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Abstract. The locating chromatic number of a graph is the minimal color required 

so that it qualifies for some locating coloring. This paper will discuss about the 

locating chromatic number for the subdivision of barbell graph containing Petersen 

Graph. 
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1. Introduction 

 

The locating chromatic number of a graph was firstly studied by Chartrand et al. 

[1] as some development of the concept of partition dimension[2] and graph 

coloring. Consider  as the given connected graph and  as the proper 

coloring of  using k colors  for some positive integer k. We denote 

 as the partition of , where 𝐶𝑖 is the color class, i.e the set of 

vertices given the i-th color, for . For an arbitrary vertex v  V(G), the color 

code  is defined as the ordered -tuple 

𝑐𝜋(𝑣) = (𝑑(𝑣, 𝐶1), 𝑑(𝑣, 𝐶2), … , 𝑑(𝑣, 𝐶𝑘)), 

where for . If for every two vertices u,v V(G), 

their color codes are different, 𝑐𝜋(𝑢) ≠  𝑐𝜋(𝑣), then c is defined as the locating 

coloring of using k colors. The locating chromatic number of G, denoted by 

𝜒𝐿(𝐺), is the minimum k such that G has some locating coloring.  

There were some interesting results related to the determination of the locating 

chromatic number of some graphs. The results were obtained by focusing on some 

certain classes of graph. Chartrand et al. [3] has succeeded in constructing tree on 

n vertices, 𝑛 ≥ 5 with locating chromatic numbers varying from 3 to n, except for  

(𝑛 − 1). Moreover, Asmiati et al. [4] determined the locating chromatic number of 

homogeneous amalgamation of stars and their monotonicity properties. Recently, 

Behtoei and Omoomi [5] have obtained the locating chromatic number of the 

Kneser graph. Asmiati et al. [6] determined the locating chromatic number of 

Petersen graph and Syofyan et al. [7] trees with certain locating chromatic number. 

 

The barbell graph is constructed by connecting two arbitrary connected graphs G 

and H by a bridge. Let 𝐵𝑃𝑛,1
for n ≥ 3, be the barbell graph where G and H are two 
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copies of generalized Petersen graphs 𝑃𝑛,1. The following definition of generalized 

Petersen graph is taken from [8]. Let {𝑢1, 𝑢2, … , 𝑢𝑛} be the set of vertices in the 

outer cycle and {𝑣1, 𝑣2, … , 𝑣𝑛} be the set of vertices in the inner cycle of the 

Petersen graph, for n ≥ 3. Denote the generalized Petersen graph by𝑃𝑛,𝑘. From the 

definition, it is clear that for n ≥ 3 and 1 ≤ 𝑘 ≤ ⌈𝑛 − 1)/2⌉, the generalized 

Petersen graph has 2𝑛 vertices and 3n edges.  

In [9], the locating chromatic number of the barbell graph containing two copies of 

generalized Petersen graphs 𝑃𝑛,1 has been obtained in the following theorem.  

Theorem 1.1 [9] For 𝑛 ≥ 3, the locating chromatic number of barbell graph 𝐵𝑃𝑛,1
is 

4 for odd 𝑛 and 5 otherwise. 

 

This paper will determine the locating chromatic of some graph constructed by 

subdividing the bridge of the barbell that contains the generalized Petersen graph, 

denoted by 𝐵𝑃𝑛,1

∗𝑠 . This problem is inspired by the results of research Purwasih et. al 

[10] about the locating chromatic number for a subdivision of a graph on  one edge. 

 

2.    Results and Discussion 

In the following theorem, it is discussed about the locating chromatic number for 

subdivision of some barbell graph containing Petersen graph, denoted by𝐵𝑃𝑛,1

∗𝑠 . 

Theorem 2.1 

Let  𝐵𝑃𝑛,1

∗𝑠  be a subdivision of barbell graph containing Petersen Graph for 𝑠 ≥ 1. 

Then the locating chromatic number of  𝐵𝑃𝑛,1

∗𝑠 is 4 for odd n, 𝑛 ≥ 3 or 5 for n even, 

𝑛 ≥ 4. 

 

Proof. Let 𝐵𝑃𝑛,1

∗𝑠   be a subdivision barbell graph for  𝑛 ≥ 3, 𝑠 ≥ 1 with the vertex set 

 𝑉(𝐵𝑃𝑛,1

∗𝑠 ) = {𝑢𝑖, 𝑢𝑛+𝑖, 𝑤𝑖, 𝑤𝑛+𝑖: 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑠} , and edge set  

𝐸(𝐵𝑃𝑛,1

∗𝑠 ) = {𝑢𝑖𝑢𝑖+1, 𝑢𝑛+𝑖𝑢𝑛+𝑖+1, 𝑤𝑖 𝑤𝑖+1, 𝑤𝑛+𝑖 𝑤𝑛+𝑖+1: 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪

{𝑢𝑛𝑢1,  𝑢2𝑛𝑢𝑛+1, 𝑤𝑛 𝑤1, 𝑤2𝑛 𝑤𝑛+1} ∪ {𝑢𝑖𝑢𝑛+1, 𝑤𝑖 𝑤𝑛+1 ∶  1 ≤ 𝑖 ≤ 𝑛} ∪  

{𝑢𝑛 𝑤𝑛} ∪ {𝑢𝑛 𝑣1,𝑣𝑠 𝑤𝑛  } ∪ {𝑣𝑖𝑣𝑖+1: 1 ≤ 𝑖 ≤ 𝑠 − 1}. 

