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Abstract. The locating chromatic number of a graph is the minimal color required
so that it qualifies for a locating coloring. In this paper we will discuss about the
locating chromatic number of barbell graph; where both of them contain a complete
graph Ky or Petersen graph Pn 1 for n > 3.

Keyword: locating chromatic number, barbell graph, complete graph, Petersen
graph.

1. Introduction

The partition dimension was introduced by Chartrand et al. [5] as the development
of the concept of metric dimension. The application of metric dimension plays a
role in robotic navigation [11], the optimization of threat detecting sensors [10],
chemical data classification [8]. The concept of locating chromatic number is a
marriage between the partition dimension and coloring of a graph, first introduced
by Chartrand et al in 2002 [6]. The locating chromatic number of a graph is a newly
interesting topic to study because there is no general theorem for determining the
locating chromatic number of any graph.

Consider G =(V,E) as the given connected graph and ¢ as the proper coloring of
G using k colors 1,2,...,k for some positive integer k. We denote 11={C,,C,,...,C.}
as the partition of V (G), where C; is the color class, i.e the set of vertices that given
the i-th color, for i e[1k]. For an arbitrary vertex v e V(G), the color code ¢ (V) is

defined as the ordered k -tuple

CTL’(U) = (d(v, Cl): d(U, CZ)! L) d(U, Ck));
where d(v,C;) =min{d(v,x)|xeC}for ie[1k]. If for every two vertices uyv e
V(G), their color codes are different, c,(u) # c,(v),then ¢ is defined as the
locating coloring of G using k colors. The locating chromatic number of G, denoted
by x..(G), is the minimum k such that G has a locating coloring.

The following theorem is a basic theorem about the locating chromatic number of
agraph, proven by Chartrand et al. [6]. The neighborhood of vertex s in a connected
graph G, denoted by N(s), is the set of vertices adjacent to s.
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Theorem 1.1 [6] Let ¢ be a locating coloring in a connected graph G . If s and
t are distinct vertices of G such that d(s,u)=d(t,u) for all ueV(G)-{s,t}, then

c(s)=c(t). In particular, if s and t are non-adjacent vertices of G such that
N(s)=N(t), then c(s) =c(t).

The following corollary gives the lower bound of the locating chromatic number
for every connected graph G.
Corollary 1.1 [6] If G is a connected graph and there is a vertex adjacent to k
leaves, then x,(G) = k + 1.

There are some interesting results related to the determination of the locating
chromatic number of some graphs. The results are obtained by focusing on some
certain graph classes. Chartrand et al. [7] has successed in constructing tree on n
vertices, n = 5 with locating chromatic numbers varying from 3 to n, except for
(n —1). Then Behtoei and Omoomi [4] have obtained the locating chromatic
number of the Kneser graph. Recently, Asmiati et al.[1] obtained the locating
chromatic number of Petersen Graph, Pn 1, forn > 3.

There are some recent results for some special cases of trees as follows. Asmiati et
al. [3] has successed in determining the locating chromatic number of homogeneous
amalgamation of stars and their monotonicity properties and Asmiati et al. [2] for
firecracker graphs. Next, Des Wellyyanti et al.[9] determined the locating
chromatic number for complete n-ary tree.

The following definition of Petersen graph is taken from [1]. Let {uy, u, ..., u, } be
the set of vertices in the outer cycle and {v,, v,, ..., v,,} be the set of vertices in the
inner cycle, for n> 3. From the definition, we have that the Petersen graph, denoted

by P, ,forn>3and1 <k < [anJ has 2n vertices and 3n edges.

Theorem 1.2 and Theorem 1.3 gave the locating chromatic numbers for complete
graph and Petersen graph.

Theorem 1.2 [7]
For n > 2, the locating chromatic number of complete graph K is n.

Theorem 1.3 [1]
The locating chromatic number of Petersen Graph P, ; is 4 for odd n > 3 or 5 for
evenn = 4.

The barbell graph is constructed by connecting two arbitrary connected graphs G
and H by a bridge. In this paper, firstly we discuss the locating chromatic number
of barbell graph B, for m,n > 3, where G and H are two copies of complete graph
on mand n vertices, Knand Kh, respectively. If m = n, we denote the barbell graph
by Bn,n. Secondly, we obtain the locating chromatic number of barbell graph Bp, ,

for n>3, where G and H are two copies of Petersen graphs P,, ; .



