep.I  4676 

10      MB      V4       N2       Rep.I  4838 

11      MB      V5       N2       Rep.I  5549 

12      MB      V6       N2       Rep.I  3896 

13      MB      V1       N3       Rep.I  7254 

14      MB      V2       N3       Rep.I  7053 

15      MB      V3       N3       Rep.I  7666 

16      MB      V4       N3       Rep.I  6881 

17      MB      V5       N3       Rep.I  6880 

18      MB      V6       N3       Rep.I  1556 

19      MB      V1       N1      Rep.II  3958 

20      MB      V2       N1      Rep.II  5795 

21      MB      V3       N1      Rep.II  4508 

22      MB      V4       N1      Rep.II  5630 

23      MB      V5       N1      Rep.II  3276 

24      MB      V6       N1      Rep.II  3724 

25      MB      V1       N2      Rep.II  6431 

26      MB      V2       N2      Rep.II  7334 

27      MB      V3       N2      Rep.II  6672 

28      MB      V4       N2      Rep.II  7007 

29      MB      V5       N2      Rep.II  5340 

30      MB      V6       N2      Rep.II  2822 

31      MB      V1       N3      Rep.II  6808 

32      MB      V2       N3      Rep.II  8284 

33      MB      V3       N3      Rep.II  7328 

34      MB      V4       N3      Rep.II  7735 

35      MB      V5       N3      Rep.II  5080 

36      MB      V6       N3      Rep.II  2706 

37      MB      V1       N1     Rep.III  4384 

38      MB      V2       N1     Rep.III  5001 

39      MB      V3       N1     Rep.III  5621 

40      MB      V4       N1     Rep.III  3821 

41      MB      V5       N1     Rep.III  4582 

42      MB      V6       N1     Rep.III  3326 

43      MB      V1       N2     Rep.III  4889 

44      MB      V2       N2     Rep.III  7177 

45      MB      V3       N2     Rep.III  7019 

46      MB      V4       N2     Rep.III  4816 
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47      MB      V5       N2     Rep.III  6011 

48      MB      V6       N2     Rep.III  4425 

49      MB      V1       N3     Rep.III  8582 

50      MB      V2       N3     Rep.III  6297 

51      MB      V3       N3     Rep.III  8611 

52      MB      V4       N3     Rep.III  6667 

53      MB      V5       N3     Rep.III  6076 

54      MB      V6       N3     Rep.III  3214 

55      MT      V1       N1       Rep.I  2293 

56      MT      V2       N1       Rep.I  4035 

57      MT      V3       N1       Rep.I  4527 

58      MT      V4       N1       Rep.I  5274 

59      MT      V5       N1       Rep.I  4655 

60      MT      V6       N1       Rep.I  4535 

61      MT      V1       N2       Rep.I  3085 

62      MT      V2       N2       Rep.I  3728 

63      MT      V3       N2       Rep.I  4946 

64      MT      V4       N2       Rep.I  4878 

65      MT      V5       N2       Rep.I  4646 

66      MT      V6       N2       Rep.I  4627 

67      MT      V1       N3       Rep.I  6661 

68      MT      V2       N3       Rep.I  6440 

69      MT      V3       N3       Rep.I  8632 

70      MT      V4       N3       Rep.I  6545 

71      MT      V5       N3       Rep.I  6995 

72      MT      V6       N3       Rep.I  5374 

73      MT      V1       N1      Rep.II  3528 

74      MT      V2       N1      Rep.II  4885 

75      MT      V3       N1      Rep.II  4866 

76      MT      V4       N1      Rep.II  6200 

77      MT      V5       N1      Rep.II  2796 

78      MT      V6       N1      Rep.II  5457 

79      MT      V1       N2      Rep.II  7502 

80      MT      V2       N2      Rep.II  7424 

81      MT      V3       N2      Rep.II  7611 

82      MT      V4       N2      Rep.II  6928 

83      MT      V5       N2      Rep.II  5006 

84      MT      V6       N2      Rep.II  4461 

85      MT      V1       N3      Rep.II  6353 

86      MT      V2       N3      Rep.II  7648 

87      MT      V3       N3      Rep.II  7101 

88      MT      V4       N3      Rep.II  9838 

89      MT      V5       N3      Rep.II  4486 

90      MT      V6       N3      Rep.II  7218 

91      MT      V1       N1     Rep.III  2538 

92      MT      V2       N1     Rep.III  4583 

93      MT      V3       N1     Rep.III  3628 

94      MT      V4       N1     Rep.III  4038 

95      MT      V5       N1     Rep.III  3739 
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96      MT      V6       N1     Rep.III  3537 

97      MT      V1       N2     Rep.III  4362 

98      MT      V2       N2     Rep.III  5377 

99      MT      V3       N2     Rep.III  6142 

100     MT      V4       N2     Rep.III  4829 

101     MT      V5       N2     Rep.III  4666 

102     MT      V6       N2     Rep.III  4774 

103     MT      V1       N3     Rep.III  7759 

104     MT      V2       N3     Rep.III  5736 

105     MT      V3       N3     Rep.III  7416 

106     MT      V4       N3     Rep.III  7253 

107     MT      V5       N3     Rep.III  6564 

108     MT      V6       N3     Rep.III  6369 

> stripsplitplot <- aov(Yield ~ Method*Variety * Nitrogen 

+ Error(Replication +  

+    Replication:Variety + Replication:Nitrogen + 

Replication:Nitrogen:Variety), 

+    data=data) 

> summary(stripsplitplot) 

 
Error: Replication 

          Df   Sum Sq Mean Sq F value Pr(>F) 

Residuals  2 15289498 7644749                

 

Error: Replication:Variety 

          Df   Sum Sq Mean Sq F value Pr(>F)   

Variety    5 49119270 9823854   3.676 0.0379 * 

Residuals 10 26721828 2672183                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Error: Replication:Nitrogen 

          Df    Sum Sq  Mean Sq F value  Pr(>F)    

Nitrogen   2 116489166 58244583   36.62 0.00268 ** 

Residuals  4   6361491  1590373                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Error: Replication:Variety:Nitrogen 

                 Df   Sum Sq Mean Sq F value Pr(>F)   

Variety:Nitrogen 10 24595731 2459573   2.575 0.0344 * 

Residuals        20 19106733  955337                  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Error: Within 

                        Df   Sum Sq Mean Sq F value   Pr(>F)     

Method                   1   723079  723079   1.715   0.1986     

Method:Variety           5 23761441 4752288  11.271 1.37e-06 *** 

Method:Nitrogen          2  2468132 1234066   2.927   0.0664 .   

Method:Variety:Nitrogen 10  7512072  751207   1.782   0.1000 .   

Residuals               36 15179354  421649                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> 
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XII. NESTED DESIGN 

 

12.1 Introduction 

Nested design which is also known as hierarchical design is used for experiments 

in which there is an interest in a set of treatments and the experimental units are sub-

sampled. In other words, nested design is that levels of one factor is a subset of a level 

of another factor. For example, a researcher want to investigate the effect of different 

bulls and cows on birth weight of their calves. In this research, each of several bulls 

mated with several cows generated some calves. So, in this case several calves are 

nested to a cow and several cows are nested to a bull. Other example, four different 

seedlings have been sampled from four different flowers in three different fields A, B 

and C, where seedlings are nested to a flower and flowers are nested to a field. 

Nested design is common in genetics, systematics, and evolutionary studies 

where it is important to keep track of each plant or animal obtained from specific 

populations, lines, or parentage. Furthermore, each parent and each offspring is given 

a unique identity because it is not replicated across a treatment. 

 

12.2 Nested Design with Two Factors 

For example, consider four bulls breed are levels of factor A, and three levels of 

factor B are different cows mated to those bulls. The cows are a random sample within 

the bulls. Birth weight of their offspring (three calves each) was measured where these 

calves represent random samples within the cows. Relationship among the cows is 

ignored and the cows bred by different bulls are independent, and also the offspring of 

different cows and bulls are independent of each other. The scheme of this nested 

design is follows. 

Bull  A B C D 

Cow 1 2 3 4 5 6 7 8 9 10 11 12 

Calf 1 4 7 10 13 16 19 22 25 28 31 34 

2 5 8 11 14 17 20 23 26 29 32 35 

3 6 9 12 15 18 21 24 27 30 33 36 

 

The model for this nested design is: 

yijk = μ + Ai + B(A)ij + εijk     i = 1,...,a;   j = 1,...,b;   k = 1,...,n 

where: 
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yijk = observation k in level i of factor A and level j of factor B 

μ = overall mean 

Ai = effect of level i of factor A (bull) 

B(A)ij = effect of level j of factor B (cow) within level i of factor A 

εijk = random error 

a = number of levels of A (bull) 

b = the number of levels of B (cow) 

n = the number of observations per level of B 

 

Similarly to the other designs, the total sum of squares can be partitioned into 

the sums of squares of each source of variability. They are the sum of squares for factor 

A, the sum of squares for factor B within factor A, and the sum of squares within B (the 

residual sum of squares): 

SST = SSA + SSB(A) + SS within B 

The corresponding degrees of freedom are: 

(abn-1) = (a-1) + a(b-1) + ab(n-1) 

The sums of squares are: 

where  

SST = ∑ ∑ ∑ (𝑦𝑖𝑗𝑘 − 𝑦̅. . . )2

𝑘𝑗𝑖
 

SSA = ∑ ∑ ∑ (𝑦̅𝑖. . − 𝑦̅. . . )2

𝑘𝑗𝑖
 

SSB(A) = ∑ ∑ ∑ (𝑦̅𝑖𝑗. − 𝑦̅𝑖. . )2

𝑘𝑗𝑖
 

SS within B = ∑ ∑ ∑ (𝑦̅𝑖𝑗𝑘 − 𝑦̅𝑖𝑗. )2

𝑘𝑗𝑖
 

Sums of squares above can be calculated using computation below. 

CF =
(∑ ∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗𝑖 )

2

𝑎. 𝑏. 𝑛
 

SST = ∑ ∑ ∑ (𝑦𝑖𝑗𝑘)2

𝑘𝑗𝑖
 − 𝐶𝐹 



130 
 

SSA = ∑
(∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗 )

2

𝑛. 𝑏𝑖
 −  𝐶𝐹 

SSB(A) = ∑ ∑
(∑ 𝑦𝑖𝑗𝑘𝑘 )2

𝑛𝑗𝑖
 −  𝑆𝑆𝐴 −  𝐶𝐹 

SS 𝑤𝑖𝑡ℎ𝑖𝑛 𝐵 = 𝑆𝑆𝐸 = 𝑆𝑆𝑇 −  𝑆𝑆𝐴 −  𝑆𝑆𝐵(𝐴) 

Mean squares (MS) and the ANOVA table is: 

Source of variation SS df MS = SS/df 

A SSA a – 1 MSA 

B within A SSB(A) a(b – 1) MSB(A) 

Within B SS within B ab(n – 1) MS within B 

Total SST abn – 1  

 

The effect “Within B” is residual. Expectations of mean squares, E(MS), can be seen 

in the following table. 

E(MS) Variance component 

E(MSA) 𝜎2 +  𝑛𝜎2𝐵 + 𝑛𝑏𝜎2𝐴 

E(MSB(A)) 𝜎2 + 𝑛𝜎2𝐵 

E(MS within B) 𝜎2 

 

F statistic for the effect of factor A is: 

F =
𝑀𝑆𝐴

𝑀𝑆𝐵(𝐴)
 

F statistic for the effect of factor B is: 

F =
𝑀𝑆𝐵(𝐴)

𝑀𝑆 𝑤𝑖𝑡ℎ𝑖𝑛 𝐵
 

 

For example, forest geneticists want to know whether the origin of trees 

(different forests) affects growth (tree height). The researcher collected 5 seeds from 

3 superior trees from 5 types of forest. The seeds are germinated in a greenhouse and 

the seedlings are measured for height growth. Data from measurements of tree height 

are presented in the following table. 
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Tree 
Forest 

A B C D E 

1 15.9 18.6 12.4 19.5 16.1 

 15.7 18.1 13.1 17.6 15.8 

 16.1 18.5 12.8 19.2 16.2 

2 14.0 18.0 14.1 18.8 15.9 

 14.3 18.1 13.2 19.1 15.7 

 13.6 17.5 13.6 18.9 16.4 

3 14.0 17.9 13.2 18.3 15.9 

 15.2 18.8 14.4 17.9 16.7 

 15.8 18.3 12.9 19.4 15.7 

 

Table above can be arranged as table below. 