 

Let us distinguish four cases. 

Case 1. n odd.  According to Theorem 1.1, it is clear that𝜒𝐿(𝐵𝑃𝑛,1

∗𝑠 ) ≥ 4.  

To determine the upper bound for the locating chromatic number of subdivision 

Petersen graph𝐵𝑃𝑛,1

∗𝑠 , construct some locating coloring c using 4 colors as follows.  

 

For odd s, define the following coloring  

 

  



 
 

 1 , for 𝑖 = 1 

𝑐(𝑢𝑖) = 3 , for even 𝑖, 𝑖 ≥ 2 

 4 , for odd 𝑖, 𝑖 ≥ 3. 

 

 2 , for 𝑖 = 1 

𝑐(𝑢𝑛+𝑖) = 3 , for odd 𝑖, 𝑖 ≥ 3 

 4 , for even 𝑖, 𝑖 ≥ 2. 

 

 1 , for odd 𝑖, 𝑖 ≤ 𝑛 − 2 

𝑐(𝑤𝑖) = 2 , for even 𝑖, 𝑖 ≤ 𝑛 − 1 

 4 , for 𝑖 = 𝑛. 

 

 1 , for even 𝑖, 𝑖 ≤ 𝑛 − 1 

𝑐(𝑤𝑛+𝑖) = 2 , for odd 𝑖, 𝑖 ≤ 𝑛 − 2 

 3 , for 𝑖 = 𝑛. 

 1 , for 𝑖 = 1 

𝑐(𝑣𝑖) = 3 , for odd 𝑖, 𝑖 ≥ 3 

 4 , for even 𝑖, 𝑖 ≥ 2. 

 

The color codes of  𝑉(𝐵𝑃𝑛,1

∗𝑠 ) for odd  𝑛 and s are 

 

 

 

 



 
 

 𝑖 , for 2𝑛𝑑component, 𝑖 ≤
𝑛+1

2
 

 𝑖 − 1 , for 1𝑠𝑡component, 𝑖 ≤
𝑛+1

2
 

 𝑛 − 𝑖 + 1 , for 1𝑠𝑡component, 𝑖 >
𝑛+1

2
 

𝑐Π(𝑢𝑖) = 

 𝑛 − 𝑖 + 2 , for 2𝑛𝑑component,𝑖 >
𝑛+1

2
 

 0 , for 3𝑡ℎcomponent, 𝑖 even, 𝑖 ≥ 2 

    for 4𝑡ℎcomponent, 𝑖odd,  𝑖 ≥ 3 

 1 , otherwise. 

 

 𝑖 , for 1𝑠𝑡component, 𝑖 ≤
𝑛+1

2
 

 𝑖 − 1 , for 2𝑛𝑑component, 𝑖 ≤
𝑛+1

2
 

 𝑛 − 𝑖 + 1 , for 2𝑛𝑑component,𝑖 >
𝑛+1

2
 

𝑐Π(𝑢𝑛+𝑖) = 

 𝑛 − 𝑖 + 2 , for 1𝑠𝑡component,𝑖 >
𝑛+1

2
 

 0  , for 4𝑡ℎcomponent, 𝑖 even, 𝑖 ≥ 2 

     for 3𝑡ℎcomponent, 𝑖 odd, 𝑖 ≥ 3 

 1 , otherwise. 

 

 𝑖 , for 4𝑡ℎcomponent, 𝑖 ≤
𝑛−1

2
 

 𝑖 + 1 , for 3𝑡ℎcomponent,𝑖 ≤
𝑛−1

2
 

 𝑛 − 𝑖 , for 4𝑡ℎcomponent,𝑖 ≥
𝑛+1

2
 

𝑐Π(𝑤𝑖) = 

 𝑛 − 𝑖 + 1 , for 3𝑡ℎcomponent,𝑖 ≥
𝑛+1

2
 

 0 , for 2𝑛𝑑component, 𝑖 even, 𝑖 ≤ 𝑛 − 1 

    for 1𝑠𝑡component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2 

 1 , otherwise. 



 
 

 𝑖 , for 3𝑡ℎcomponent,𝑖 ≤
𝑛−1

2
 

 𝑖 + 1 , for 4𝑡ℎcomponent,𝑖 ≤
𝑛−1

2
 

 𝑛 − 𝑖 , for 3𝑡ℎcomponent, 𝑖 ≥
𝑛+1

2
 

𝑐Π(𝑤𝑛+𝑖) = 

 𝑛 − 𝑖 + 1 , for 4𝑡ℎcomponent, 𝑖 ≥
𝑛+1

2
 

 0 , for 1𝑠𝑡component, 𝑖even, 𝑖 ≤ 𝑛 − 1 

    for 2𝑛𝑑component, 𝑖odd, 𝑖 ≤ 𝑛 − 2 

 1 , otherwise. 