2. Results and Discussion

Theorem 2.1
The locating chromatic number of Barbell Graph Bnnis n + 1, forn > 3.

Proof:

First, we determine the lower bound of the locating chromatic number for barbell
graph B,, , for n > 3. Since the barbell graph B,, ,, contains the complete graph K,
then by Theorem 1.2, we have y L(Bn,n) > n. Next, suppose that c is the locating

coloring using n colors. It is clear that there are two vertices have the same color
codes, a contrary. Thus, we have that y L(Bn,n) >n+ 1.

Next, we construct the upper bound of the locating chromatic number for barbell
graph By, ,,. The set of vertices of the first complete graph is denoted by V(K1) =
{ u;; i € [1,n]}, whereas the set of vertices of the second complete graph is denoted
by V(K7) = {v;; i € [1,n]}.

Let ¢ be a coloring on B,, using n + 1 colors. We assign the following colors
of V(Bpn):

c(u;)) =i 1<i<n

i ,2<i<n-—1,
c(v;) = n i =1;
n+ 1 , otherwise.

By using this coloring, we obtain the color codes of V (B, ,) as follows.

0 , ()th — component for 1 <i < n;
cn(uy) = 2 , (n + 1)th — component for 1 <i<n-1;
1 , otherwise.
0 , ()th — componentfor 2 <i<n-—1,or

(n)th — component for i =1, or
(n+ 1) — component for i = n;

cn(v) = <
3 , (1)st — componentfor 1 <i<n-—1;
2 , (1)st — component for i = n;
- 1 , otherwise.

Since all vertices on V (B, ,,) have distinct color codes, then c is a locating coloring.
Thus, ZL(Bn,n) <n+1. O



The following figure is a minimum locating coloring of barbell graph B ¢.

Figure 1. A minimum locating coloring of barbell graph Bg ¢
The following Corollary 2.2 is the direct consequence of Theorem 2.1.

Corollary 2.2
Forn,m = 3 and m # n, the locating chromatic number of barbell graph B, ,, is

X1 (Bin) = max {n,m}.

Theorem 2.3
For n = 3, the locating chromatic number of barbell graph Bp, , is

_ (4, foroddn
XL(BPn.l) - {S,for evenn

Proof. To prove this theorem, we consider two cases as follows.
Casel. [ (Bp,,) =4, forodd n.

Since the barbell graph Bp, , contains Petersen Graph P, for odd n, then by
Theorem 1.3, we have y L(Bpn'l) > 4.

Next, we determine the upper bound of the locating chromatic number of B, . For

odd n, let {u;,u,y;; i € [1,n]} be the set of vertices of the first Petersen Graph
and {w;,w,,,;; i € [1,n]} be the set of vertices of the second Petersen Graph.

Let ¢ be a coloring of V(Bp, ,) using 4 colors, defined as follows:

1 =1,

c(u) = { 3 , foreveni, i > 2;
4 ,foroddi, i = 3.
2 =1

c(Upyi) ={3 , foroddi = 3;
4 , foreveni > 2.



1 ,oddi<n-—1;
c(wy) = {2 ,eveni <n-—1;

3 ,L=n.

1 ,eveni <n—1,;
c(Wpyi) = 2 ,oddi <n—1;

4 i =n.

The color codes of V(Bp,,) forodd n are:

(i , (2)nd — component for i < nTH X
i—1 , (1)st — component for i < nTH X
n—i+ 1, (1)st — component for i > nTH :
cn(w) = < )
n—1i+2,(2)nd — component i > %;
0 , (3)th — component foreven i > 2 ;
(4)th — component forodd i > 2;
N1 , otherwise.
(i , (1)st — component for i < nTH :
i—1 , (2)nd — component for i < nTH :
n—i+1,(2)nd — component for i > nTH :
cn(pei) =< 1
n—i+ 2, (1)st — component for i > % :
0 , (4)th — component for even > 2 ;
(3)th — component forodd i > 2 ;
1 , otherwise.
ri , (3)th — component for i < n% :
i+1 , (4)th — component for i < nT_l ;
n—i , (3)th — component for i > nTH .
cn(wy) =<

n—i+ 1, (4)th — component for i > nTH ;

0 , (2)nd — component for even i <n —1;
(1)st — component forodd i <n —1;

1 , otherwise.