Forest Tree Height Sum for Forest Sum for Tree Total 

A T1 15.9 134.6 47.7 731.2 

A T1 15.7    

A T1 16.1    

A T2 14  41.9  
A T2 14.3    

A T2 13.6    

A T3 14  45  
A T3 15.2    

A T3 15.8    

B T1 18.6 163.8 55.2  
B T1 18.1    

B T1 18.5    

B T2 18  53.6  
B T2 18.1    

B T2 17.5    

B T3 17.9  55  
B T3 18.8    

B T3 18.3    

C T1 12.4 119.7 38.3  
C T1 13.1    

C T1 12.8    

C T2 14.1  40.9  
C T2 13.2    

C T2 13.6    

C T3 13.2  40.5  
C T3 14.4    
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C T3 12.9    

D T1 19.5 168.7 56.3  
D T1 17.6    

D T1 19.2    

D T2 18.8  56.8  
D T2 19.1    

D T2 18.9    

D T3 18.3  55.6  
D T3 17.9    

D T3 19.4    

E T1 16.1 144.4 48.1  
E T1 15.8    

E T1 16.2    

E T2 15.9  48  
E T2 15.7    

E T2 16.4    

E T3 15.9  48.3  
E T3 16.7    

E T3 15.7    

 

CF =
(∑ ∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗𝑖 )

2

𝑎. 𝑏. 𝑛
=

731.22

5.3.3
= 11881.19 

SST = ∑ ∑ ∑ (𝑦𝑖𝑗𝑘)2

𝑘𝑗𝑖
 − 𝐶𝐹 = (15.92+. . . +15.72) − 𝐶𝐹

= 200.6124 

SSA = ∑
(∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗 )

2

𝑛. 𝑏𝑖
 −  𝐶𝐹 =

(134.62+. . . +144.42)

3.3
− 𝐶𝐹

= 184.0058 

SSB(A) = ∑ ∑
(∑ 𝑦𝑖𝑗𝑘𝑘 )2

𝑛𝑗𝑖
 −  𝑆𝑆𝐴 −  𝐶𝐹

=
(47.72+. . . 48.32)

3
− 𝑆𝑆𝐴 − 𝐶𝐹 = 7.686667 

SS 𝑤𝑖𝑡ℎ𝑖𝑛 𝐵 = 𝑆𝑆𝐸 = 𝑆𝑆𝑇 −  𝑆𝑆𝐴 −  𝑆𝑆𝐵(𝐴)=8.92 

 

In R: 
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> data=read.csv("nested2stagesForest.csv", header=TRUE) 

> data 

   Forest Tree Height 

1       A   T1   15.9 

2       A   T1   15.7 

3       A   T1   16.1 

4       A   T2   14.0 

5       A   T2   14.3 

6       A   T2   13.6 

7       A   T3   14.0 

8       A   T3   15.2 

9       A   T3   15.8 

10      B   T4   18.6 

11      B   T4   18.1 

12      B   T4   18.5 

13      B   T5   18.0 

14      B   T5   18.1 

15      B   T5   17.5 

16      B   T6   17.9 

17      B   T6   18.8 

18      B   T6   18.3 

19      C   T7   12.4 

20      C   T7   13.1 

21      C   T7   12.8 

22      C   T8   14.1 

23      C   T8   13.2 

24      C   T8   13.6 

25      C   T9   13.2 

26      C   T9   14.4 

27      C   T9   12.9 

28      D  T10   19.5 

29      D  T10   17.6 

30      D  T10   19.2 

31      D  T11   18.8 

32      D  T11   19.1 

33      D  T11   18.9 

34      D  T12   18.3 

35      D  T12   17.9 

36      D  T12   19.4 

37      E  T13   16.1 

38      E  T13   15.8 

39      E  T13   16.2 

40      E  T14   15.9 

41      E  T14   15.7 

42      E  T14   16.4 

43      E  T15   15.9 

44      E  T15   16.7 
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45      E  T15   15.7 
> str(data) 

'data.frame':   45 obs. of  3 variables: 

 $ Forest: Factor w/ 5 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 2 ... 

 $ Tree  : Factor w/ 15 levels "T1","T10","T11",..: 1 1 1 8 8 8 9 9 9 10 ... 

 $ Height: num  15.9 15.7 16.1 14 14.3 13.6 14 15.2 15.8 18.6 ... 

 

> nested=aov(Height~Forest/Tree, data=data) 

> summary(nested) 

            Df Sum Sq Mean Sq F value Pr(>F)     

Forest       4 184.01   46.00 154.713 <2e-16 *** 

Forest:Tree 10   7.69    0.77   2.585 0.0216 *   

Residuals   30   8.92    0.30                    

--- 

Signif. codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘ ’ 1 

 

Expectations of mean squares, E(MS), can be seen in the following table. 

Source E(MS) Variance component 

Forest 𝜎2 +  𝑛𝜎2𝑇𝑟𝑒𝑒 + 𝑛𝑏𝜎2𝐹𝑜𝑟𝑒𝑠𝑡 46 = 0.3 + 3(0.1567) + 9𝜎2𝐹𝑜𝑟𝑒𝑠𝑡 

𝜎2𝐹𝑜𝑟𝑒𝑠𝑡 = 5.025556 

Tree within Forest 𝜎2 + 𝑛𝜎2𝑇𝑟𝑒𝑒 0.77=0.3+3𝜎2𝑇𝑟𝑒𝑒 

𝜎2𝑇𝑟𝑒𝑒 = 0.1567 

Seed within Tree 𝜎2 𝜎2𝑠𝑒𝑒𝑑 =  0.30 

Note: Forest (a) = 5; Tree (b) = 3; Seed (n) = 3 

 

> library(agricolae) 

> duncan.test(model, "Forest", console=TRUE) 

 

Study: model ~ "Forest" 

 

Duncan's new multiple range test for Height  

 

Mean Square Error:  0.2973333  

 

Forest,  means 

 

     Height     std  r   Min   Max 

A  14.95556  0.9761034 9  13.6  16.1 

B  18.20000  0.3968627 9  17.5  18.8 

C  13.30000  0.6344289 9  12.4  14.4 

D  18.74444  0.6691620 9  17.6  19.5 

E  16.04444  0.3395258 9  15.7  16.7 

 

Alpha: 0.05 ; DF Error: 30  

 

Critical Range 

        2         3         4         5  

0.5249636 0.5516830 0.5690037 0.5813668  
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Means with the same letter are not significantly 

different. 

 

    Height   groups 

D 18.74444      a 

B 18.20000      a 

E 16.04444      b 

A 14.95556      c 

C 13.30000      d 

> 

 

12.3 Nested Design with Three Factors 

Consider an experiment was conducted to study the hardness of a metal alloy. A 

three-stage nested design was conducted that included two alloy chemistry 

compositions, three ovens for each alloy chemistry composition (6 ovens were used), 

four ingot molds were used to produce alloy ingots for each of the six combinations of 

alloy chemistry composition and oven (24 molds were used), and three ingots were 

produced from each of the 24 molds. Molds can only be used once. The experimental 

data in the table below contains alloy hardness measurements (Anonymous, 2019). 

 

Alloy 

chemestry 1 

Oven 1 2 3 

Mold 1 2 3 4 1 2 3 4 1 2 3 4 

Hardness 

42.5 43.1 37 50.7 61.6 58.8 61.9 53.9 58 53.8 59.5 55.9 

46.5 48.1 39 53.7 59.6 62.8 60.9 59.9 59 50.8 57.5 46.9 

44.5 40.1 43 47.7 61.6 57.8 52.9 57.9 61 53.8 55.5 51.9 

             
Alloy 

chemestry 2 

Oven 1 2 3 

Mold 1 2 3 4 1 2 3 4 1 2 3 4 

Hardness 

39.5 37.8 45 37.8 59 63.9 63.8 58 56.7 50.8 52.7 45.7 

35.5 38.8 38 38.8 59 61.9 65.8 60 50.7 50.8 56.7 47.7 

37.5 41.8 42 41.8 60 59.9 59.8 62 52.7 58.8 57.7 49.7 

 

In R: 

> data=read.csv("nested3stagesAlloy.csv", header=TRUE) 

> data 

   Alloy Oven Mold Hardness 

1     A1   O1   M1     42.5 

2     A1   O1   M2     43.1 
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3     A1   O1   M3     37.0 

4     A1   O1   M4     50.7 

5     A1   O2   M1     61.6 

6     A1   O2   M2     58.8 

7     A1   O2   M3     61.9 

8     A1   O2   M4     53.9 

9     A1   O3   M1     58.0 

10    A1   O3   M2     53.8 

11    A1   O3   M3     59.5 

12    A1   O3   M4     55.9 

13    A1   O1   M1     46.5 

14    A1   O1   M2     48.1 

15    A1   O1   M3     39.0 

16    A1   O1   M4     53.7 

17    A1   O2   M1     59.6 

18    A1   O2   M2     62.8 

19    A1   O2   M3     60.9 

20    A1   O2   M4     59.9 

21    A1   O3   M1     59.0 

22    A1   O3   M2     50.8 

23    A1   O3   M3     57.5 

24    A1   O3   M4     46.9 

25    A1   O1   M1     44.5 

26    A1   O1   M2     40.1 

27    A1   O1   M3     43.0 

28    A1   O1   M4     47.7 

29    A1   O2   M1     61.6 

30    A1   O2   M2     57.8 

31    A1   O2   M3     52.9 

32    A1   O2   M4     57.9 

33    A1   O3   M1     61.0 

34    A1   O3   M2     53.8 

35    A1   O3   M3     55.5 

36    A1   O3   M4     51.9 

37    A2   O1   M1     39.5 

38    A2   O1   M2     37.8 

39    A2   O1   M3     45.0 

40    A2   O1   M4     37.8 

41    A2   O2   M1     59.0 

42    A2   O2   M2     63.9 

43    A2   O2   M3     63.8 

44    A2   O2   M4     58.0 

45    A2   O3   M1     56.7 

46    A2   O3   M2     50.8 

47    A2   O3   M3     52.7 

48    A2   O3   M4     45.7 

49    A2   O1   M1     35.5 

50    A2   O1   M2     38.8 

51    A2   O1   M3     38.0 
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52    A2   O1   M4     38.8 

53    A2   O2   M1     59.0 

54    A2   O2   M2     61.9 

55    A2   O2   M3     65.8 

56    A2   O2   M4     60.0 

57    A2   O3   M1     50.7 

58    A2   O3   M2     50.8 

59    A2   O3   M3     56.7 

60    A2   O3   M4     47.7 

61    A2   O1   M1     37.5 

62    A2   O1   M2     41.8 

63    A2   O1   M3     42.0 

64    A2   O1   M4     41.8 

65    A2   O2   M1     60.0 

66    A2   O2   M2     59.9 

67    A2   O2   M3     59.8 

68    A2   O2   M4     62.0 

69    A2   O3   M1     52.7 

70    A2   O3   M2     58.8 

71    A2   O3   M3     57.7 

72    A2   O3   M4     49.7 
> str(data) 

'data.frame':   72 obs. of  4 variables: 

 $ Alloy   : Factor w/ 2 levels "A1","A2": 1 1 1 1 1 1 1 1 1 1 ... 

 $ Oven    : Factor w/ 3 levels "O1","O2","O3": 1 1 1 1 2 2 2 2 3 3 ... 

 $ Mold    : Factor w/ 4 levels "M1","M2","M3",..: 1 2 3 4 1 2 3 4 1 2 ... 

 $ Hardness: num  42.5 43.1 37 50.7 61.6 58.8 61.9 53.9 58 53.8 ... 

> nested3=aov(Hardness~Alloy/Oven/Mold, data=data) 

> summary(nested3) 

                Df Sum Sq Mean Sq F value   Pr(>F)     

Alloy            1     70    70.0   8.632 0.005063 **  

Alloy:Oven       4   4181  1045.3 128.869  < 2e-16 *** 

Alloy:Oven:Mold 18    492    27.3   3.368 0.000401 *** 

Residuals       48    389     8.1                      

--- 

Signif. codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’ 0.1 ‘ ’ 1 

> 

Expectations of mean squares, E(MS), can be seen in the following table. 

Source E(MS) Variance component 

Alloy 𝜎2 +  𝑛𝜎2𝑀𝑜𝑙𝑑 + 𝑛𝑐𝜎2𝑂𝑣𝑒𝑛 + 𝑛𝑏𝑐𝜎2𝐴𝑙𝑙𝑜𝑦 𝜎2𝐴𝑙𝑙𝑜𝑦 = 

Oven within Alloy 𝜎2 +  𝑛𝜎2𝑀𝑜𝑙𝑑 + 𝑛𝑐𝜎2𝑂𝑣𝑒𝑛 𝜎2𝑂𝑣𝑒𝑛 = 84.63 

Mold within Oven 𝜎2 + 𝑛𝜎2𝑀𝑜𝑙𝑑 𝜎2𝑀𝑜𝑙𝑑 = 6.4 

Within metal 𝜎2 𝜎2𝑀𝑒𝑡𝑎𝑙 =  8.1 

Note: Alloy (a) = 2; Oven (b) = 3; Mold (n) = 4; Metal = 3 
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XIII. ANALYSIS OF COVARIANCE (ANCOVA) 
 

13.1 Introduction 

Basically analysis of covariance (ANCOVA) is a combination of regression and 

variance analysis. This includes measuring the other variables besides the response 

variable, which is to be observed from the experimental material. The other variable 

mentioned is covariable (accompanying variable = concomitant variable), which has a 

very close relationship with the response variable, and even determines it. Observation 

of the covariables is intended to help reduce experimental errors, through adjustments, 

namely by eliminating the influence of variations caused by the covariable. The results 

of observations of the response variable, adjusted for the results of observations of 

covariables (which may vary), to obtain a higher accuracy analysis results. 

For example, an experiment is designed to test the effects of three diets on 

yearling weight of cattle. Different initial weight, different age or maybe different 

parity at the beginning of the experiment will affect the precision of the experiment. 