 𝑖 − 1 , for 1𝑠𝑡component, 𝑖 ≤
𝑠+1

2
 

 𝑖 + 2 , for 2𝑛𝑑component,𝑖 ≤
𝑠−1

2
 

 𝑠 − 𝑖 + 2 , for 1𝑠𝑡component,𝑖 >
𝑠+1

2
 

𝑐Π(𝑣𝑖) =   for 2𝑛𝑑component, 𝑖 ≥
𝑠+1

2
 

 2 , for 3𝑡ℎcomponent, 𝑖 = 1 

 0 , for 4𝑡ℎcomponent, 𝑖 even, 𝑖 ≥ 2 

   for 3𝑡ℎcomponent, 𝑖 odd, 𝑖 ≥ 3 

 1 , otherwise. 

For even s, define the following coloring. 

 1 , for𝑖 = 1 

𝑐(𝑢𝑖) = 3 , for even 𝑖,𝑖 ≥ 2 

 4 , for odd 𝑖,𝑖 ≥ 3 

 2 , for𝑖 = 1 

𝑐(𝑢𝑛+𝑖) = 3 , for  odd 𝑖, 𝑖 ≥ 3 

 4 , for even 𝑖, 𝑖 ≥ 2. 

 

 



 
 

 1 , for odd 𝑖, 𝑖 ≤ 𝑛 − 2 

𝑐(𝑤𝑖) = 2 , for even 𝑖, 𝑖 ≤ 𝑛 − 1 

 4 , for 𝑖 = 𝑛. 

 1 , for even 𝑖, 𝑖 ≤ 𝑛 − 1 

𝑐(𝑤𝑛+𝑖) = 2 , for odd 𝑖, 𝑖 ≤ 𝑛 − 2 

 3 , for 𝑖 = 𝑛. 

 1 , for 𝑖 = 1 

𝑐(𝑣𝑖) = 3 , for even 𝑖, 𝑖 ≥ 2 

 4 , for odd 𝑖, 𝑖 ≥ 3. 

The color codes of  𝑉(𝐵𝑃𝑛,1

∗𝑠 ) for odd  𝑛 and even s are 

 𝑖 , for 2𝑛𝑑component,𝑖 ≤
𝑛+1

2
 

 𝑖 − 1 , for 1𝑠𝑡component, 𝑖 ≤
𝑛+1

2
 

 𝑛 − 𝑖 + 1 , for 1𝑠𝑡component, 𝑖 >
𝑛+1

2
 

𝑐Π(𝑢𝑖) = 

 𝑛 − 𝑖 + 2 , for 2𝑛𝑑component, 𝑖 >
𝑛+1

2
 

 0 , for 3𝑡ℎcomponent, 𝑖 even, 𝑖 ≥ 2 

    for 4𝑡ℎcomponent,  𝑖 odd, 𝑖 ≥ 3 

 1 , otherwise. 

 𝑖 , for 1𝑠𝑡component, 𝑖 ≤
𝑛+1

2
 

 𝑖 − 1 , for 2𝑛𝑑component, 𝑖 ≤
𝑛+1

2
 

 𝑛 − 𝑖 + 1 , for 2𝑛𝑑component, 𝑖 >
𝑛+1

2
 

𝑐Π(𝑢𝑛+𝑖) = 

 𝑛 − 𝑖 + 2 , for 1𝑠𝑡component, 𝑖 >
𝑛+1

2
 

 0 , for 4𝑡ℎcomponent, 𝑖  even, 𝑖 ≥ 2 

    for 3𝑡ℎcomponent, 𝑖  odd, 𝑖 ≥ 3 



 
 

 1 , otherwise. 

 𝑖 , for 4𝑡ℎcomponent, 𝑖 ≤
𝑛−1

2
 

 𝑖 + 1 , for 3𝑡ℎcomponent,𝑖 ≤
𝑛−1

2
 

 𝑛 − 𝑖 , for 4𝑡ℎcomponent, 𝑖 ≥
𝑛+1

2
 

𝑐Π(𝑤𝑖) = 

 𝑛 − 𝑖 + 1 , for 3𝑡ℎcomponent, 𝑖 ≥
𝑛+1

2
 

 0 , for 2𝑛𝑑component, 𝑖 even, 𝑖 ≤ 𝑛 − 1 

  for 1𝑠𝑡component, 𝑖odd, 𝑖 ≤ 𝑛 − 2 

 1 , otherwise. 

 𝑖 , for 3𝑡ℎcomponent,𝑖 ≤
𝑛−1

2
 

 𝑖 + 1 , for 4𝑡ℎcomponent, 𝑖 ≤
𝑛−1

2
 

 𝑛 − 𝑖 , for 3𝑡ℎcomponent, 𝑖 ≥
𝑛+1

2
 

𝑐Π(𝑤𝑛+𝑖) = 

 𝑛 − 𝑖 + 1 , for 4𝑡ℎcomponent,𝑖 ≥
𝑛+1

2
 

 0 ,for 1𝑠𝑡component, 𝑖 even, 𝑖 ≤ 𝑛 − 1 

  for 2𝑛𝑑component, 𝑖 odd, 𝑖 ≤ 𝑛 − 2 

 1 , otherwise. 