(i , (4)th — component for i < nT_l ;

i+1 , (3)th — component for i < nT_l ;

n—i , (4)th — component for i > nTH X

cn(Wni) =< .
n—1i+ 1, (3)th — component for i > % X
0 , (1)th — component foreven i <n—1;
(2)th — component forodd i <n—1;

1 : otherwise.

Since all vertices on V(Bp, , ) have distinct color codes, then c is a locating coloring.
As the result, we have that 7 (Bp,,) < 4.

Case2. y (Bp,,)=75,forevenn.
Ly '
Since the barbell graph Bp, , contains Petersen Graph P, for even n, then by
Theorem 1.3, we have y (Bp,,) = 5.
L~ 'm

Next, we determine the upper bound of the locating chromatic number of Bp, , for
even n. Let ¢ be a coloring of B, , using 5 colors as follows:

1 =1,

3 ,even2<is<n-—1;
c(u) =

4 ,odd2<i<n-—1;

5 Ji=n.

2 1 =1;
c(un+i)={3 ,oddi > 2;

4 ,eveni = 2 ;

1 ,oddi<n-—2;

2 ,eveni <n-—2.
c(wy) =

3 ,i=n-—1;

4 i =n.

1 ,eveni <n-—1;
c(Wpyi) =< 2 ,oddi<n-—-1,;

5 i =n.

The color codes of V(Bp,,) forevenn are:



/i , (2)nd, (5)th — component for i <

N3

i—1 , (1)st — component for i < 2 ;
n—i , (5)th — component for i > g :
n—i+ 1, (1)st — component fori > g X

cn(u) = < n—i+ 2, (2)nd — component for i > 2 ;

0 , (3)th — component foreven2 <i <n-—1;
(4)th — component forodd 2 <i<n-—1;
2 , (4)th — component for i = 1;
(3)th — component for i = n;
1 , otherwise.
i , (1)st — component for i < % X
i—1 , (2)nd — component for i < 2 :
i+1 , (5)th — component for i < % ;
n—i+1,(2)ndand (5) — components for i > 2 :
cn(Uni) =< N
n—i+ 2, (1)th — component for i > >
0 , (3)th — component forodd 2 <i < n;
(4)th — component foreven 2 <i < n;
2 , (3)th — component fori = 1;
1 , otherwise.
s i , (4)th — component for i < g X
i+1 , (5)th — component for i < g ;
(3)th — component for i < (g) -1;
n—i , (4)th — component for i > % :
n—i+ 1, (5)th - component for i > g .
cn(wy) =<
n—i—1,(3)th — component for ES i<n-—-1;
0 , (1)st — component forodd i < n — 2;
(2)nd — component for odd i <n — 2;
2 , (1)st — component fori =n —1;

(2)nd — component for i = n;
\ 1 , otherwise.



/i , (5)th — component for i < % X

i+1 , (4)th — component for i < 2 ;

i+ 2 , (3)th — component for i < (g) - 1;

n—i , (3)th — component for 2 <i<n-1;
cr(Whpi) =< (5)th — component for i > % ;

n—1i+ 1, (4)th — component for i > g :

0 , (1)th — component foreven i <n —1;

(2)th — component forodd i <n —1;
2 , (stand (3)th — component for i = n;

1 . otherwise.

Since all vertices have distinct color codes on V(Bp,,) for even n, then c is a
locating coloring. Thus, we have that L(Bpn_l) <5. O

The following figure is a minimum locating coloring of barbell graph Bp_, .

Figure 2. A minimum locating coloring of Bp, ,
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REFEREE’S REPORT

on the paper 5327504
Title : On the locating chromatic number of some barbell graphs
Authors: Asmiati, I Ketut Sadha Gunce Yana and Lyra Yulianti

The locating chromatic number of a graph G is defined as the cardinality of a
minimum resolving partition of the vertex set V(G) such that all vertices have
distinct coordinates with respect to this partition and every two adjacent vertices
in G are not contained in the same partition class. In this case, the coordinate
of a vertex v in G is expressed in terms of the distances of v to all partition
classes. This concept is a special case of the graph partition dimension notion.
In the present paper the authors investigate the locating chromatic number for
two families of barbell graphs.