Thus, to increase the precision of analysis, it is important to adjust yearling weights 

for differences in initial weight or initial age or parity. In this case initial weight or age 

or parity can be defined as a covariate in the model. 

 

13.2 Analysis of Covariance Using Completely Randomized Design 

Analysis of covariance with completely randomized design is intended for 

correcting treatment means, controlling the experimental error and increasing 

precision. The ANCOVA model is: 

yij = β0 + β1xij + τi + εij           i = 1,..,a;     j = 1,...,n 

where: 

yij = observation j in treatment i 

β0 = intercept 

β1 = coefficient of regression 

xij = a continuous independent variable with mean μx (covariate) 

τi = fixed effect of treatment i 

εij = random error 
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For example, an experiment investigating the gain of bull fattened using four 

different diets for four months was conducted using a completely randomized design. 

Initial weight (kg) of the bull was recorded, but not used in the assignment of animals 

to the diets. Body weight gain (kg) at the end of the experiment were measured, as 

presented in the table below. 

Diet A Diet B Diet C Diet D 

Initial weight Gain Initial weight Gain Initial weight Gain Initial weight Gain 

330 115.2 370 117.6 380 117.6 400 118.8 

380 118.8 320 112.8 300 111.6 320 112.8 

340 116.4 390 116.4 310 110.4 330 111.6 

330 116.4 410 117.6 370 118.8 390 120.0 

320 115.2 370 116.4 400 118.8 420 120.0 

 

In R: 

> dat=read.csv("ancovaCRD12.csv", header=TRUE) 

> dat 

   Treatment InitialWeight  Gain 

1      DietA           330 115.2 

2      DietA           380 118.8 

3      DietA           340 116.4 

4      DietA           330 116.4 

5      DietA           320 115.2 

6      DietB           370 117.6 

7      DietB           320 112.8 

8      DietB           390 116.4 

9      DietB           410 117.6 

10     DietB           370 116.4 

11     DietC           380 117.6 

12     DietC           300 111.6 

13     DietC           310 110.4 

14     DietC           370 118.8 

15     DietC           400 118.8 

16     DietD           400 118.8 

17     DietD           320 112.8 

18     DietD           330 111.6 

19     DietD           390 120.0 

20     DietD           420 120.0 
> str(dat) 

'data.frame':   20 obs. of  3 variables: 

 $ Treatment    : Factor w/ 4 levels "DietA","DietB",..: 1 1 1 1 1 2 2 2 2 2 ... 

 $ InitialWeight: int  330 380 340 330 320 370 320 390 410 370 ... 

 $ Gain         : num  115 119 116 116 115 ... 

>##Note: COVARIATE (initial weight) needs to be a continuous numeric variable 
 

> #without initial weight 

> ancova=lm(Gain~Treatment, data=dat) 

> anova(ancova) 
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Analysis of Variance Table 

 

Response: Gain 

          Df  Sum Sq Mean Sq F value Pr(>F) 

Treatment  3   4.032   1.344  0.1353 0.9376 

Residuals 16 158.976   9.936                

 

> #initial weight included 

> ancova=lm(Gain~InitialWeight+Treatment, data=dat) 

> anova(ancova) 

Analysis of Variance Table 

 

Response: Gain 

              Df  Sum Sq Mean Sq F value    Pr(>F)     

InitialWeight  1 121.459 121.459 80.7455 2.001e-07 *** 

Treatment      3  18.985   6.328  4.2071   0.02398 *   

Residuals     15  22.563   1.504                       

--- 

Signif. codes: 0‘***’0.001‘**’0.01‘*’0.05 ‘.’ 0.1 ‘ ’ 1 

 

>#Using aov is the same thing 

> fit=aov(Gain~InitialWeight+Treatment, data=dat) 

> summary(fit) 

              Df Sum Sq Mean Sq F value Pr(>F)     

InitialWeight  1 121.46  121.46  80.746  2e-07 *** 

Treatment      3  18.99    6.33   4.207  0.024 *   

Residuals     15  22.56    1.50                    

--- 

Signif. codes: 0‘***’0.001‘**’0.01‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Based on two analysis above it can be seen that the first model (without initial 

weight) was not correct (the effect of treatment is not significant). When initial 

weights is included in the model a significant difference between treatments was 

found. 

 

13.3 Analysis of Covariance using Randomized Completely Block Design 

 

The model for the analysis of covariance for two-way classified data with k 

treatments in r blocks of the randomized block design. The ANCOVA model is: 

yij = β0 + β1xijk + τi + bj + εijk           i = 1,..,a;     j = 1,...,b;  kj = 1,...,n 

where: 

yijk = observation k in treatment i in block j 
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β0 = intercept 

β1 = coefficient of regression 

xijk = a continuous independent variable with mean μx (covariate) 

τi = fixed effect of treatment i 

bj = fixed effect of block j 

εijk = random error 

 

For example, an experiment is conducted to investigate four types of treatment 

in the form of milk replacer substitutes: A, B, C, and D, which are tested on the calf of 

FH cattle of the same age. Experiments were carried out with RCBD and each with 5 

replications. The Response variable observed was body weight gain after the 

experiment was completed (Y). Because the initial body weight varies, an observation 

is also made on the initial weight of each calf (X), as a covariable. The data from the 

observation of the two variables are as follows. 

 

Table. Body weight gain (Y) and initial body weight of calf treated with four different 

types of milk replacer 

Milk 

Replacer 
Variable 

Block 

I II III IV V 

A 
X 44 47 45 44 44 

Y 87 87 90 88 85 

B 
X 36 39 31 33 36 

Y 57 77 45 43 45 

C 
X 41 46 41 34 37 

Y 59 52 57 35 44 

D 
X 35 30 37 31 33 

Y 37 36 46 26 36 

 

> data <- read.csv('anacova.csv', header=T) 

> data 

   MilkReplacer Block BirthWeight Gain 

1             A     I          44   87 

2             A    II          47   87 

3             A   III          45   90 

4             A    IV          44   88 

5             A     V          44   85 

6             B     I          36   57 

7             B    II          39   77 

8             B   III          31   45 

9             B    IV          33   43 
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10            B     V          36   45 

11            C     I          41   59 

12            C    II          46   52 

13            C   III          41   57 

14            C    IV          34   35 

15            C     V          37   44 

16            D     I          35   37 

17            D    II          30   36 

18            D   III          37   46 

19            D    IV          31   26 

20            D     V          33   36 
> str(data) 

'data.frame':   20 obs. of  4 variables: 

 $ MilkReplacer: Factor w/ 4 levels "A","B","C","D": 1 1 1 1 1 2 2 2 2 2 ... 

 $ Block       : Factor w/ 5 levels "I","II","III",..: 1 2 3 4 5 1 2 3 4 5 ... 

 $ BirthWeight : int  44 47 45 44 44 36 39 31 33 36 ... 

 $ Gain        : int  87 87 90 88 85 57 77 45 43 45 ... 

 

> ##Without covariate (Birth weight) 

> fit1 <- aov(Gain ~ Block + MilkReplacer, data=data) 

> summary(fit1) 

             Df Sum Sq Mean Sq F value   Pr(>F)     

Block         4    607   151.7   2.221    0.128     

MilkReplacer  3   7134  2378.1  34.819 3.35e-06 *** 

Residuals    12    820    68.3                      

--- 

Signif. codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’ 0.1 ‘ ’ 1 

 

> ##With covariate (Birth weight) 

> fit2 <- aov(Gain ~ BirthWeight + Block + MilkReplacer, 

data=data) 

> summary(fit2) 

             Df Sum Sq Mean Sq F value   Pr(>F)     

BirthWeight   1   6116    6116 119.973 2.96e-07 *** 

Block         4     36       9   0.175 0.946701     

MilkReplacer  3   1848     616  12.081 0.000835 *** 

Residuals    11    561      51                      

--- 

Signif. codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’ 0.1 ‘ ’ 1 

> 

> fit3 <- aov(Gain ~ Block + BirthWeight + MilkReplacer, 

data=data) 

> summary(fit3) 

             Df Sum Sq Mean Sq F value   Pr(>F)     

Block         4    607     152   2.976 0.068350 .   

BirthWeight   1   5545    5545 108.770 4.85e-07 *** 

MilkReplacer  3   1848     616  12.081 0.000835 *** 

Residuals    11    561      51                      

--- 

Signif. codes: 0‘***’0.001‘**’0.01‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> 



143 
 

Based on ANCOVA result it can be concluded that initial weight (birth weight) 

affected body weight gain and increase the precision of the analysis by reducing 

residual. Furhermore, different milk replacer influence body weight gain.  
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XIV. REPEATED MEASURES DESIGN 
 

14.1 Introduction 

Repeated measures design is usually used to compare the treatment response 

which is measured repeatedly on each subject, for example, milk yield measured 

during lactation, growth of animal or plant measured over some period or hormone 

concentrations in blood measured several times and soon. Experimental unit which is 

measured repeatedly is known subject. In crossover design, an experimental unit is 

assigned to different treatment, but in repeated measure design an experimental unit 

receives the same treatment over time. 

Analysis for repeated measures experiment is similar to split plot experiments in 

which there are two sources of error. In repeated measures design, treatments are 

compared to the less precise subject to subject error whilst trends over time between 

treatments are compared to the more precise within subject experimental error. 

  

14.2 Model in Repeated Measures (One Way ANOVA) 

Analysis for the repeated measures design is similar to a split-plot design with 

whole-plots to be subjects (for example animal) and sub-plots are different observation 

times on each subject. For example, several dairy cows were randomized to treatment 

diets, so the diets are the whole-plot treatments, while weekly measurements and the 

interaction between diets and weekly measurements are the sub-plot treatments. 

Assumption for this  analysis is that variance and covariance between measures is 

equal, independent and normally distributed. For example, suppose an experiment 

assign a treatments and b animals for each treatment which each animal is measured 

in n periods, the model is: 

yijk = μ + τi + δij + tk +(τ*t)ik + εijk        i = 1,...,a;   j = 1,...,b;   k = 1,...,n 

where: 

yijk = observation ijk 

μ = overall mean 

τi = effect of treatment i 

tk = effect of period k 

(τ*t)ik = the effect of interaction between treatment i and period k 
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δij = random error, the variance between animals (subjects) within treatment 

and it is equal to the covariance between repeated measurements within 

animals 

εijk = random error, the variance between measurements within animals 

a = number of treatments 

b = number of subjects (animals) 

n = number of periods 

 

14.3 Simple Repeated Measures (One Within Subject Variable)  

The simplest repeated measure is when measurement is within subject only. In 

this case a researcher just want to investigate if there is change between measurement 

over the period. For example, protein sample of the milk was measured weekly from 

ten cows. 

Cow 
Week 

1 2 3 4 

1 3.63 3.57 3.47 3.65 

2 3.24 3.25 3.29 3.09 

3 3.98 3.6 3.43 3.3 

4 3.66 3.5 3.05 2.9 

5 4.34 3.76 3.68 3.51 

6 4.36 3.71 3.42 3.95 

7 4.17 3.6 3.52 3.1 

8 4.4 3.86 3.56 3.32 

9 3.4 3.42 3.51 3.39 

10 3.75 3.89 3.65 3.42 

 

In R: 

> data=read.csv("repeated1.csv", header=T) 

> data 

   Cow Week Protein 

1    1    1    3.63 

2    1    2    3.57 

3    1    3    3.47 

4    1    4    3.65 

5    2    1    3.24 

6    2    2    3.25 

7    2    3    3.29 

8    2    4    3.09 

9    3    1    3.98 

10   3    2    3.60 

11   3    3    3.43 

12   3    4    3.30 
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13   4    1    3.66 

14   4    2    3.50 

15   4    3    3.05 

16   4    4    2.90 

17   5    1    4.34 

18   5    2    3.76 

19   5    3    3.68 

20   5    4    3.51 

21   6    1    4.36 

22   6    2    3.71 

23   6    3    3.42 

24   6    4    3.95 

25   7    1    4.17 

26   7    2    3.60 

27   7    3    3.52 

28   7    4    3.10 

29   8    1    4.40 

30   8    2    3.86 

31   8    3    3.56 

32   8    4    3.32 

33   9    1    3.40 

34   9    2    3.42 

35   9    3    3.51 

36   9    4    3.39 

37  10    1    3.75 

38  10    2    3.89 

39  10    3    3.65 

40  10    4    3.42 
> str(data) 

'data.frame':   40 obs. of  3 variables: 

 $ Cow    : int  1 1 1 1 2 2 2 2 3 3 ... 

 $ Week   : int  1 2 3 4 1 2 3 4 1 2 ... 

 $ Protein: num  3.63 3.57 3.47 3.65 3.24 3.25 3.29 3.09 3.98 3.6 ... 

> data$Cow=as.factor(data$Cow) 

> data$Week=as.factor(data$Week) 

> str(data) 

'data.frame':   40 obs. of  3 variables: 

 $ Cow    : Factor w/ 10 levels "1","2","3","4",..: 1 1 1 1 2 2 2 2 3 3 ... 

 $ Week   : Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 4 1 2 ... 

 $ Protein: num  3.63 3.57 3.47 3.65 3.24 3.25 3.29 3.09 3.98 3.6 ... 