 𝑖 − 1 , for 1𝑠𝑡component, 𝑖 ≤ (
𝑠

2
) + 1 

 𝑖 + 2 , for 2𝑛𝑑component,𝑖 ≤
𝑠

2
 

 𝑠 − 𝑖 + 2 , for 1𝑠𝑡component, 𝑖 > (
𝑠

2
) + 1 

𝑐Π(𝑣𝑖) =    for 2𝑛𝑑component, 𝑖 >
𝑠

2
 

 2 , for 3𝑡ℎcomponent, 𝑖 = 1 

 0 , for 3𝑡ℎcomponent, 𝑖 even, 𝑖 ≥ 2 

    for 4𝑡ℎcomponent, 𝑖 odd, 𝑖 ≥ 3 

 1 , otherwise 



 
 

Since all vertices in 𝐵𝑃𝑛,1

∗𝑠 for odd 𝑛 have distinct color codes, then c is the locating 

coloring using 4 colors. So,  𝜒𝐿(𝐵𝑃𝑛,1

∗𝑠 ) ≤ 4. 

 

Case 2 (𝒏 even). By Theorem 1.1, it is clear that have 𝜒𝐿(𝐵𝑃𝑛,1
) ≥ 5. Consider the 

following two sub cases.  

For 𝑠 odd, let c be a coloring using 5 colors as follows.  

 

 1 , for 𝑖 = 1 

𝑐(𝑢𝑖) = 3 , for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 2 

 4 , for odd 𝑖, 3 ≤ 𝑖 ≤ 𝑛 − 1 

 5 , for 𝑖 = 𝑛 

 2 , for 𝑖 = 1 

𝑐(𝑢𝑛+𝑖) = 3 , for odd 𝑖, 𝑖 ≥ 3 

 4 , for even 𝑖, 𝑖 ≥ 2 

 1 , for odd 𝑖, 𝑖 ≤ 𝑛 − 1 

𝑐(𝑤𝑖) = 2 , for even 𝑖, 𝑖 ≤ 𝑛 − 2 

 3 , for 𝑖 = 𝑛 − 1 

 5 , for 𝑖 = 𝑛. 

 

 1 , for even 𝑖, 𝑖 ≤ 𝑛 − 2 

𝑐(𝑤𝑛+𝑖) = 2 , for odd 𝑖, 𝑖 ≤ 𝑛 − 1 

 4 , for 𝑖 = 𝑛. 

 4 , for odd 𝑖, 1 ≤ 𝑖 ≤ 𝑠 

𝑐(𝑣𝑖) = 

 5 , for even 𝑖,1 ≤ 𝑖 ≤ 𝑠-1 

 

The color codes of  𝑉(𝐵𝑃𝑛,1

∗𝑠 ) for even 𝑛 and odd s are 

 



 
 

 𝑖 , for 2𝑛𝑑componentand5𝑡ℎ, 𝑖 ≤
𝑛

2
 

 𝑖 − 1 , for 1𝑠𝑡component, 𝑖 ≤
𝑛

2
 

 𝑛 − 𝑖 , for 5𝑡ℎcomponent, 𝑖 >
𝑛

2
 

 𝑛 − 𝑖 + 1 , for 1𝑠𝑡component, 𝑖 >
𝑛

2
 

 

𝑐Π(𝑢𝑖) = 𝑛 − 𝑖 + 2 , for 2𝑛𝑑component, 𝑖 >
𝑛

2
 

 0 , for 3𝑡ℎcomponent, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 2 

    for 4𝑡ℎcomponent, 𝑖 odd, 2 ≤ 𝑖 ≤ 𝑛 − 1 

 2 , for 4𝑡ℎcomponent, 𝑖 = 1 

    for 3𝑡ℎcomponent, 𝑖 = 𝑛 

1 , otherwise. 

2  

 𝑖 , for 1𝑠𝑡component, 𝑖 ≤
𝑛

2
 

 𝑖 − 1 , for 2𝑛𝑑component, 𝑖 ≤
𝑛

2
 

 𝑖 + 1 , for 5𝑡ℎcomponent, 𝑖 ≤
𝑛

2
 

 𝑛 − 𝑖 + 1 , for 2𝑛𝑑component and 5𝑡ℎ, 𝑖 >
𝑛

2
 

𝑐Π(𝑢𝑛+𝑖) = 

 𝑛 − 𝑖 + 2 , for 1𝑠𝑡component, 𝑖 >
𝑛

2
 

 0 , for 3𝑡ℎcomponent, 𝑖 odd, 3 ≤ 𝑖 ≤ 𝑛 − 1 

    for 4𝑡ℎcomponent, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 

 2 , for 3𝑡ℎcomponent, 𝑖 = 1 

 1 , otherwise. 

 

 

 

 



 
 

 𝑖 , for 5𝑡ℎcomponent, 𝑖 ≤
𝑛

2
 

 𝑖 + 1 , for 4𝑡ℎcomponent, 𝑖 ≤
𝑛

2
 

   for 3𝑡ℎcomponent, 𝑖 ≤ (
𝑛

2
) − 1 

 𝑛 − 𝑖 , for 5𝑡ℎcomponent, 𝑖 >
𝑛

2
 

 𝑛 − 𝑖 + 1 , for 4𝑡ℎcomponent, 𝑖 >
𝑛

2
 

𝑐Π(𝑤𝑖) = 

 𝑛 − 𝑖 − 1 , for 3𝑡ℎcomponent, 
𝑛

2
≤ 𝑖 ≤ 𝑛 − 1 

 0 , for 1𝑠𝑡component, 𝑖 odd, 𝑖 ≤ 𝑛 − 1 

    for 2𝑛𝑑component, 𝑖 even, 𝑖 ≤ 𝑛 − 2 

 2 , for 1𝑠𝑡component,𝑖 = 𝑛 − 1 

    for 2𝑛𝑑component, 𝑖 = 𝑛 

 1 , otherwise. 