The topic is actual and the results are interesting. Due to the fact that no general
theorem for determining the locating chromatic number of graphs is known, it
make sense to investigate the locating chromatic number for families of graphs.

The present version of the paper is not prepared carefully and contains several
incorrectness and formal mistakes.

Therefore I do not recommend the publication of the paper as it is. A revised
version of the paper prepared by the comments below can be accepted for pub-
lication.

Comments:

Page 1, title: write ”certain” instead ”some”
Page 1: Rewrite Abstract with using the definition on locating coloring.

Page 2, after Corollary 1.1: Complete information of the paper [Baskoro, E.T.,
Asmiati, Characterizing all trees with locating-chromatic number 3, Electronic
Journal of Graph Theory and Applications 1(2) (2013), pp. 109-117.], where are
characterized all trees with locating-chromatic number 3.

Page 2, Petersen graph: The Petersen graph contains only 10 vertices and 15
edges. You want to consider the generalized Petersen graph P(n,m) with 2n
vertices and 3n edges which was introduced in [Watkins, M.E., A theorem on
Tait colorings with an application to the generalized Petersen graphs, J. Combin.
Theory 6 (1969), pp. 152-164.]

Page 2, Theorem 1.3: complete ”generalized” before ” Petersen”



Page 2, line -4: after m,n > 3 write "where G and H are complete graphs on m
and n vertices, respectively.”

Page 3, Proof of Theorem 2.1 start as follows: Let B, ,,, n > 3, be the barbell
graph with the vertex set V(By,,) = {u;;v; : 1 < i < n} and the edge set
n—1

n—1
EBnn) = U{uiuir; 1 <j<n—i}U U {vivig; : 1 <j<n—i} U{upv,}.

i=1 1=1

Page 3, in the proof of Theorem 2.1 and also in the proof of Theorem 2.3: use
7t instead ” (i)th”

Page 4, Corollary 2.2: "max{n,m}” should be "max{n,m} +1”

Page 5, line 1 and line 5: ”i < n — 1”7 change for 7i <n — 2”

Page 5, line 13: 77 > 2” change for "¢ > 3”

Page 5, line -2 and on page 6, lines 6 and 16: ”i < n —1” change for 7i < n —2”
Page 7, line 16: write 73 <i <n — 1" instead "2 < < n”

Page 7, line -5: 71 < n — 2” change for i < n — 3"

Page 7, line -4: write ”for even ¢ < n — 2” instead ”for odd ¢ < n — 2”

Page 8, line 7: 7i < n — 1" change for i <n — 2"



REFEREE’S REPORT

on the revised version of the paper 5327504.v2
Title : On the locating chromatic number of certain barbell graphs
Authors: Asmiati, I Ketut Sadha Gunce Yana and Lyra Yulianti

Again the revised version of the paper is not prepared carefully and the authors
did not accept all suggestions and recommendations given in the referee’s report.
Therefore I do not recommend the publication of the paper as it is. A revised
version of the paper prepared by the comments below can be accepted for pub-
lication.

Comments:

Page 1, Abstract rewrite by the following way: The locating chromatic number
of a graph G is defined as the cardinality of a minimum resolving partition of
the vertex set V' (G) such that all vertices have distinct coordinates with respect
to this partition and every two adjacent vertices in G are not contained in the
same partition class. In this case, the coordinate of a vertex v in G is expressed
in terms of the distances of v to all partition classes. This concept is a special
case of the graph partition dimension notion.

In this paper we investigate the locating chromatic number for two families of
barbell graphs.