> fit1=aov(Protein ~ Week + Error(Cow), data=data) 

> summary(fit1) 

 
Error: Cow 

          Df Sum Sq Mean Sq F value Pr(>F) 

Residuals  9  1.738  0.1931                

 

Error: Within 

          Df Sum Sq Mean Sq F value   Pr(>F)     

Week       3  1.612  0.5374   11.12 6.23e-05 *** 

Residuals 27  1.304  0.0483                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> 
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> boxplot(Protein ~ Week, 

+         data = data, 

+         col = c("purple", "lightgreen", "gold")) 

> stripchart(Protein ~ Week, 

+            vertical = TRUE, 

+            data = data,  

+            method = "jitter", 

+            add = TRUE, 

+            pch = 20, 

+            col = rgb(0,0,0,0.5)) 

> boxplot(Protein ~ Week, 

+         data = data, 

+         col = c("purple", "lightgreen", "gold"), 

ylab="Protein  content (%)", 

+         xlab="Week") 

> stripchart(Protein ~ Week, 

+            vertical = TRUE, 

+            data = data,  

+            method = "jitter", 

+            add = TRUE, 

+            pch = 20, 

+            col = rgb(0,0,0,0.5)) 

> 
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Based on ANOVA table and boxplot above it can be concluded that protein 

content change significantly over the period (decreasing), or in other word, protein 

content is different in different week. 

 

14.4 One Between Subject Variable, One Within Subject Variable 

For example, in the following table is data of protein content in milk for the first 

four week samples from 10 cows in each group of diets (Lawson, 2015). 

 

Diets Cow 
Week 

1 2 3 4 

Barley 1 3.63 3.57 3.47 3.65 

Barley 2 3.24 3.25 3.29 3.09 

Barley 3 3.98 3.6 3.43 3.3 

Barley 4 3.66 3.5 3.05 2.9 

Barley 5 4.34 3.76 3.68 3.51 

Barley 6 4.36 3.71 3.42 3.95 

Barley 7 4.17 3.6 3.52 3.1 

Barley 8 4.4 3.86 3.56 3.32 

Barley 9 3.4 3.42 3.51 3.39 

Barley 10 3.75 3.89 3.65 3.42 

Mixed 11 3.38 3.38 3.1 3.09 

Mixed 12 3.8 3.51 3.19 3.11 

Mixed 13 4.17 3.71 3.32 3.1 

Mixed 14 4.59 3.86 3.62 3.6 

Mixed 15 4.07 3.45 3.56 3.1 

Mixed 16 4.32 3.37 3.47 3.46 

Mixed 17 3.56 3.14 3.6 3.36 

Mixed 18 3.67 3.33 3.2 2.72 

Mixed 19 4.15 3.55 3.27 3.27 

Mixed 20 3.51 3.9 2.75 3.37 

Lupins 21 3.69 3.38 3 3.5 

Lupins 22 4.2 3.35 3.37 3.07 

Lupins 23 3.31 3.04 2.8 3.17 

Lupins 24 3.13 3.34 3.34 3.25 

Lupins 25 3.73 3.61 3.82 3.61 

Lupins 26 4.32 3.7 3.62 3.5 

Lupins 27 3.04 2.89 2.78 2.84 

Lupins 28 3.84 3.51 3.39 2.88 

Lupins 29 3.98 3.3 3.02 2.99 

Lupins 30 4.18 4.12 3.84 3.65 

 

In R: 
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> dat=read.csv("repeated2.csv", header=T) 

> dat 

     Diets Cow Week Protein 

1   Barley   1    1    3.63 

2   Barley   2    1    3.24 

3   Barley   3    1    3.98 

4   Barley   4    1    3.66 

5   Barley   5    1    4.34 

6   Barley   6    1    4.36 

7   Barley   7    1    4.17 

8   Barley   8    1    4.40 

9   Barley   9    1    3.40 

10  Barley  10    1    3.75 

11   Mixed  11    1    3.38 

12   Mixed  12    1    3.80 

13   Mixed  13    1    4.17 

14   Mixed  14    1    4.59 

15   Mixed  15    1    4.07 

16   Mixed  16    1    4.32 

17   Mixed  17    1    3.56 

18   Mixed  18    1    3.67 

19   Mixed  19    1    4.15 

20   Mixed  20    1    3.51 

21  Lupins  21    1    3.69 

22  Lupins  22    1    4.20 

23  Lupins  23    1    3.31 

24  Lupins  24    1    3.13 

25  Lupins  25    1    3.73 

26  Lupins  26    1    4.32 

27  Lupins  27    1    3.04 

28  Lupins  28    1    3.84 

29  Lupins  29    1    3.98 

30  Lupins  30    1    4.18 

31  Barley   1    2    3.57 

32  Barley   2    2    3.25 

33  Barley   3    2    3.60 

34  Barley   4    2    3.50 

35  Barley   5    2    3.76 

36  Barley   6    2    3.71 

37  Barley   7    2    3.60 

38  Barley   8    2    3.86 

39  Barley   9    2    3.42 

40  Barley  10    2    3.89 

41   Mixed  11    2    3.38 

42   Mixed  12    2    3.51 

43   Mixed  13    2    3.71 

44   Mixed  14    2    3.86 

45   Mixed  15    2    3.45 

46   Mixed  16    2    3.37 
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47   Mixed  17    2    3.14 

48   Mixed  18    2    3.33 

49   Mixed  19    2    3.55 

50   Mixed  20    2    3.90 

51  Lupins  21    2    3.38 

52  Lupins  22    2    3.35 

53  Lupins  23    2    3.04 

54  Lupins  24    2    3.34 

55  Lupins  25    2    3.61 

56  Lupins  26    2    3.70 

57  Lupins  27    2    2.89 

58  Lupins  28    2    3.51 

59  Lupins  29    2    3.30 

60  Lupins  30    2    4.12 

61  Barley   1    3    3.47 

62  Barley   2    3    3.29 

63  Barley   3    3    3.43 

64  Barley   4    3    3.05 

65  Barley   5    3    3.68 

66  Barley   6    3    3.42 

67  Barley   7    3    3.52 

68  Barley   8    3    3.56 

69  Barley   9    3    3.51 

70  Barley  10    3    3.65 

71   Mixed  11    3    3.10 

72   Mixed  12    3    3.19 

73   Mixed  13    3    3.32 

74   Mixed  14    3    3.62 

75   Mixed  15    3    3.56 

76   Mixed  16    3    3.47 

77   Mixed  17    3    3.60 

78   Mixed  18    3    3.20 

79   Mixed  19    3    3.27 

80   Mixed  20    3    2.75 

81  Lupins  21    3    3.00 

82  Lupins  22    3    3.37 

83  Lupins  23    3    2.80 

84  Lupins  24    3    3.34 

85  Lupins  25    3    3.82 

86  Lupins  26    3    3.62 

87  Lupins  27    3    2.78 

88  Lupins  28    3    3.39 

89  Lupins  29    3    3.02 

90  Lupins  30    3    3.84 

91  Barley   1    4    3.65 

92  Barley   2    4    3.09 

93  Barley   3    4    3.30 

94  Barley   4    4    2.90 

95  Barley   5    4    3.51 
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96  Barley   6    4    3.95 

97  Barley   7    4    3.10 

98  Barley   8    4    3.32 

99  Barley   9    4    3.39 

100 Barley  10    4    3.42 

101  Mixed  11    4    3.09 

102  Mixed  12    4    3.11 

103  Mixed  13    4    3.10 

104  Mixed  14    4    3.60 

105  Mixed  15    4    3.10 

106  Mixed  16    4    3.46 

107  Mixed  17    4    3.36 

108  Mixed  18    4    2.72 

109  Mixed  19    4    3.27 

110  Mixed  20    4    3.37 

111 Lupins  21    4    3.50 

112 Lupins  22    4    3.07 

113 Lupins  23    4    3.17 

114 Lupins  24    4    3.25 

115 Lupins  25    4    3.61 

116 Lupins  26    4    3.50 

117 Lupins  27    4    2.84 

118 Lupins  28    4    2.88 

119 Lupins  29    4    2.99 

120 Lupins  30    4    3.65 
> str(dat) 

'data.frame':   120 obs. of  4 variables: 

 $ Diets  : Factor w/ 3 levels "Barley","Lupins",..: 1 1 1 1 1 1 1 1 1 1 ... 

 $ Cow    : int  1 2 3 4 5 6 7 8 9 10 ... 

 $ Week   : int  1 1 1 1 1 1 1 1 1 1 ... 

 $ Protein: num  3.63 3.24 3.98 3.66 4.34 4.36 4.17 4.4 3.4 3.75 ... 

> dat$Diets=as.factor(dat$Diets) 

> dat$Cow=as.factor(dat$Cow) 

> dat$Week=as.factor(dat$Week) 
> str(data) 

'data.frame':   40 obs. of  3 variables: 

 $ Cow    : Factor w/ 10 levels "1","2","3","4",..: 1 1 1 1 2 2 2 2 3 3 ... 

 $ Week   : Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 4 1 2 ... 

 $ Protein: num  3.63 3.57 3.47 3.65 3.24 3.25 3.29 3.09 3.98 3.6 ... 

>  
> fit2=aov(Protein ~ Diets*Week + Error(Cow/Week), data=dat) 

> summary(fit2) 

 

Error: Cow 

          Df Sum Sq Mean Sq F value Pr(>F) 

Diets      2  0.485  0.2425    0.94  0.403 

Residuals 27  6.962  0.2579                

 

Error: Cow:Week 

           Df Sum Sq Mean Sq F value   Pr(>F)     

Week        3  5.880  1.9598  36.551 4.87e-15 *** 

Diets:Week  6  0.165  0.0275   0.513    0.797     

Residuals  81  4.343  0.0536                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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> 

> boxplot(Protein ~ Diets, 

+         data = dat, 

+         col = c("purple", "lightgreen", "gold"), 

+         ylab="Protein (%)", xlab="Diets") 

> stripchart(Protein ~ Diets, 

+            vertical = TRUE, 

+            data = dat,  

+            method = "jitter", 

+            add = TRUE, 

+            pch = 20, 

+            col = rgb(0,0,0,0.5)) 

> 

 
 

> boxplot(Protein ~ Week, 

+         data = dat, 

+         col = c("purple", "lightgreen", "gold"), 

+         ylab="Protein (%)",xlab="Week") 

> stripchart(Protein ~ Week, 

+            vertical = TRUE, 

+            data = dat,  

+            method = "jitter", 

+            add = TRUE, 

+            pch = 20, 
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+            col = rgb(0,0,0,0.5)) 

> 

 
 

> boxplot(Protein ~ Diets*Week, 

+         data = dat, 

+         col = c("purple", "lightgreen", "gold"), 

+         ylab="Protein (%)", xlab="Diets*Week") 

> stripchart(Protein ~ Diets*Week, 

+            vertical = TRUE, 

+            data = dat,  

+            method = "jitter", 

+            add = TRUE, 

+            pch = 20, 

+            col = rgb(0,0,0,0.5)) 

> 
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Based on ANOVA table and boxplot above it can be concluded that protein 

content did not change over the period, but protein content change significantly over 

the period (protein content is different in different week). 
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XV. ANALYSIS OF NUMERICAL TREATMENT LEVELS 
 

15.1 Introduction 

In a research, sometimes we want to find an optimum treatment level which 

affect a maximum response. For example, we want to evaluate the effect of different 

levels of mineral content in a ration on body weight gain of broiler. At the same time 

we want to find an optimum mineral content in ration to get maximum body weight 

gain. In this case the use of regression or polynomial orthogonal contrasts can be 

alternatives to solve this problem. The next question is that which regression model is 

most appropriate, either linear, quadratic or cubic. To test the appropriateness of a 

model can be done by lack of fit analysis. If a regression model fails to adequately 

describe the functional relationship between the experimental factors and the response 

variable means that the regression model exhibits lack of fit. 

Consider simple linear regression model is: 

yij = β0 + β1 xi + εij 

and y̅i is the mean and ŷi is the estimated value for level i. If the difference 

between  ŷi and y̅i is not significant means that the model is correct.  

 

15.2 Lack of Fit Test 

The residual sum of squares in this test is divided into a pure error and a lack of 

fit sum of squares. 

SSRES = SSPE + SSLOF 

with appropriate degrees of freedom: (n-1) = Σi (ni -1) + (m-p) where p is the number 

of parameters in the model. The sums of squares are: 

SSE = ∑ ∑ (𝑦𝑖𝑗 −  𝑦̂𝑖)2

𝑗𝑖
 

SSPE = ∑ ∑ (𝑦𝑖𝑗 −  𝑦̅𝑖)2

𝑗𝑖
 

SSLOF = ∑ 𝑛𝑖 (𝑦̅𝑖 −  𝑦̂𝑖)2

𝑖
 

 

where: 

y̅i =
1

𝑛𝑖
∑ 𝑦𝑖𝑗 = 𝑚𝑒𝑎𝑛 𝑓𝑜𝑟 𝑙𝑒𝑣𝑒𝑙 𝑖

𝑗
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ŷi = estimated value for level i 

The mean square for pure error is: 

MSPE =
𝑆𝑆𝑃𝐸

∑ (𝑛𝑖 −  1)𝑖
 

MSLOF =
𝑆𝑆𝐿𝑂𝐹

𝑚 −  𝑝
 

F =
𝑀𝑆𝐿𝑂𝐹

𝑀𝑆𝑃𝐸
 

The ANOVA table is: 

Source SS df MS F statistic 

Regression SSreg 1 SSreg/1 MSreg/MSE 

Error SSE n-2 SSE/(n-2)  

Lack of fit SSLOF m-2 SSLOF/(m-2) MSLOF/SSPE 

Pure error SSPE n-m SSPE/(n-m)  

Total SST    

 

For example, an experiment is to evaluate the effect of different levels of protein 

content in ration on feed conversion of broiler. Data of feed conversion for each 

treatment of protein level in ration at the end of the experiment is presented in the 

following table. 