 

 

 𝑖 , for 4𝑡ℎcomponent, 𝑖 ≤
𝑛

2
 

 𝑖 + 1 , for 5𝑡ℎcomponent, 𝑖 ≤
𝑛

2
 

 𝑖 + 2 , for 3𝑡ℎcomponent, 𝑖 ≤ (
𝑛

2
) − 1 

 𝑛 − 𝑖 , for 3𝑡ℎcomponent, 
𝑛

2
≤ 𝑖 ≤ 𝑛 − 1 

    for 4𝑡ℎcomponent, 𝑖 >
𝑛

2
 

𝑐Π(𝑤𝑛+𝑖) = 

 𝑛 − 𝑖 + 1 , for 5𝑡ℎcomponent,𝑖 >
𝑛

2
 

 0 , for 1𝑠𝑡component, 𝑖 even, 𝑖 ≤ 𝑛 − 2 

    for 2𝑛𝑑component, 𝑖odd,  𝑖 ≤ 𝑛 − 1 

 2 , for 1𝑠𝑡component and 3𝑡ℎ, 𝑖 = 𝑛 

 1 , otherwise. 



 
 

 𝑖 + 1 , for 1𝑠𝑡component, 𝑖 ≤
𝑠+1

2
 

 𝑖 + 2 , for 2𝑛𝑑component, 𝑖 ≤
𝑠+1

2
 

    for 3𝑡ℎcomponent, 𝑖 ≤
𝑠−1

2
 

 𝑠 − 𝑖 + 2 , for 1𝑠𝑡component, 𝑖 >
𝑠+1

2
 

𝑐Π(𝑣𝑖) =    for 3𝑡ℎcomponent, 𝑖 ≥
𝑠+1

2
 

 𝑠 − 𝑖 + 3 , for 2𝑛𝑑component, 𝑖 >
𝑠+1

2
 

 0 , for 4𝑡ℎcomponent, 𝑖odd, 1 ≤ 𝑖 ≤ 𝑠 

    for 5𝑡ℎcomponent, 𝑖 even, 1 ≤ 𝑖 ≤ 𝑠-1 

 1 , otherwise. 

 

For sub case 𝑠 even, we have 

 

 1 , for 𝑖 = 1 

𝑐(𝑢𝑖) = 3 , for even 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 2 

 4 , for odd 𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 1 

 5 , for𝑖 = 𝑛. 

 2 , for 𝑖 = 1 

𝑐(𝑢𝑛+𝑖) = 3 , for odd 𝑖, 𝑖 ≥ 3 

 4 , for even 𝑖, 𝑖 ≥ 2. 

 1 , for odd 𝑖, 𝑖 ≤ 𝑛 − 1 

𝑐(𝑤𝑖) = 2 , for even 𝑖, 𝑖 ≤ 𝑛 − 2 

 3 , for 𝑖 = 𝑛 − 1 

 4 , for 𝑖 = 𝑛. 

 



 
 

 1 , for even 𝑖, 𝑖 ≤ 𝑛 − 2 

𝑐(𝑤𝑛+𝑖) = 2 , for odd 𝑖, 𝑖 ≤ 𝑛 − 1 

 5 , for 𝑖 = 𝑛. 

 4 , for odd 𝑖, 1 ≤ 𝑖 ≤ 𝑠-1 

𝑐(𝑣𝑖) = 

 5 , for even 𝑖, 1 ≤ 𝑖 ≤ 𝑠 

The color codes of  𝑉(𝐵𝑃𝑛,1

∗𝑠 ) for even  𝑛 and s are 

 𝑖 , for 2𝑛𝑑componentand 5𝑡ℎ, 𝑖 ≤
𝑛

2
 

 𝑖 − 1 , for 1𝑠𝑡component, 𝑖 ≤
𝑛

2
 

 𝑛 − 𝑖 , for 5𝑡ℎcomponent, 𝑖 >
𝑛

2
 

 𝑛 − 𝑖 + 1 , for 1𝑠𝑡component, 𝑖 >
𝑛

2
 

 

𝑐Π(𝑢𝑖) = 𝑛 − 𝑖 + 2 ,for 2𝑛𝑑component, 𝑖 >
𝑛

2
 

 0 , for 3𝑡ℎcomponent, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 − 2 

    for 4𝑡ℎcomponent, 𝑖odd, 2 ≤ 𝑖 ≤ 𝑛 − 1 

 2 , for 4𝑡ℎcomponent, 𝑖 = 1 

  for 3𝑡ℎcomponent, 𝑖 = 𝑛 

 1 , otherwise. 

 

 

 

 

 

 

 

 



 
 

 𝑖 , for 1𝑠𝑡component,𝑖 ≤
𝑛

2
 

 𝑖 − 1 , for 2𝑛𝑑component,𝑖 ≤
𝑛

2
 

 𝑖 + 1 , for 5𝑡ℎcomponent, 𝑖 ≤
𝑛

2
 

 𝑛 − 𝑖 + 1 , for 2𝑛𝑑componentand 5𝑡ℎ, 𝑖 >
𝑛

2
 

𝑐Π(𝑢𝑛+𝑖) = 

 𝑛 − 𝑖 + 2 , for 1𝑠𝑡component, 𝑖 >
𝑛

2
 

 0 , for 3𝑡ℎcomponent, 𝑖 odd, 2 ≤ 𝑖 ≤ 𝑛-1 

    for 4𝑡ℎcomponent, 𝑖 even, 2 ≤ 𝑖 ≤ 𝑛 

 2 , for 3𝑡ℎcomponent, 𝑖 = 1 

 1 , otherwise. 