Page 1, lines from -1 to -6 and on page 2 lines from 1 up to 7 - rewrite by the
following way: Let G = (V, E') be a connected graph. We define the distance as
the minimum length of path connecting vertices v and v in G, denoted by d(u, v).
A k-coloring of G is a function ¢ : V(G) — {1,2,...,k} where c(u) # c(v) for
any two adjacent vertices u and v in G. Thus, the coloring ¢ induces a partition
IT of V(@) into k color classes (independent sets) C1, Ca, ..., Cy where C; is the
set of all vertices colored by the color i for 1 < i < k. The color code cri(v) of
a vertex v in G is defined as the k-vector (d(v,C1),d(v,Cs),...,d(v,C))) where
d(v,C;) = min{d(v,z) : x € C;} for 1 < i < k. The k-coloring ¢ of G such
that all vertices have different color codes is called a locating coloring of G. The
locating chromatic number of G, denoted by x1.(G), is the minimum & such that
G has a locating coloring.

The following theorem is a basic theorem proved by Chartrand et al. in [8]. The
neighborhood of vertex s in a connected graph G, denoted by N(s), is the set of
vertices adjacent to s.

Page 2, the text after Corollary 1.1 until Theorem 1.2. rewrite by the follow-
ing way: There are some interesting results related to the determination of the



locating chromatic number of some graphs. The results are obtained by focus-
ing on certain families of graphs. Chartrand, et al. in [8] have determined all
graphs of order n with locating chromatic number n, namely a complete mul-
tipartite graphs of n vertices. Moreover, Chartrand et al. [9] have succeeded
in constructing trees on n vertices, n > 5, with locating chromatic numbers
varying from 3 to n, except for (n —1). Then Behtoei and Omoomi [6] have ob-
tained the locating chromatic number of the Kneser graphs. Recently, Asmiati
et al. [1] obtained the locating chromatic number of the generalized Petersen
graph P(n,1) for n > 3. Baskoro and Asmiati [5] have characterized all trees
with locating-chromatic number 3. In [Syofyan, D.K., Baskoro, E.T., Assiyatun,
H., Trees with Certain Locating-Chromatic Number, J. Math. Fund. Sci. 48(1)
(2016), pp. 39-47] were characterized all trees of order n with locating chromatic
number n — t, for any integers n and ¢, where n >t +3 and 2 <t < 5. Asmiati
et al. in [4] have succeeded in determining the locating chromatic number of
homogeneous amalgamation of stars and their monotonicity properties and in
[2] for firecracker graphs. Next, Wellyyanti et al. [11] determined the locating
chromatic number for complete n-ary trees.

The generalized Petersen graph P(n,m), n > 3 and 1 < m < |[(n—1)/2],
consists of an outer n-cycle y1,ys, ..., yn, a set of n spokes y;x;, 1 <i <n,andn
edges ;T;1m, 1 < i < n, with indices taken modulo n. The generalized Petersen
graph was introduced by Watkins in [14]. Let us note that the generalized
Petersen graph P(n,1) is a prism defined as Cartesian product of a cycle C),
and a path Ps.

Next theorems give the locating chromatic numbers for complete graph K,, and
generalized Petersen graph P(n,1).

Page 2 and several times later: The generalized Petersen graph defined by
Watkins has notation P(n,m). Therefore change " P, ;" for ”P(n,1)” or use
notation D,, = P,[0P;, as for prism.

Page 3, line 13: write "of the generalized Petersen graph P(n,1)” instead of ”of
generalized Petersen graphs P, 1”

Page 3, Theorem 2.1. rewrite as follows: Next theorem proves the exact value
of the locating chromatic number for barbell graph By, ,,.

Theorem 2.1. Let B, , be a barbell graph for n > 3. Then the locating
chromatic number of By, ,, is x1(Bpn) =n+ L.

”

Page 3, lines -10 and -11: The sentence ”Next, suppose that ...” replace by
”Next, suppose that ¢ is a locating coloring using n colors. It is easy to see that
the barbell graph B, ;, contains two vertices with the same color codes, which
is a contradiction.”

Page 3, lines -2, -3 and -4: The labeling ¢(v;) and also all other labelings write



by the following way

n, fori=1
c(v;) =1 1, for2<i<n-1

n+ 1, otherwise.

Page 4 lines from -1 to -4 and on page 5 lines from 1 to 5 replace as follows:
Proof Let Bp(,,1), n > 3, be the barbell graph with the vertex set V(Bp(,,1)) =
{tis Ungi, Wi, wo g 2 1 <7 < njand the edge set E(Bp(n,1)) = {Uilit1, Untrillnitl,
WiWig1, WngiWntirr 1 < i < n— 1} U {upts, UonUni1, WaWi, WapWpy1} U
{uithp 44, Wiwny; 0 1 <i <n}U{u,wy}.