 

Level protein 

18% 20% 22% 24% 

1.8 1.6 1.6 1.8 

1.9 1.5 1.7 1.9 

1.7 1.6 1.7 1.8 

1.9 1.4 1.5 1.7 

1.6 1.5 1.6 1.7 

1.8 1.6 1.7 1.8 

 

In R: 

> data=read.csv("LackOfFit1.csv", header=T) 

> data 

   Protein FeedConversion 

1       18            1.8 

2       18            1.9 

3       18            1.7 

4       18            1.9 
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5       18            1.6 

6       18            1.8 

7       20            1.6 

8       20            1.5 

9       20            1.6 

10      20            1.4 

11      20            1.5 

12      20            1.6 

13      22            1.6 

14      22            1.7 

15      22            1.7 

16      22            1.5 

17      22            1.6 

18      22            1.7 

19      24            1.8 

20      24            1.9 

21      24            1.8 

22      24            1.7 

23      24            1.7 

24      24            1.8 

> data$Protein=as.factor(data$Protein) 

> fit=lm(FeedConversion ~  Protein, data=data) 

> anova(fit) 

Analysis of Variance Table 

 

Response: FeedConversion 

          Df  Sum Sq  Mean Sq F value    Pr(>F)     

Protein    3 0.27000 0.090000   11.02 0.0001736 *** 

Residuals 20 0.16333 0.008167                       

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

>  

> #Analysis of Lack of Fit: 

> Reduced <- lm(FeedConversion ~ Protein, data=data)  

> data$Protein=as.numeric(data$Protein) 

> Reduced <- lm(FeedConversion ~ Protein, data=data)  

> Full <- lm(FeedConversion ~ 0 + as.factor(Protein), data 

=data)  

> anova (Reduced, Full) 

Analysis of Variance Table 

 

Model 1: FeedConversion ~ Protein 

Model 2: FeedConversion ~ 0 + as.factor(Protein) 

  Res.Df     RSS Df Sum of Sq      F    Pr(>F)     

1     22 0.43033                                   

2     20 0.16333  2     0.267 16.347 6.204e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> #Using EnvStats package: 

> library(EnvStats) 

> data$Protein=as.numeric(data$Protein) 

> fit=lm(FeedConversion ~ Protein, data=data) 
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> anovaPE(fit) 

                   Df  Sum Sq  Mean Sq F value    Pr(>F)     

Protein             1 0.00300 0.003000  0.3673    0.5513     

Lack of Fit         2 0.26700 0.133500 16.3469 6.204e-05 *** 

Pure Error         20 0.16333 0.008167                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> 

Based on ANOVA table it can be concluded that the different of protein level 

affected feed conversion of broiler. However, the regression model (protein level on 

feed conversion response) is not linear which is shown by the significance of Lack of 

Fit p-value (0.000062). Which model is more appropriate can be evaluated using 

polynomial orthogonal contrast, either linear, quadratic, cubic or quartic (following 

topic). 

 

15.3 Polynomial Orthogonal Contrast 

Treatment levels analysis and evaluating linear, quadratic, and higher order 

effects can be tested by polynomial orthogonal contrasts. Degree of polynomial 

contrast and its coefficient of treatment levels are shown in the following table. 

 

Number of 

treatment levels 

Degree of 

polynomial 
Coefficients (c) Total ci2 

2 linear +1 -1 2 

3 
linear 

quadratic 

+1 0 -1 

+1 -2 +1 

2 

6 

4 

linear 

quadratic 

cubic 

+3 +1 -1 -3 

+1 -1 -1 +1 

+1 +3 -3 -1 

20 

4 

20 

 

Using the same example as previous topic (Lack of Fit Test), polynomial 

orthogonal contrast can be done like below. 

In R: 

> data=read.csv("LackOfFit1.csv", header=T) 

> head(data) 

  Protein FeedConversion 

1      18            1.8 

2      18            1.9 

3      18            1.7 

4      18            1.9 

5      18            1.6 

6      18            1.8 

> data$Protein=as.factor(data$Protein) 
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> fit=lm(FeedConversion ~  Protein, data=data) 

> anova(fit) 

Analysis of Variance Table 

 

Response: FeedConversion 

          Df  Sum Sq  Mean Sq F value    Pr(>F)     

Protein    3 0.27000 0.090000   11.02 0.0001736 *** 

Residuals 20 0.16333 0.008167                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> #Analysis of Lack of Fit: 

> data$Protein=as.numeric(data$Protein) 

> library(EnvStats) 

 

Attaching package: ‘EnvStats’ 

 

The following objects are masked from ‘package:stats’: 

 

    predict, predict.lm 

 

The following object is masked from ‘package:base’: 

 

    print.default 

 

Warning message: 

package ‘EnvStats’ was built under R version 3.5.2  

 

> data$Protein=as.numeric(data$Protein) 

> fit=lm(FeedConversion ~ Protein, data=data) 

> anovaPE(fit) 

                   Df  Sum Sq  Mean Sq F value    Pr(>F)     

Protein             1 0.00300 0.003000  0.3673    0.5513     

Lack of Fit         2 0.26700 0.133500 16.3469 6.204e-05 *** 

Pure Error         20 0.16333 0.008167                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> 

fit2=lm(FeedConversion~Protein+I(Protein^2)+I(Protein^3)+I(Pro

tein^4)+ 

+       as.factor(Protein),data=data) 

> anova(fit2) 

Analysis of Variance Table 

 

Response: FeedConversion 

             Df  Sum Sq  Mean Sq F value    Pr(>F)     

Protein       1 0.00300 0.003000  0.3673   0.55127     

I(Protein^2)  1 0.24000 0.240000 29.3878 2.632e-05 *** 

I(Protein^3)  1 0.02700 0.027000  3.3061   0.08403 .   

Residuals    20 0.16333 0.008167                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> 
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Based on ANOVA table it can be concluded that the most appropriate model for 

the treatment levels is quadratic. The optimum level of protein is 21% (see in figure 

below denoted by 2.5 of scale 1-4, where 1 = 18%; 2 = 20%; 3 =22%; and 4 = 24%) 

with feed conversion of 1.60. 

 

> fit3=lm(FeedConversion~Protein+I(Protein^2)+ 

+       as.factor(Protein),data=data) 

> anova(fit3) 

Analysis of Variance Table 

 

Response: FeedConversion 

                   Df  Sum Sq  Mean Sq F value    Pr(>F)     

Protein             1 0.00300 0.003000  0.3673   0.55127     

I(Protein^2)        1 0.24000 0.240000 29.3878 2.632e-05 *** 

as.factor(Protein)  1 0.02700 0.027000  3.3061   0.08403 .   

Residuals          20 0.16333 0.008167                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> b=coef(fit3) 

> b 

 (Intercept)   Protein  I(Protein^2)  as.factor(Protein)2  

  2.083333    -0.375000  0.075000      -0.100000  

 

as.factor(Protein)3 as.factor(Protein)4  

                 NA                  NA  

> 

> x=seq(from=1, to=4, by=0.1) 

> y=2.08333-0.375*x+0.075*x^2 

> plot(x,y) 
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Or we can calculate optimum point by doing first derivative of the quadratic equation, 

as below. 

Y = 2.08333-0.375*x+0.075*x^2 

0 = -0.375 + 2*0.075x 

x = 0.375/0.15 

x = 2.5 
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XVI. LINEAR REGRESSION 

 

16.1 Introduction 

A linear relationship between independent variable(s) (x) or predictor variable(s) 

and dependent variable (y) or response variable can be formulated using mathematical 

model which is  known as a linear regression model. The goal of linear regression 

model is to predict the response y, when the predictors values (x) are known. 

Mathematical equation of the linear regression can be generalized as follows: 

y = a + bx + e    or    y = β0 + β1x + ϵ 

where a or β0 is the intercept and b or β1 is the slope or coefficient of regression, and 

e or ϵ is the error term or residual error. 

 

16.2 Simple Linear Regression 

For example, we will use data from cars dataset from the package cars. So there 

are two variables, namely speed and distance. Speed shows how fast the car goes (x) 

in miles per hour and the distance (y) measures how far the car goes from start to stop, 

in feet. We can make scatter plot for the data with the command plot(dist ~ speed, data 

= data). But previously we see a glimpse of the data. 

 

> data=cars 

head(data) 

  speed dist 

1     4    2 

2     4   10 

3     7    4 

4     7   22 

5     8   16 

6     9   10 

 

Or the overall data is as follows. 

> data 

   speed dist 

1      4    2 

2      4   10 

3      7    4 

4      7   22 

5      8   16 

6      9   10 
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7     10   18 

8     10   26 

9     10   34 

10    11   17 

11    11   28 

12    12   14 

13    12   20 

14    12   24 

15    12   28 

16    13   26 

17    13   34 

18    13   34 

19    13   46 

20    14   26 

21    14   36 

22    14   60 

23    14   80 

24    15   20 

25    15   26 

26    15   54 

27    16   32 

28    16   40 

29    17   32 

30    17   40 

31    17   50 

32    18   42 

33    18   56 

34    18   76 

35    18   84 

36    19   36 

37    19   46 

38    19   68 

39    20   32 

40    20   48 

41    20   52 

42    20   56 

43    20   64 

44    22   66 

45    23   54 

46    24   70 

47    24   92 

48    24   93 

49    24  120 

50    25   85 

 

> 

> plot(dist ~ speed, data = data) 
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Next, how to make a line in the graph above is to use the lm command. We first 

save the results in the first example in an object, for example car like the following. 

 

> car <- lm(dist ~ speed, data = data) 

> coef(car) 

(Intercept)       speed  

        -17.579095    3.932409 

 

So the intercept of the regression line above is -17.58 with a regression 

coefficient of 3.93. Thus the regression line equation above is Distance = -17.58 + 3.93 

speed, or y = -17.58 + 3.93x. 

 

> plot(dist ~ speed, data = data, pch = 16) 

> abline(coef(car), col="red", lwd=3) 
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Actually intercept (a) and regression coefficient (b) can be calculated manually 

as follows. 

b =
𝑁 ∑ 𝑋𝑌 −  (∑ 𝑋)(∑ 𝑌)

𝑁 ∑ 𝑋2  −  (∑ 𝑋)2
 

 

a = 𝑌̅ − 𝑏 ∗ 𝑋̅ 

In R manually: 

> b <- ((length(data$dist)*sum(data$speed* 

+      data$dist))-(sum(data$speed)*sum(data$dist)))/ 

+      ((length(data$dist)*sum(data$speed^2))- 

+      (sum(data$speed))^2) ## the same as formula 

> b 

[1] 3.932409 

> ## or we can use script below, b=cov(x,y)/var(x) 

> b <- cov(data$speed,data$dist)/var(data$speed) 

> b 

[1] 3.932409 

> a <- mean(data$dist) - b*mean(data$speed) 

> a 

[1] -17.57909 

> 
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How to predict the value of y if the value of x is known, for example in the above 

example we got the equation of the regression line y = -17.58 + 3.93x. What is the 

value of y if x = 15 and x = 7?, then we can calculate by hand or use a calculator as 

follows: 

> x=15 

> y = -17.58 + 3.93*x 

> y 

[1] 41.37 

>  

> x=7 

> y = -17.58 + 3.93*x 

> y 

[1] 9.93 

> 

 

Or by using the predict () function, as follows. 

 

> predict(car, newdata = data.frame(speed = c(15, 7))) 

        1         2  

41.407036  9.947766 

> #different result is because of rounding in the hand 

calculation 

 

Or if we want to find out the value of y in the first five x values (4, 4, 7, 7, 8) as 

follows. 

> fitted(car)[1:5] 

        1         2         3         4         5  

-1.849460 -1.849460  9.947766  9.947766 13.880175  

> 

 

The third and the fourth y value, x = 7 is 9.947766, as in the previous calculation. 

If we want to know the deviation between the actual observation value and the 

predicted value, it can be done with the following command. 

 

> residuals(car)[1:5] 

        1         2         3         4         5  

 3.849460 11.849460 -5.947766 12.052234  2.119825  

> 
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So the deviation, for example, for the third and the fourth observation where the 

value of both  x = 7 with observations (y) = 4 and 22 and the predicted value = 

9.947766, then the deviation or bias are -5.947766 and 12.052234, respectively. 

We can also see the results of the overall regression analysis as follows. 