 

 

 𝑖 ,for 4𝑡ℎcomponent, 𝑖 ≤
𝑛

2
 

 𝑖 + 1 , for 5𝑡ℎcomponent,𝑖 ≤
𝑛

2
 

  for 3𝑡ℎcomponent, 𝑖 ≤ (
𝑛

2
) − 1 

 𝑛 − 𝑖 , for 4𝑡ℎcomponent, 𝑖 >
𝑛

2
 

 𝑛 − 𝑖 + 1 , for 5𝑡ℎcomponent,𝑖 >
𝑛

2
 

𝑐Π(𝑤𝑖) = 

 𝑛 − 𝑖 − 1 , for 3𝑡ℎcomponent, 
𝑛

2
≤ 𝑖 ≤ 𝑛 − 1 

 0 , for 1𝑠𝑡component, 𝑖odd, 𝑖 ≤ 𝑛 − 1 

  for 2𝑛𝑑component, 𝑖 even, 𝑖 ≤ 𝑛 − 2 

 2 , for 1𝑠𝑡component, 𝑖 = 𝑛 − 1 

  for 2𝑛𝑑component, 𝑖 = 𝑛 

 1 , otherwise. 

 



 
 

 𝑖 ,for 5𝑡ℎcomponent, 𝑖 ≤
𝑛

2
 

 𝑖 + 1 , for 4𝑡ℎcomponent, 𝑖 ≤
𝑛

2
 

 𝑖 + 2 ,for 3𝑡ℎcomponent,𝑖 ≤ (
𝑛

2
) − 1 

 𝑛 − 𝑖 , for 3𝑡ℎcomponent, 
𝑛

2
≤ 𝑖 ≤ 𝑛 − 1 

  for 5𝑡ℎcomponent, 𝑖 >
𝑛

2
 

𝑐Π(𝑤𝑛+𝑖) = 

 𝑛 − 𝑖 + 1 , for 4𝑡ℎcomponent,𝑖 >
𝑛

2
 

 0 , for 1𝑠𝑡component, 𝑖 even, 𝑖 ≤ 𝑛 − 2 

    for 2𝑛𝑑component, 𝑖odd, 𝑖 ≤ 𝑛 − 1 

 2 , for 1𝑠𝑡component and 3𝑡ℎ, 𝑖 = 𝑛 

 1 , otherwise. 

 

 

 𝑖 + 1 , for 1𝑠𝑡component, 𝑖 ≤
𝑠

2
 

 𝑖 + 2 , for 2𝑛𝑑component,𝑖 ≤
𝑠

2
 

    for 3𝑡ℎcomponent, 𝑖 ≤
𝑠

2
 

 𝑠 − 𝑖 + 2 , for 1𝑠𝑡component,𝑖 >
𝑠

2
 

𝑐Π(𝑣𝑖) =   for 3𝑡ℎcomponent, 𝑖 >
𝑠

2
 

 𝑠 − 𝑖 + 3 , for 2𝑛𝑑component,  𝑖 >
𝑠

2
 

 0 , for 4𝑡ℎcomponent, 𝑖 odd, 1 ≤ 𝑖 ≤ 𝑠-1 

    for 5𝑡ℎcomponent, 𝑖 even, 1 ≤ 𝑖 ≤ 𝑠 

 1 , otherwise. 

Since all vertices in  𝐵𝑃𝑛,1

∗𝑠   for even 𝑛 have distinct color codes, then c is the 

locating coloring using 4 colors. Therefore, the locating chromatic number of the 

subdividing barbell graph containing generalized Petersen graph, 𝜒𝐿(𝐵𝑃𝑛,1

∗𝑠 ) ≤

5.This completes the proof.  
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Title: On the Locating Chromatic Number of Subdivision of Barbell Graphs Containing 

Generalized Petersen Graph 

 

Comments and Suggestions for Authors 

 

In this paper the authors have determined the locating-chrormatic number of Subdivision of 

Barbell Graphs Containing Generalized Petersen Graphs. The main results is given one big 

theorem.  I have the following comments about the paper. Can the author give some examples of 

Subdivision of barbell graphs containing generalized graphs for small values of n?.  The current 

version of the paper is very dificult to read and follow. I hope few visual resuts wil make  more 

readable.  It would be very helpful if the author can demonstrate theorem  with the help of small 

the graphs (at least for one case).  From the title and the introduction of the manuscript, one gets 

the feeling that the authors have proposed a procedure (algorithm) for determining the locating-

chromatic number. However, according to Theorem the locating number of the graphs is 4 or 5. 

d(x,y) is not defined in the paper. 
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Abstract 
The locating chromatic number of a graph is the minimal color 

required so that it qualifies for some locating coloring. This paper 

will discuss about the locating chromatic number for the 

subdivision of barbell graph containing Petersen Graph. 