Let us distinguish two cases.

Case 1, n odd. According to Theorem 1.3 for n odd we have x1.(Bp(n,1)) > 4. To
show that 4 is an upper bound for the locating chromatic number of the barbell
graph Bp(,,1) we describe an locating coloring ¢ using 4 colors as follows:

Page 6, lines from -8 to -12 rewrite by the following way:

Case 2, n even. In view of the lower bound from Theorem 1.3 it suffices to prove
the existence of a locating coloring ¢ : V(Bp(,,1)) — {1,2,...,5} such that all
vertices in Bp(,,1) have distinct color codes. For n even, n > 4, we describe the
locating coloring as follows:

Page 8, on the line 7 change "even” for "odd” and on the line 8 change ”odd”

for "even”. It means

i for 4" component, i <

i+ 1, for 5" component, i <
for 3" component, i <

n—i, for 4" component, i >

IS DI IS IS NIS
\
—_

n—i+1, for 5" component, i >
ern(w;)) =< n—i—1, for 3" component, g<i<n-—1
0, for 1% component, i odd, i <n —3

for 2"® component, i even, i < n — 2

2, for 1% component, i =n — 1
for 2"¢ component, i = n
1, otherwise.

Page 9: insert the reference
Syofyan, D.K., Baskoro, E.T., Assiyatun, H., Trees with certain locating-chromatic
number, J. Math. Fund. Sci. 48(1) (2016), pp. 39-47.



Response to Referee’s Report on the paper 5327504

We are thankful for the referee’s comments. We have revised the manuscript based on suggestions
in referee’s report, except for Corollary 2.2. The statement in the corollary is correct, that for case
n,m = 3 and m # n, the locating chromatic number of barbell graph B, ,, is max {n,m}. The
following figure is a counter example for the case.

/\3
2 3 1

4

Figure 1. A minimum locating coloring of barbell graph B, 3



Let GG be a connected graph and c¢ a proper coloring of G. For¢ = 1,2,... k define the
color class C; as the set of vertices receiving color i. The color code crr(v) of a vertex v in
is the ordered k-tuple (d(v, C1), ..., d(v, Ck)) where (d(v, C1) is the distance of v to C;. If
all distinct vertices of G have distinct color codes, then c is called a locating-coloring of G
. The locating-chromatic number of graph G, denoted by x1,(G) is the smallest & such that
G has a locating coloring with k colors. Let {1, ua, ..., u,} be some vertices on the outer
cycle and {vy,vs,...,v,} be some vertices on the inner cycle, for n > 3. The Petersen
graph, denoted by P, ;,n > 3,1 < k < L%IJ 1 < i < m is a graph that has 2n vertices
{u;} U{vi}, and edges {w;u;y1}, {viviyr}, and {u;v;}. We determined that the locating
chromatic number of Petersen Graphs P, 1 is 4 for odd n > 3 or 5 for even n > 4. In this
paper, we discuss the locating-chromatic number for certain operation of s Petersen Graphs
P,1.



Response to Referees Report on the paper 5327504

We are thankful for the referees comments. We have revised the manuscript based on sugges-
tions in referees report.

Page 1, abstract replaced by : The locating chromatic number of a graph G is defined as the
cardinality of a minimum resolving partition of the vertex set V(G) such that all vertices have
distinct coordinates with respect to this partition and every two adjacent vertices in G are not
contained in the same partition class. In this case, the coordinate of a vertex v in G is expressed
in terms of the distances of v to all partition classes. This concept is a special case of the graph
partition dimension notion. In this paper we investigate the locating chromatic number for two
families of barbell graphs.