> carsumry <- summary(car) 

> carsumry 

 

Call: 

lm(formula = dist ~ speed, data = data) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-29.069  -9.525  -2.272   9.215  43.201  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -17.5791     6.7584  -2.601   0.0123 *   

speed         3.9324     0.4155   9.464 1.49e-12 *** 

--- 

Signif.codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘ ’1 

 

Residual standard error: 15.38 on 48 degrees of freedom 

Multiple R-squared:  0.6511,    Adjusted R-squared:  0.6438  

F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.49e-12 

 

> 

 

Based on summary it can be concluded that regression coefficient for speed is 

significant with p-value 1.49e-12 or less than 0.05 meaning that variation of distance 

can be explained by speed significantly. Coefficient of determination or R-squared in 

this regression equation is 0.65 meaning that variation of distance can be explained for 

about 65% while the rest (35%) by other factors. Overall the regression equation can 

be used to predict distance if the speed is known with F-statistic 89.57 and p-value 

1.49e-12.  If we want to know the standard error value specifically, even though it 

actually appears in the summary, it is as follows: 

> carsumry$sigma 

[1] 15.37959 

> 

 

and the confidence interval of the regression equation above is as follows. 

> confint(car) 

                 2.5 %    97.5 % 

(Intercept) -31.167850 -3.990340 
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speed         3.096964  4.767853 

> 

 

The coefficient of determination (R2) and the value of the correlation coefficient 

(r) are as follows, which are the same as those in the summary. 

 

> carsumry$r.squared ##Coefficient of determination (R2) 

[1] 0.6510794 

> cor(cars$dist,cars$speed)^2 ##or this script for R2 

[1] 0.6510794 

> sqrt(carsumry$r.squared) ##Coefficient of correlation (r) 

[1] 0.8068949 

> cor(cars$dist,cars$speed) ##or this script for r 

[1] 0.8068949 

> 

 

Actually the formula of the correlation coefficient (r) is as follows. 

r =
𝑁 ∑ 𝑋𝑌 −  (∑ 𝑋)(∑ 𝑌)

√[𝑁 ∑ 𝑋
2

 −  (∑ 𝑋)2] [𝑁 ∑ 𝑌
2

 −  (∑ 𝑌)2]

 

 

> r=(cov(data$speed,data$dist))/sqrt(var(data$speed)*var(data$dist)) 

> r 

[1] 0.8068949 

> R2=r^2 

> R2 

[1] 0.6510794 

> 

 

So it can be seen that the correlation coefficient (r) between distance (dist) and 

speed (speed) is 0.81 which means that the relationship is quite tight. The 

determination coefficient (R2) of the relationship is 0.65, which means that 65% of the 

distance variation can be explained by speed, that is, distance is affected by a speed of 

65%, while the rest (35%) is influenced by other factors. 

Another example, a research investigating the relationship between live weight 

(kg) before slaughtered and carcass weight (kg) (Pandiangan, 2016). The research 

question is that how to model the relationship between the two variables. 

> data=read.csv("LinearRegression.csv", header=T) 

> dim(data) 

[1] 60  3 

> head(data) 

  LiveWeight CarcassWeight CarcassPercentage 

1      423.8         183.7             43.35 
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2      428.5         180.7             42.17 

3      429.0         173.7             40.49 

4      435.3         179.2             41.17 

5      435.1         190.1             43.69 

6      432.4         176.3             40.77 

> data 

   LiveWeight CarcassWeight CarcassPercentage 

1      423.80        183.70             43.35 

2      428.50        180.70             42.17 

3      429.00        173.70             40.49 

4      435.30        179.20             41.17 

5      435.10        190.10             43.69 

6      432.40        176.30             40.77 

7      438.50        184.60             42.10 

8      441.30        203.20             46.05 

9      445.30        208.00             46.71 

10     449.70        185.10             41.16 

11     449.20        188.00             41.85 

12     445.20        205.20             46.09 

13     450.40        180.70             40.12 

14     453.30        186.40             41.12 

15     453.60        202.50             44.64 

16     453.10        203.90             45.00 

17     451.30        194.90             43.19 

18     455.20        203.80             44.77 

19     465.20        204.20             43.90 

20     467.30        200.00             42.80 

21     465.10        188.70             40.57 

22     461.10        189.20             41.03 

23     468.30        204.50             43.67 

24     467.70        184.36             39.42 

25     475.60        200.00             42.05 

26     478.30        197.20             41.23 

27     477.90        200.00             41.85 

28     477.40        196.90             41.24 

29     478.30        214.20             44.78 

30     478.40        200.40             41.89 

31     479.15        206.00             42.99 

32     477.80        202.80             42.44 

33     472.81        198.80             42.05 

34     479.21        222.80             46.49 

35     471.10        222.60             47.25 

36     472.50        212.80             45.04 

37     487.80        220.90             45.28 

38     487.30        214.90             44.10 

39     487.20        224.40             46.06 

40     483.80        222.90             46.07 

41     485.50        213.10             43.89 

42     481.30        205.90             42.78 

43     487.10        208.70             42.85 

44     482.10        230.00             47.71 

45     485.10        202.30             41.70 

46     485.30        212.80             43.85 
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47     490.20        209.40             42.72 

48     495.50        221.00             44.60 

49     490.40        213.40             43.52 

50     495.70        220.30             44.44 

51     493.20        211.20             42.82 

52     501.50        224.30             44.73 

53     503.10        219.50             43.63 

54     511.40        226.50             24.74 

55     495.70        219.80             44.34 

56     493.20        220.10             44.63 

57     502.20        221.20             44.05 

58     521.20        219.40             42.10 

59     508.90        222.70             43.76 

60     497.80        219.50             44.09 

 

> model <- lm(CarcassWeight ~ LiveWeight, data = data) 

> summary(model) 

 

Call: 

lm(formula = CarcassWeight ~ LiveWeight, data = data) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-18.2578  -6.5941  -0.2086   4.2680  19.8847  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -40.89424   22.87043  -1.788    0.079 .   

LiveWeight    0.52066    0.04837  10.764 1.89e-15 *** 

--- 

Signif. codes: 0 ‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘ ’1 

 

Residual standard error: 8.581 on 58 degrees of freedom 

Multiple R-squared:  0.6664,    Adjusted R-squared:  0.6607  

F-statistic: 115.9 on 1 and 58 DF,  p-value: 1.889e-15 

 

 

Based on summary we can report that the relationship between live weight and 

carcass weight can be formulated as carcass weight = -40.89 + 0.52 * live weight with 

R2 0.67 and p-value less than 0.05. This result tells us that the model can be used  to 

predict carcass weight if live weight is known. 

 

> plot(CarcassWeight ~ LiveWeight, data = data, pch=16) 

> abline(coef(model), col="blue", lwd=3) 

> 
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> par(mfrow=(1:2)) 

> boxplot(data$LiveWeight,xlab="Boxplot of live weight", 

+         ylab="Live weight (kg)") 

> boxplot(data$CarcassWeight,xlab="Boxplot of  

+         carcass weight",ylab="Carcass weight (kg)") 

> 

 

The following graphics are just to explore the data before analysing and making 

decision to use the equation resulted in. Boxplot is to see the spread of data of the two 

variables. Plotting graphic is similar with boxplot to see the tendency of the two 

variables. Whilst the quantile-quantile plot (Q-Q plot) is a scatterplot of two sets of 

quantiles against one another. If the points forming a line that's roughly straight means 

that both sets of quantiles came from the same distribution. 
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> plot(data, col=data$CarcassWeight) 

 

 

 

> plot(model, 2) 
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16.3 Assumption in Simple Linear Regression 

Assumption for the linear regression model is linearity meaning that the 

relationship between the predictors (xs) and the outcome variable is linear because 

sometimes the relationship could be polynomial or logarithmic. The second 

assumption is normality meaning that residual errors should be normally distributed. 

The third assumption is homogeneity of residual variance meaning that residuals error 

are constant (homoscedasticity). The fourth assumption is independency of residual 

error meaning that data are independent from each other between variables. Therefore, 

we should check whether the regression model that we built has potential problems or 

not and whether the linear regression model met the assumption or not. Generally, 

examining the distribution of residuals can tell us more about our data. 

The linearity can be diagnosed by evaluating the plot of residuals and fitted, like 

below (using previous data): 

> plot(model, 1) 
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Based on the plot above the red line approximately close to horizontal at zero. 

This suggests that relationship between the predictors and the response variables is 

linear. Ideally, there is no fitted pattern for the residual plot, the presence of a pattern 

may indicate a problem with some aspect of the linear model. If the residual plot 

indicates a non-linear relationship, the predictor variables should be non-linear 

transformed (for instance, log(x), sqrt(x) and x^2). 

Normality can be checked visually using Q-Q plot where residuals should 

approximately follow a straight line. Q-Q plot can use default in r or use package car. 

> plot(model, 2) 
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> library("car") 

Loading required package: carData 

> qqPlot(model,2) 

[1] 24 44 
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Based on QQ plot above we can see that all the points fall approximately along the 

line, so we can assume that the data came from sample of population which is normally 

distributed. 

Homogeneity variance can be diagnosed by inspecting the scale-location plot, 

or the spread-location plot. 

> plot(model, 3) 

 

 

This plot shows if residuals are spread equally along the ranges of predictors. It’s good 

if the line is horizontal with equally spread points.  

It can be seen that the variability (variances) of the residual points increases a 

little bit and decrease with the value of the fitted response variable, suggesting non-

constant variances in the residuals errors. A solution to reduce this heteroscedasticity 

problem is to use a log or square root transformation of the response variable (y). 

Residuals versus leverage is used to identify outlier that is extreme values that 

might influence the regression model reliability. Outliers can be identified by 

inspecting the standardized residual, which is the residual divided by its estimated 

standard error. Standardized residuals can be interpreted as the number of standard 

errors away from the regression line. Observations whose standardized residuals are 
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greater than 3 in absolute value are possible outliers (James et al. 2014). While if data 

has extreme predictor x values meaning that the data has high leverage. Outliers and 

high leverage points can be identified by inspecting the residuals versus leverage plot: 

 

> plot(model, 5) 

 

The plot above highlights the top 3 most extreme points (data number #8, #9 and 

#58), with a standardized residuals below 2 or -1. However, there is no outliers that 

exceed 3 or below -3 standard deviations, which is good. In addition, there is no high 

leverage point in the data, where all data points have a leverage statistic below 2(p + 

1)/n = 4/60 = 0.067. 

A value that is associated with a large residual is known as an influential value, 

because inclusion or exclusion the value can alter the results of the regression analysis. 

However, not all outliers are influential value in linear regression analysis. Statisticians 

have developed a metric called Cook’s distance to determine the influence of a value. 

This metric defines influence as a combination of leverage and residual size. An 

observation has high influence if Cook’s distance exceeds 4/(n - p - 1) (Bruce and 

Bruce 2017), where n is the number of observations and p the number of predictor 

variables. 
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Residuals versus leverage plot can help us to find if there is any influential 

observations. Outlying values are generally located at the upper right corner or at the 

lower right corner where data points can be influential against a regression line. The 

following plots illustrate the Cook’s distance and the leverage of model discussed 

before: 

> par(mfrow=c(1,2)) 

> plot(model, 4) 

> plot(model, 5) 

 

Based on the plot above the data don’t present any influential points. Cook’s 

distance lines (a red dashed line) are not shown on the Residuals vs Leverage plot 

because all points are well inside of the Cook’s distance lines. 

 

16.4 Multiple Linear Regression 

Multiple linear regression is an extension of simple linear regression used to 

predict the outcome variable (y) based on different predictor variables (x). In other 

words,  multiple Linear Regression explains how a single response variable y depends 

linearly on a number of predictor variables (x). In simple linear regression we have 

one predictor (x) and one response variable (y), but in multiple linear regression we 

have more than one predictor variable (x1, x2, ..., xn) and one response variable (y).  

For example, we have three predictor variables (x), the predictive value of y can 

be expressed by the following equation: 

 

0 10 20 30 40 50 60

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Obs. number

C
o
o
k
's

 d
is

ta
n
c
e

Cook's distance

58

9

8

0.00 0.02 0.04 0.06 0.08

-2
-1

0
1

2

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Cook's distance

Residuals vs Leverage

58

9

8



179 
 

 
 

y = b0 + b1*x1 + b2*x2 + … + bn*xn + e   or    y = β0 + β1x1 + β2x2 + … + βnxn + ϵ 

 

The value "b" is called regression weight (or beta coefficient), "bi" can be 

interpreted as the effect of xi in average on y from the increase of one unit "xi", if all 

other predictors are considered constant. To understand multiple linear regression we 

use sales data using the marketing / advertising method of Youtube, Facebook, and 

Newspaper (Shekar, 2018). Previously we made a model to estimate sales based on 

the advertising budget invested in Youtube, Facebook and newspapers, as follows: 

sales = b0 + b1*youtube + b2*facebook + b3*newspaper 

 

16.4.1 Exploring and Understanding Data 

 

> data=read.csv("sales.csv", header=T) 

> dim(data) 

[1] 200   4 

> head(data) 

  youtube facebook newspaper sales 

1  276.12    45.36     83.04 26.52 

2   53.40    47.16     54.12 12.48 

3   20.64    55.08     83.16 11.16 

4  181.80    49.56     70.20 22.20 

5  216.96    12.96     70.08 15.48 

6   10.44    58.68     90.00  8.64 

> plot(data, col=data$sales) 
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> plot(data[c(1,2,3)]) ## pairwise plot data inter predictor 

variables 

 

 

Based on the plot above, it does not appear that any of predictor variables are highly 

correlated, or have a strong linear relationship with one another. Additional 

assumption for multiple linear regression is that between two predictor or independent 

variables does not highly correlate each other. This assumption is called 

multicollinearity.  Furthermore, between predictor and response variable we can see 

that there is relationship between the two variables, between youtube and sales and 

between facebook and sales appear to have relationship. While between newspaper 

and sales does not seem to have relationship. 