Key words: 
locating chromatic number, barbell graph, subdivision, Petersen 

graph. 

1. Introduction 

The locating chromatic number of a graph was firstly 

studied by Chartrand et al. [1] as some development of the 

concept of partition dimension[2] and graph coloring. 

Consider  as the given connected graph and  

as the proper coloring of  using k colors  for 

some positive integer k. We denote  as 

the partition of , where 𝐶𝑖 is the color class, i.e the 

set of vertices given the i-th color, for . For an 

arbitrary vertex v  V(G), the color code  is defined 

as the ordered -tuple 

𝑐𝜋(𝑣) = (𝑑(𝑣, 𝐶1), 𝑑(𝑣, 𝐶2), … , 𝑑(𝑣, 𝐶𝑘)), 

 

where for . If 

for every two vertices u,v V(G), their color codes are 

different, 𝑐𝜋(𝑢) ≠  𝑐𝜋(𝑣), then c is defined as the locating 

coloring of using k colors. The locating chromatic 

number of G, denoted by 𝜒𝐿(𝐺), is the minimum k such that 

G has some locating coloring. 

There were some interesting results related to the 

determination of the locating chromatic number of some 

graphs. The results were obtained by focusing on some 

certain classes of graph. Chartrand et al. [3] has succeeded 

in constructing tree on n vertices, 𝑛 ≥ 5  with locating 

chromatic numbers varying from 3 to n, except for (𝑛 − 1). 

Moreover, Asmiati et al. [4] determined the locating 

chromatic number of homogeneous amalgamation of stars 

and their monotonicity properties. Recently, Behtoei and 

Omoomi [5] have obtained the locating chromatic number 

of the Kneser graph. Asmiati et al. [6] determined the 

locating chromatic number of Petersen graph and Syofyan 

et al. [7] trees with certain locating chromatic number. 

The barbell graph is constructed by connecting two 

arbitrary connected graphs G and H by a bridge. Let 

𝐵𝑃𝑛,1
for n ≥ 3, be the barbell graph where G and H are two 

copies of generalized Petersen graphs 𝑃𝑛,1. The following 

definition of generalized Petersen graph is taken from [8]. 

Let {𝑢1, 𝑢2, … , 𝑢𝑛} be the set of vertices in the outer cycle 

and {𝑣1, 𝑣2, … , 𝑣𝑛} be the set of vertices in the inner cycle 

of the Petersen graph, for n ≥ 3. Denote the generalized 

Petersen graph by𝑃𝑛,𝑘. From the definition, it is clear that 

for n ≥ 3 and 1 ≤ 𝑘 ≤ ⌈𝑛 − 1)/2⌉, the generalized Petersen 

graph has 2𝑛 vertices and 3n edges.  

In [9], the locating chromatic number of the barbell graph 

containing two copies of generalized Petersen graphs 𝑃𝑛,1 

has been obtained in the following theorem.  

Theorem 1.1 [9] For 𝑛 ≥ 3, the locating chromatic number 

of barbell graph 𝐵𝑃𝑛,1
is 4 for odd 𝑛 and 5 otherwise. 

This paper will determine the locating chromatic of some 

graph constructed by subdividing the bridge of the barbell 

that contains the generalized Petersen graph, denoted by 

𝐵𝑃𝑛,1
∗𝑠 . This problem is inspired by the results of research 

Purwasih et. al [10] about the locating chromatic number 

for a subdivision of a graph on  one edge. 

2. Results and Discussion 

In the following theorem, it is discussed about the locating 

chromatic number for subdivision of some barbell graph 

containing Petersen graph, denoted by𝐵𝑃𝑛,1
∗𝑠 . 

2.1 Theorem 

Let  𝐵𝑃𝑛,1
∗𝑠  be a subdivision of barbell graph containing 

Petersen Graph for 𝑠 ≥ 1.  Then the locating chromatic 

number of  𝐵𝑃𝑛,1
∗𝑠 is 4 for odd n, 𝑛 ≥ 3 or 5 for n even, 𝑛 ≥

4. 

( , )G V E c

G 1,2, ,k

1 2{ , ,..., }kC C C

( )V G

 1,i k

( )c v

k

( , ) min{ ( , ) | }i id v C d v x x C   1,i k

G
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Proof. Let 𝐵𝑃𝑛,1
∗𝑠   be a subdivision barbell graph for  𝑛 ≥

3, 𝑠 ≥ 1 with the vertex set 

 𝑉(𝐵𝑃𝑛,1
∗𝑠 ) = {𝑢𝑖 , 𝑢𝑛+𝑖 , 𝑤𝑖 , 𝑤𝑛+𝑖: 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣𝑖: 1 ≤

𝑖 ≤ 𝑠}  , and edge set  𝐸(𝐵𝑃𝑛,1
∗𝑠 ) = {𝑢𝑖𝑢𝑖+1 , 

𝑢𝑛+𝑖𝑢𝑛+𝑖+1, 𝑤𝑖 𝑤𝑖+1, 𝑤𝑛+𝑖 𝑤𝑛+𝑖+1: 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪
{𝑢𝑛𝑢1,  𝑢2𝑛𝑢𝑛+1, 𝑤𝑛 𝑤1 , 𝑤2𝑛 𝑤𝑛+1} ∪ {𝑢𝑖𝑢𝑛+1, 𝑤𝑖 𝑤𝑛+1 ∶
 1 ≤ 𝑖 ≤ 𝑛} ∪  
{𝑢𝑛 𝑤𝑛} ∪ {𝑢𝑛 𝑣1,𝑣𝑠 𝑤𝑛  } ∪  {𝑣𝑖𝑣𝑖+1: 1 ≤ 𝑖 ≤ 𝑠 − 1}. 