Page 1, from 1 to 6 and on page 2 lines from 1 up to 7, replaced by : Let G = (V, E) be a
connected graph. We define the distance as the minimum length of path connecting vertices u
and v in G, denoted by d(u,v). A k-coloring of G is a function ¢ : V(G) — {1,2,...,k} where
c(u) # c(v) for any two adjacent vertices v and v in G. Thus, the coloring ¢ induces a partition
IT of V(@) into k color classes (independent sets) C1, Co, ..., C where C; is the set of all vertices
colored by the color ¢ for 1 < i < k. The color code cri(v) of a vertex v in G is defined as the
k-vector (d(v,C1),d(v,C5),...,d(v,Ck)) where d(v,C;) = min{d(v,z) : x € C;} for 1 < i < k.
The k-coloring ¢ of G such that all vertices have different color codes is called a locating coloring
of G. The locating chromatic number of G, denoted by x1(G), is the minimum & such that G
has a locating coloring.

The following theorem is a basic theorem proved by Chartrand et al. [6]. The neighborhood of
vertex u in a connected graph G, denoted by N(u), is the set of vertices adjacent to w.

Page 2, the text after Corollary 1.1 until Theorem 1.2., replaced by: There are some interesting
results related to the determination of the locating chromatic number of some graphs. The results
are obtained by focusing on certain families of graphs. Chartrand, et al. in [6] have determined
all graphs of order n with locating chromatic number n, namely a complete multipartite graph
of n vertices. Moreover, Chartrand et al. [7] have succeeded in constructing tree on n vertices,
n > 5, with locating chromatic numbers varying from 3 to n, except for (n — 1). Then Behtoei
and Omoomi [5] have obtained the locating chromatic number of the Kneser graphs. Recently,
Asmiati et al. [3] obtained the locating chromatic number of the generalized Petersen graph
P(n,1) for n > 3. Baskoro and Asmiati [4] have characterized all trees with locating-chromatic
number 3. In [12] were characterized all trees of order n with locating chromatic number n — ¢,



for any integers n and ¢, where n >t +3 and 2 <t < §. Asmiati et al. in [1] have succeeded
in determining the locating chromatic number of homogeneous amalgamation of stars and their
monotonicity properties and in [2] for firecracker graphs. Next, Wellyyanti et al. [14] determined
the locating chromatic number for complete n-ary trees.

The generalized Petersen graph P(n,m), n > 3 and 1 < m < [(n —1)/2], consists of an outer
n-cycle y1,vy2,...,Yn, a set of n spokes y;z;, 1 < i < n, and n edges 2;Tjym, 1 < i < n, with
indices taken modulo n. The generalized Petersen graph was introduced by Watkins in [13]. Let
us note that the generalized Petersen graph P(n,1) is a prism defined as Cartesian product of
a cycle C,, and a path Ps.

Next theorems give the locating chromatic numbers for complete graph K, and generalized Pe-
tersen graph P(n,1).

Page 2 and several times later: Generalized Petersen graph P, is replaced by P(n,1).

Page 3, Theorem 2.1. written by :Next theorem proves the exact value of the locating chromatic
number for barbell graph B, ,,.

Theorem 2.1 Let B, ,, be a barbell graph for n > 3. Then the locating chromatic number of
Bpnis xp(Bnpn) =n+1. .

Page 3, lines -10 and -11, replaced by:Next, suppose that c is a locating coloring using n colors.
It is easy to see that the barbell graph B, ,, contains two vertices with the same color codes,
which is a contradiction. Thus, we have that xr(Bn) > n+ 1.

Page 3, lines -2, -3 and -4, replaced by: The labeling ¢(v;) and also all other labelings write by
the following way

n, fori=1
c(vi)) =1 1, for2<i<n-1
n+ 1, otherwise.

Page 4 lines from -1 to -4 and on page 5 lines from 1 to 5, replaced by : Let Bp(, 1), n > 3, be
the barbell graph with the vertex set V/(Bp(,,1)) = {ui, un+i, wi,
Wpt; + 1 <4< n} and the edge set E(Bpn 1)) = {8ithit1, Un+ilntit1, Wilip1, WntiWntigr © 1 <
i <n—1}U{upul, uantni1, Wpwi, WopWnt1} U {Uitn4i, Wittn 4 : 1 <1 < n} U{upw,}.

Let us distinguish two cases.