To make sure how big the correlation between two predictor variables we use 

cor(), as follows. 

 

> cor(data[c(1,2, 3)]) ## to make sure the correlation 

             youtube   facebook  newspaper 

youtube   1.00000000 0.05480866 0.05664787 
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facebook  0.05480866 1.00000000 0.35410375 

newspaper 0.05664787 0.35410375 1.00000000 

 

We can see that the pairwise correlations between predictor variables are very low. It 

will be a problem if the correlation is greater than 0.9 meaning that there is 

multicollinearity issue in the model. Other method to evaluate multicollinearity is by 

calculating VIF (variance Inflation Factor). If the VIF > 10 means that there is 

multicollinearity of the data set. The VIF scores should be close to 1 but under 5 is fine 

and 10+ indicates that the variable is not needed and can be removed from the model. 

Based on VIF analysis it can be reported that all the VIF values in this analysis have 

scores close to 1, so that we can continue to the next steps. 

 

> library(car) 

Loading required package: carData 

> vif(model) ##other way to check multicollinearity 

  youtube  facebook newspaper  

 1.004611  1.144952  1.145187 

 

Other assumption for multiple linear regression is the same as assumption for 

simple linear regression, including that dataset plausibly came from similar normal 

distribution. If the distributions are similar, the points in the Q-Q plot will 

approximately lie on a line of y = x. The following plots are plots to check assumption 

for multiple linear regression discussed in assumption in simple linear regression, 

including normality. 

 

> par(mfrow=c(2,2)) 

> plot(model, 1) 

> plot(model, 2) 

> plot(model, 3) 

> plot(model, 5) 
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Based on plots above there is outlier for data number #6, #76 and #131 and 

high leverage. We should check further in the analysis. 

 

 

16.4.2 Building Regression Model 

 

 

> model <- lm(sales ~ youtube + facebook + newspaper, data = 

data) 

> summary(model) 

 

Call: 

lm(formula = sales ~ youtube + facebook + newspaper, data = 

data) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-10.5932  -1.0690   0.2902   1.4272   3.3951  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.526667   0.374290   9.422   <2e-16 *** 

youtube      0.045765   0.001395  32.809   <2e-16 *** 
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facebook     0.188530   0.008611  21.893   <2e-16 *** 

newspaper   -0.001037   0.005871  -0.177     0.86     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 

1 

 

Residual standard error: 2.023 on 196 degrees of freedom 

Multiple R-squared:  0.8972,    Adjusted R-squared:  0.8956  

F-statistic: 570.3 on 3 and 196 DF,  p-value: < 2.2e-16 

 

> 

> anova(model) 

Analysis of Variance Table 

 

Response: sales 

           Df Sum Sq Mean Sq   F value Pr(>F)     

youtube     1 4773.1  4773.1 1166.7308 <2e-16 *** 

facebook    1 2225.7  2225.7  544.0501 <2e-16 *** 

newspaper   1    0.1     0.1    0.0312 0.8599     

Residuals 196  801.8     4.1                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Based on the summary and ANOVA above, the p-value of the F-statistic is 

<2.2e-16, which is very significant. This means that, at least, one of the predictor 

variables is significantly related to the outcome variable (sales). 

It can be seen that, changes in the youtube and facebook advertising budgets are 

significantly related to changes in sales, while changes in newspaper budgets are not 

significantly related to sales. Based on the three predictor variables, the coefficient (b) 

can be interpreted as the mean effect on y due to the increase in one unit in the 

predictor, assuming other predictors are considered constant. For example, if the 

youtube and newspaper advertising budgets are considered constant, every addition of 

1,000 dollars to Facebook ads will increase sales by an average of about 0.1885 * 1000 

= 189 sales units. Likewise, with every increase of 1000 dollars in advertising on 

YouTube, where other ads are constant, we can expect an average increase of 0.045 * 

1000 = 45 sales units. 

> plot(data, col=data$sales) 
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> plot(model, 2) 
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16.4.3 Finding The Best Model in Multiple Linear Regression 

Finding predictors that influence or support response variable for the best model 

in multiple linear regression is by comparing the two models using the adjusted R2, 

using Akaike's Information Criterion (AIC) value, using anova command or by doing 

stepwise regression. 

Adjusted R2 which is computed from the ANOVA table or computed as 

follows can be used  to compare regression models with: 

𝑅2𝑎𝑑𝑗 = 1 −  [
(𝑛 −  1)

(𝑛 −  𝑝)
. (1 −  𝑅2)] 

 

> data=read.csv("sales.csv", header=T) 
> model1 <- lm(sales ~ youtube + facebook + newspaper, data = data) 

> model2 <- lm(sales ~ youtube + facebook, data = data) 

> model3 <- lm(sales ~ youtube + newspaper, data = data) 

> model4 <- lm(sales ~ facebook + newspaper, data = data) 

> model5 <- lm(sales ~ youtube, data = data) 

> model6 <- lm(sales ~ facebook, data = data) 

> model7 <- lm(sales ~ newspaper, data = data) 

> summary(model1)$adj.r.squared 

[1] 0.8956373 

> summary(model2)$adj.r.squared 

[1] 0.8961505 

> summary(model3)$adj.r.squared 

[1] 0.6422399 

> summary(model4)$adj.r.squared 

[1] 0.3259306 

> summary(model5)$adj.r.squared 

[1] 0.6099148 

> summary(model6)$adj.r.squared 

[1] 0.3286589 

> summary(model7)$adj.r.squared 

[1] 0.04733317 

> 

 

Based on the value of adjusted R2, model 2 (sales = youtube + facebook) is the 

best among the seven model. 

Akaike's Information Criterion (AIC) is more general measure to apply to to 

compare model, which is the lower value is the better. 

> AIC(model1); AIC(model2); AIC(model3); AIC(model4); 

AIC(model5);AIC(model6); AIC(model7) 

[1] 855.2909 
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[1] 853.3227 

[1] 1100.707 

[1] 1227.401 

[1] 1117.02 

[1] 1225.602 

[1] 1295.6 

> 

So model 2 is the best because its AIC is the smallest. 

Command anova can be used to find the best model by comparing the two 

models. For example, we use previous example: 

 

> data=read.csv("sales.csv", header=T) 

> dim(data) 

[1] 200   4 

> head(data) 

  youtube facebook newspaper sales 

1  276.12    45.36     83.04 26.52 

2   53.40    47.16     54.12 12.48 

3   20.64    55.08     83.16 11.16 

4  181.80    49.56     70.20 22.20 

5  216.96    12.96     70.08 15.48 

6   10.44    58.68     90.00  8.64 

> model1 <- lm(sales~youtube+facebook+newspaper,data=data) 

> model2 <- lm(sales ~ youtube + facebook, data = data) 

> model3 <- lm(sales ~ youtube + newspaper, data = data) 

> model4 <- lm(sales ~ facebook + newspaper, data = data) 

> model5 <- lm(sales ~ youtube, data = data) 

> model6 <- lm(sales ~ facebook, data = data) 

> model7 <- lm(sales ~ newspaper, data = data) 

> anova(model1,model2,model3,model4,model5,model6,model7) 

Analysis of Variance Table 

 

Model 1: sales ~ youtube + facebook + newspaper 

Model 2: sales ~ youtube + facebook 

Model 3: sales ~ youtube + newspaper 

Model 4: sales ~ facebook + newspaper 

Model 5: sales ~ youtube 

Model 6: sales ~ facebook 

Model 7: sales ~ newspaper 

  Res.Df    RSS Df Sum of Sq      F Pr(>F) 

1    196  801.8                            

2    197  802.0 -1     -0.13 0.0312 0.8599 

3    197 2762.7  0  -1960.77               

4    197 5205.4  0  -2442.63               

5    198 3027.6 -1   2177.72               

6    198 5210.6  0  -2182.97               

7    198 7394.1  0  -2183.51               

> 
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Based on ANOVA result it can be concluded that model 1 and model 2 is not 

different significantly with RSS 801 and 802, respectively. Whilst the rest of the model 

(model 3-7) is not better than model 1 and model 2 with big different of RSS. For 

parsimonious model, model 2 is the best because model 1 and model 1 is not different 

significantly. In addition, coefficient of predictor for newspaper is not significant (see 

previous discussion). 

Stepwise method can be used for finding the best model, as follow. 

> fit <- step(lm(sales ~ youtube+facebook+newspaper, data=data)) 

Start:  AIC=285.72 

sales ~ youtube + facebook + newspaper 

 

            Df Sum of Sq    RSS    AIC 

- newspaper  1       0.1  802.0 283.75 

<none>                    801.8 285.72 

- facebook   1    1960.9 2762.7 531.13 

- youtube    1    4403.5 5205.4 657.83 

 

Step:  AIC=283.75 

sales ~ youtube + facebook 

 

           Df Sum of Sq    RSS    AIC 

<none>                   802.0 283.75 

- facebook  1    2225.7 3027.6 547.44 

- youtube   1    4408.7 5210.6 656.03 

> 

 

Based on stepwise analysis the best model is sales ~ youtube + facebook with 

lower AIC (Akaike Information Criterion), the lower AIC the best the model. The 

result is the same as anova command. 

 

16.4.4 Comparing Two Slopes in Multiple Linear Regression 

To compare two slopes of linear regression model can use analysis of covariance 

(ANCOVA) method. By testing the effect of a categorical factor on a response variable 

(y) and controlling for the effect of a continuous covariable (x) we can compare the 

two lines or slopes. If there is interaction between the categorical variable (i.e. 

treatment effect) and the continuous independent variable (x) means that the regression 

lines have different slopes. If the slopes are not different or parallel but with significant 

effect of treatment means that the two regression model have different intercept. 

Furthermore, if the treatment effect is not different significantly and there is no 
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interaction between categorical and continuous variable means that there is only a 

single regression line. 

The following example is to investigate whether the regression of carcass weight 

(pounds) on back fat thickness (mm) in pig fed with different ration (Ration A and 

Ration B) have the same slopes (Steel and Torrie, 1989). Data of carcass weight and 

back fat thickness is presented in the following table. 

 

Ration A Ration B 

Carcass weight Back fat thickness Carcass weight Back fat thickness 

167 33 167 42 

192 34 261 38 

204 38 279 53 

197 33 221 34 

181 26 216 35 

178 28 198 31 

236 37 277 45 

204 31 250 43 

 

> data=read.csv("TwoSlopes.csv", header=T) 

> data 

   Ration CarcassWeight FatThickness 

1  

2       A           192           34 

3       A           204           38 

4       A           197           33 

5       A           181           26 

6       A           178           28 

7       A           236           37 

8       A           204           31 

9       B           167           42 

10      B           261           38 

11      B           279           53 

12      B           221           34 

13      B           216           35 

14      B           198           31 

15      B           277           45 

16      B           250           43 

> mod1 <- aov(FatThickness~CarcassWeight*Ration, data=data) 

> mod2 <- aov(FatThickness~CarcassWeight+Ration, data=data) 

> anova(mod1,mod2) 

Analysis of Variance Table 

 

Model 1: FatThickness ~ CarcassWeight * Ration 

Model 2: FatThickness ~ CarcassWeight + Ration 

  Res.Df    RSS Df Sum of Sq      F Pr(>F) 

1     12 307.69                            

2     13 308.25 -1  -0.55502 0.0216 0.8855 
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Based on comparison between model 1 (interaction) and model 2 (without 

interaction) it can be concluded that the two models are not different significantly with 

Fstatisic 0.0216 and p-value 0.8855 meaning that the slopes of the two regression 

model are the same. We can check further for the intercept visually or by doing 

ANOVA for investigating treatment effect (ration). 