 

Let us distinguish four cases. 

Case 1. n odd.  According to Theorem 1.1, it is clear 

that𝜒𝐿(𝐵𝑃𝑛,1
∗𝑠 ) ≥ 4. 

To determine the upper bound for the locating chromatic 

number of subdivision Petersen graph𝐵𝑃𝑛,1
∗𝑠 , construct some 

locating coloring c using 4 colors as follows.  

For odd s, define the following coloring 

 
 

 
 

 
 

 
 

 
 

The color codes of  𝑉(𝐵𝑃𝑛,1
∗𝑠 ) for odd  𝑛 and s are 
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For even s, define the following coloring. 

 

 
 

 
 

 
 

 
 

 
 

The color codes of  𝑉(𝐵𝑃𝑛,1
∗𝑠 ) for odd  𝑛 and even s are 
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Since all vertices in 𝐵𝑃𝑛,1
∗𝑠 for odd 𝑛 have distinct color codes, 

then c is the locating coloring using 4 colors. So, 

𝜒𝐿(𝐵𝑃𝑛,1
∗𝑠 ) ≤ 4. 

Case 2 ( 𝒏 even). By Theorem 1.1, it is clear that 

have 𝜒𝐿(𝐵𝑃𝑛,1
) ≥ 5. Consider the following two sub cases.  

For 𝑠 odd, let c be a coloring using 5 colors as follows.  
 

 
 

 
 

 
 

 
 

 
 

The color codes of  𝑉(𝐵𝑃𝑛,1
∗𝑠 ) for even 𝑛 and odd s are 
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For sub case 𝑠 even, we have 

 

 
 

 
 

 

 
 

 
 

The color codes of  𝑉(𝐵𝑃𝑛,1
∗𝑠 ) for even  𝑛 and s are 
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Since all vertices in 𝐵𝑃𝑛,1
∗𝑠  for even 𝑛  have distinct color 

codes, then c is the locating coloring using 4 colors. 

Therefore, the locating chromatic number of the 

subdividing barbell graph containing generalized Petersen 

graph, 𝜒𝐿(𝐵𝑃𝑛,1
∗𝑠 ) ≤ 5.This completes the proof. 

Acknowledgement 

We are thankful to DRPM Dikti for the Fundamental 

Reseach Grant 2019. 

 

References 
[1] Chartrand, G., Erwin, D., Henning, M.A., Slater, P.J., and 

Zhang, P., The Locating-Chromatic Number of a Graph, Bull. 

Inst. Combin. Appl., vol. 36, pp. 89-101, 2002. 

[2] Chartrand, G., Salehi, E., and Zhang, P., On the partition 

dimension of graph. Congr. Numer., 130, pp. 157-168, 1998. 

[3] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zhang, 

Graph of order n with locating-chromatic number n −1 , 

Discrete Math. vol 269, pp. 65-79, 2003. 

[4] Asmiati, H. Assiyatun, E.T. Baskoro, Locating-Chromatic 

Number of Amalgamation of Stars, ITB J. Sci., vol. 43, no. 

1, pp. 1-8, 2011. 

[5] A. Behtoei,  B. Omoomi, On the locating chromatic number 

Kneser Graphs, Discrete Applied Mathematics, 159, pp. 

2214-2221, 2011. 

[6] Asmiati, Wamiliana, Devriyadi, L. Yulianti, On Some 

Petersen Graphs Having Locating-Chromatic Number Four 

or Five, Far East Journal of Mathematical Sciences, vol. 102, 

no. 4, pp. 769-778, 2017. 

[7] D.K. Syofyan, E.T. Baskoro, H. Assiyatun, Trees with 

Certain Locating-Chromatic Number, J. Math. Fund. Sci., 

48(1), pp. 39 – 47, 2016. 

[8] M.E. Watkins, A theorem on Tait coloring with an 

application to the generalized Petersen graphs, J. Combin. 

Theory. 6., pp. 152-164, 1969. 

[9] Asmiati, K.G. Yana,  L. Yulianti,  On the locating chromatic 

number of certain barbell graphs, International Journal of 

Mathematics and Mathematical Sciences, pp. 1-5, 2018. 

[10] I.A. Purwasih, E.T. Baskoro, H. Assiyatun, D. Suprijanto, 

The Bounds on The Locating-Chromatic Number for a 

Subdivision of a Graph on One Edge, Procedia Computer 

Science., 74, pp. 84 – 88, 2015. 

 

https://wmich.pure.elsevier.com/en/publications/the-locating-chromatic-number-of-a-graph-2
https://wmich.pure.elsevier.com/en/publications/the-locating-chromatic-number-of-a-graph-2

	Corresponding author IJCSNS.pdf (p.1-4)
	Asmiati's Copy right.pdf (p.5)
	Paper Submit.pdf (p.6-20)
	Comments  Reviewer .pdf (p.21)
	Locating Subdivisi Barbel Graph.pdf (p.22-27)