>  

> RationA <- subset(data, Ration=="A") 

> RationB <- data[data$Ration=='B',] 

> RationA 

  Ration CarcassWeight FatThickness 

1      A           167           33 

2      A           192           34 

3      A           204           38 

4      A           197           33 

5      A           181           26 

6      A           178           28 

7      A           236           37 

8      A           204           31 

> RationB 

   Ration CarcassWeight FatThickness 

9       B           167           42 

10      B           261           38 

11      B           279           53 

12      B           221           34 

13      B           216           35 

14      B           198           31 

15      B           277           45 

16      B           250           43 

> reg1 <- lm(FatThickness~CarcassWeight, data=RationA); summary(reg1) 

 

Call: 

lm(formula = FatThickness ~ CarcassWeight, data = RationA) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

-4.855 -2.520 -0.064  2.332  4.418  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept)    9.39470   12.31155   0.763    0.474 

CarcassWeight  0.11856    0.06285   1.886    0.108 

 

Residual standard error: 3.514 on 6 degrees of freedom 

Multiple R-squared:  0.3723,    Adjusted R-squared:  0.2677  

F-statistic: 3.558 on 1 and 6 DF,  p-value: 0.1082 

 

> reg2 <- lm(FatThickness~CarcassWeight, data=RationB); summary(reg2) 

 

Call: 

lm(formula = FatThickness ~ CarcassWeight, data = RationB) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

-5.438 -4.853 -1.457  2.930  8.770  
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Coefficients: 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept)   15.94876   13.98970    1.14    0.298 

CarcassWeight  0.10348    0.05913    1.75    0.131 

 

Residual standard error: 6.24 on 6 degrees of freedom 

Multiple R-squared:  0.3379,    Adjusted R-squared:  0.2276  

F-statistic: 3.063 on 1 and 6 DF,  p-value: 0.1307 

 

>  

> plot(FatThickness~CarcassWeight, data=data, type='n') 

> points(RationA$CarcassWeight,RationA$FatThickness, pch=20) 

> points(RationB$CarcassWeight,RationB$FatThickness, col="red",pch=1) 

> abline(reg1, lty=1) 

> abline(reg2, lty=2, col="red") 

> legend("bottomright", c("Ration A","Ration B"),  

+  lty=c(1,2),col=c("black","red"), pch=c(20,1) ) 

> 

  

> summary(mod1) 

                     Df Sum Sq Mean Sq F value  Pr(>F)    

CarcassWeight         1  361.0   361.0  14.077 0.00276 ** 

Ration                1   34.2    34.2   1.335 0.27046    

CarcassWeight:Ration  1    0.6     0.6   0.022 0.88548    

Residuals            12  307.7    25.6                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> summary(mod2) 

              Df Sum Sq Mean Sq F value  Pr(>F)    

CarcassWeight  1  361.0   361.0  15.223 0.00182 ** 

Ration         1   34.2    34.2   1.443 0.25104    

Residuals     13  308.3    23.7                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> 
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Based on ANOVA it can be seen that ration effect is not different significantly, 

meaning that the intercepts of the two regression model is not different statistically 

although visually it is a bit different. 

 

16.5 Nonlinear Regression 

Nonlinear regression is a form of regression analysis where data of observation 

are modelled by a function which is a nonlinear combination of the model parameters 

and depends on one or more independent variables. Statistical model of the nonlinear 

model can be formulated as follows: 

y ~ f(x,β) 

Where y is dependent variable, x is independent variable, f is nonlinear function 

with parameter β. For example, the Michaelis-Menten model for enzyme kinetics with 

two parameters (β1 and β2 ) and one independent variable, as follows : 

𝑓(𝑥, 𝛽)  = 𝑦 =  
𝛽1𝑥

𝛽2 + 𝑥
 

 

Figure above is scripted as follows using default R with function nls. 

 

> x <- 1:100 

> y <- 1*x/(2+x) + rnorm(100, 0, 0.01) 
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> nm <- nls(y ~ a*x/(b+x), start = list(a = 1, b = 1)) 

> nm 

Nonlinear regression model 

  model: y ~ a * x/(b + x) 

   data: parent.frame() 

     a      b  

0.9972 1.9830  

 residual sum-of-squares: 0.01008 

 

Number of iterations to convergence: 4  

Achieved convergence tolerance: 1.181e-06 

> plot(y ~ x) 

> lines(x, fitted(nm), lty = 1, col = "red", lwd = 2) 

> 

The following nonlinear equation is only example using data generated by 

random function. 

 

16.5.1 Quadratic 

Quadratic equation is y~a+b*x+c*x^2. 

 
> x <- 0:70 

> y <- 3 - 14*x + 2*x^2 + rnorm(70, 20, 500) 

 

Warning message: 

In 3 - 14 * x + 2 * x^2 + rnorm(70, 20, 500) : 

  longer object length is not a multiple of shorter 

object length 
 

> nm <- nls(y ~ a + b*x + c*x^2, start=list(a=4,b=5,c=5)) 

> nm 

 

Nonlinear regression model 

  model: y ~ a + b * x + c * x^2 

   data: parent.frame() 

      a       b       c  

130.096 -21.316   2.096  

 residual sum-of-squares: 18210790 

 

Number of iterations to convergence: 1  

Achieved convergence tolerance: 3.801e-08 

 

> plot(y ~ x) 

> lines(x, fitted(nm), lty = 1, col = "red", lwd = 2) 

> 
 

 



193 
 

 
 

 

> library(easynls) 

> data1=data.frame(x,y) 

> nlsplot(data1, model=2) 
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16.5.2 Linear Plateu 

In agricultural research, especially in soil fertility and soil chemistry, the 

response function usually exhibits a plateau effect. In such situations, it is often 

appropriate to approximate the underlying function with two intersecting linear lines. 

Linear plateu equation is y ~ a + b * (x - c) * (x <= c). 

 

> x <- 0:70 

> y <- 14 + 2 * (x - 25) * (x <= 25) + rnorm(70, 20, 1) 
Warning message: 

In 14 + 2 * (x - 25) * (x <= 25) + rnorm(70, 20, 1) : 

  longer object length is not a multiple of shorter object length 

> nm <- nls(y ~ a + b * (x - c) * (x <= c), start=list(a=1,b=1,c=1)) 

> nm 

Nonlinear regression model 

  model: y ~ a + b * (x - c) * (x <= c) 

   data: parent.frame() 

     a      b      c  

34.188  2.006 25.147  

 residual sum-of-squares: 73.69 

 

Number of iterations to convergence: 6  

Achieved convergence tolerance: 4.525e-10 

> plot(y ~ x) 

> lines(x, fitted(nm), lty = 1, col = "red", lwd = 2) 

>  

 
 

> data1 <- data.frame(x,y) 

> nlsplot(data1, model=3) 

> 
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16.5.3 Exponential 

The use of exponential regression is to model data or situations that start to 

growth slowly and then increases rapidly without bound, or begins rapidly and then 

slows down to get closer and closer to zero. Exponential equation is y~a*exp(b*x). 

 

> x <- 0:70 

> y <- 2*exp(0.06*x) + rnorm(70, 3, 5) 

Warning message: 

In 2 * exp(0.06 * x) + rnorm(70, 3, 5) : 

  longer object length is not a multiple of shorter 

object length 

> nm <- nls(y ~ a*exp(b*x), start=list(a=1,b=0.01)) 

> nm 

Nonlinear regression model 

  model: y ~ a * exp(b * x) 

   data: parent.frame() 

      a       b  

2.49092 0.05744  

 residual sum-of-squares: 2153 

 

Number of iterations to convergence: 7  

Achieved convergence tolerance: 3.495e-06 

> plot(y ~ x) 

> lines(x, fitted(nm), lty = 1, col = "red", lwd = 2) 

> 
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> data1=data.frame(x,y) 

> nlsplot(data1, model=6, start=c(250,0.05)) 

> 
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16.5.4 Logistic 

Logistic equation is y~a*(1+b*(exp(-c*x)))^-1 

 
> x <- 0:70 

> y <- 1*(1+ 0.6*(exp(-0.08*x)))^-1 + rnorm(70, 1, 0.04) 

Warning message: 

In 1 * (1 + 0.6 * (exp(-0.08 * x)))^-1 + rnorm(70, 1, 0.04) : 

  longer object length is not a multiple of shorter object length 

> nm <- nls(y ~ a*(1+b*(exp(-c*x)))^-1, start=list(a=10,b=0.1,c=0.1)) 

> nm 

Nonlinear regression model 

  model: y ~ a * (1 + b * (exp(-c * x)))^-1 

   data: parent.frame() 

      a       b       c  

1.99937 0.26140 0.08126  

 residual sum-of-squares: 0.1153 

 

Number of iterations to convergence: 9  

Achieved convergence tolerance: 3.655e-06 

> plot(y ~ x) 

> lines(x, fitted(nm), lty = 1, col = "red", lwd = 2) 

> 

 

> data1=data.frame(x,y) 

> nlsplot(data1, model=7, start=c(600,4,0.05)) 

> 
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16.5.5 Brody 

Brody equation is y~a*(1-b*(exp(-c*x))) 

 
> x <- 0:70 

> y <- 1*(1- 0.6*(exp(-0.08*x))) + rnorm(70, 1, 0.04) 

Warning message: 

In 1 * (1 - 0.6 * (exp(-0.08 * x))) + rnorm(70, 1, 0.04) : 

  longer object length is not a multiple of shorter object length 

> nm <- nls(y ~ a*(1-b*(exp(-c*x))), start=list(a=10,b=0.1,c=0.1)) 

> nm 

Nonlinear regression model 

  model: y ~ a * (1 - b * (exp(-c * x))) 

   data: parent.frame() 

      a       b       c  

1.99787 0.29252 0.07829  

 residual sum-of-squares: 0.0852 

 

Number of iterations to convergence: 6  

Achieved convergence tolerance: 1.475e-06 

> plot(y ~ x) 

> lines(x, fitted(nm), lty = 1, col = "red", lwd = 2) 

> 
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> data1=data.frame(x,y) 

> nlsplot(data1, model=9, start=c(600,4,0.05)) 

> 
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16.5.6 Gompertz 

Gompertz equation is y~a*exp(-b*exp(-c*x) 

 
> x <- 0:70 

> y <- 3*exp(-0.2*exp(-0.05*x)) + rnorm(70, 1, 0.04) 

 
Warning message: 

In 3 * exp(-0.2 * exp(-0.05 * x)) + rnorm(70, 1, 0.04) : 

  longer object length is not a multiple of shorter object length 

 

> nm <- nls(y ~ a*exp(-b*exp(-c*x)), start=list(a=10,b=0.1,c=0.1)) 

> nm 

 

Nonlinear regression model 

  model: y ~ a * exp(-b * exp(-c * x)) 

   data: parent.frame() 

      a       b       c  

3.99145 0.14405 0.05223  

 residual sum-of-squares: 0.107 

 

Number of iterations to convergence: 5  

Achieved convergence tolerance: 9.837e-06 

 

> plot(y ~ x) 

> lines(x, fitted(nm), lty = 1, col = "red", lwd = 2) 

> 

 

> data1=data.frame(x,y) 

> nlsplot(data1, model=10, start=c(600,4,0.05)) 
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> 

 
 

16.5.7 Van Bertalanffy 

Van Bertalanffy equation is y~a*(1-b*(exp(-c*x)))^3 

 
> x <- 0:70 

> y <- 600*(1-3*(exp(-0.05*x)))^3 + rnorm(70, 1, 0.04) 

 
Warning message: 

In 600 * (1 - 3 * (exp(-0.05 * x)))^3 + rnorm(70, 1, 0.04) : 

  longer object length is not a multiple of shorter object length 

 

> nm <- nls(y ~ a*(1-b*(exp(-c*x)))^3, start=list(a=600,b=2,c=0.05)) 

> nm 

 

Nonlinear regression model 

  model: y ~ a * (1 - b * (exp(-c * x)))^3 

   data: parent.frame() 

        a         b         c  

601.18865   2.99864   0.05003  

 residual sum-of-squares: 20.3 

 

Number of iterations to convergence: 5  

Achieved convergence tolerance: 2.682e-07 

 

> plot(y ~ x) 

> lines(x, fitted(nm), lty = 1, col = "red", lwd = 2) 

> 
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> data1=data.frame(x,y) 

> nlsplot(data1, model=8, start=c(600,2,0.05)) 

> 

 
 

16.5.8 Lactation Curve 

Lactation curve equation is y~(a*x^b)*exp(-c*x) 
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> x <- 0:70 

> y <- ((16*x^0.25)*exp(-0.004*x)) + rnorm(70, 10, 4) 

 
Warning message: 

In ((16 * x^0.25) * exp(-0.004 * x)) + rnorm(70, 10, 4) : 

  longer object length is not a multiple of shorter object length 

 

> nm <- nls(y ~ ((a*x^b)*exp(-c*x)), start=list(a=16,b=0.25,c=0.004)) 

> nm 

 

Nonlinear regression model 

  model: y ~ ((a * x^b) * exp(-c * x)) 

   data: parent.frame() 

        a         b         c  

23.311383  0.217336  0.003663  

 residual sum-of-squares: 1350 

 

Number of iterations to convergence: 3  

Achieved convergence tolerance: 7.274e-06 

 

> plot(y ~ x) 

> lines(x, fitted(nm), lty = 1, col = "red", lwd = 2) 

>  

 

> data1=data.frame(x,y) 

> nlsplot(data1, model=11, start=c(16,0.25,0.004)) 

> 
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16.5.9 Ruminal Degradation Curve 

 

Ruminal degradation curve equation is y ~ a + b * (1 - exp(-c * x)) 

 
> x <- 0:70 

> y <- 20+2*(1-exp(-4.4*x) + rnorm(70, 1, 0.04)) 

 
Warning message: 

In 1 - exp(-4.4 * x) + rnorm(70, 1, 0.04) : 

  longer object length is not a multiple of shorter object length 

 

> nm <- nls(y ~ a+b*(1-exp(-c*x)), start=list(a=14,b=3,c=2.4)) 

> nm 

 

Nonlinear regression model 

  model: y ~ a + b * (1 - exp(-c * x)) 

   data: parent.frame() 

     a      b      c  

22.075  1.928  4.731  

 residual sum-of-squares: 0.4846 

 

Number of iterations to convergence: 6  

Achieved convergence tolerance: 1.128e-06 

> plot(y ~ x) 

> lines(x, fitted(nm), lty = 1, col = "red", lwd = 2) 

> 
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> data1=data.frame(x,y) 

> nlsplot(data1, model=12) 

> 
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