Case 1, n odd. According to Theorem 1.3 for n odd we have x1(Bp(y,1)) > 4. To show that
4 is an upper bound for the locating chromatic number of the barbell graph Bp, 1) we describe
an locating coloring ¢ using 4 colors as follows:

Page 6, lines from -8 to -12, replaced by : Case 2, n even. In view of the lower bound from
Theorem 1.3 it suffices to prove the existence of a locating coloring ¢ : V/(Bp(, 1)) = {1,2,...,5}
such that all vertices in Bp(, 1) have distinct color codes. For n even, n > 4, we describe the
locating coloring in the following way:



Page 8, on the line 7, replaced by :

i, for 4t" component, i < 5
1+ 1, for 5 component, i < 5
for 3t" component, i < 5 —1
n—i, for 4" component, i > 2
n—i+1, for 5" component, i > 5
crn(w;) =< n—1i—1, for 3" component, §<i<n-—1
0, for 1% component, i odd, i <n — 3
for 274 component, i even, i < n — 2
2, for 15t component, i =n — 1
for 2" component, i = n
1, otherwise.

Page 9: we have revised references.
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Abstract

The locating chromatic number of a graph G is defined as the cardinality of a minimum
resolving partition of the vertex set V(G) such that all vertices have distinct coordinates
with respect to this partition and every two adjacent vertices in G are not contained in the
same partition class. In this case, the coordinate of a vertex v in G is expressed in terms of
the distances of v to all partition classes. This concept is a special case of the graph partition
dimension notion.

In this paper we investigate the locating chromatic number for two families of barbell
graphs.

Keywords: locating chromatic number, barbell graph, complete graph, generalized Petersen
graph

1 Introduction

The partition dimension was introduced by Chartrand et al. [8] as the development of the concept
of metric dimension. The application of metric dimension plays a role in robotic navigation [11],
the optimization of threat detecting sensors [10] and chemical data classification [9]. The concept
of locating chromatic number is a marriage between the partition dimension and coloring of a
graph, first introduced by Chartrand et al in 2002 [6]. The locating chromatic number of a
graph is a newly interesting topic to study because there is no general theorem for determining
the locating chromatic number of any graph.

Let G = (V, E) be a connected graph. We define the distance as the minimum length of path
connecting vertices u and v in G, denoted by d(u,v). A k-coloring of G is a function ¢ : V(G) —
{1,2,...,k} where c(u) # c(v) for any two adjacent vertices v and v in G. Thus, the coloring ¢
induces a partition IT of V(G) into k color classes (independent sets) C1,Co, ..., Cy where C; is
the set of all vertices colored by the color i for 1 < i < k. The color code cr1(v) of a vertex v in G



is defined as the k-vector (d(v, Cy),d(v,Cs),...,d(v,C})) where d(v, C;) = min{d(v, z) : = € C;}
for 1 < ¢ < k. The k-coloring ¢ of GG such that all vertices have different color codes is called a
locating coloring of G. The locating chromatic number of G, denoted by x(G), is the minimum
k such that G has a locating coloring.

The following theorem is a basic theorem proved by Chartrand et al. [6]. The neighborhood
of vertex u in a connected graph G, denoted by N (u), is the set of vertices adjacent to w.

Theorem 1.1. [6] Let ¢ be a locating coloring in a connected graph G. If w and v are distinct
vertices of G such that d(u,t) = d(v,t) for allt € V(G)—{u,v}, then c(u) # c(v). In particular,
if u and v are non-adjacent vertices of G such that N(u) = N(v), then c(u) # c¢(v).

The following corollary gives the lower bound of the locating chromatic number for every
connected graph G.

Corollary 1.1. [6] If G is a connected graph and there is a vertex adjacent to k leaves, then
XL(G) >k+1.

There are some interesting results related to the determination of the locating chromatic
number of some graphs. The results are obtained by focusing on certain families of graphs.
Chartrand, et al. in [6] have determined all graphs of order n with locating chromatic number
n, namely a complete multipartite graph of n vertices. Moreover, Chartrand et al. [7] have
succeeded in constructing tree on n vertices, n > 5, with locating chromatic numbers varying
from 3 to n, except for (n — 1). Then Behtoei and Omoomi [5] have obtained the locating
chromatic number of the Kneser graphs. Recently, Asmiati et al. [3] obtained the locating
chromatic number of the generalized Petersen graph P(n,1) for n > 3. Baskoro and Asmiati
[4] have characterized all trees with locating-chromatic number 3. In [12] were characterized all
trees of order n with locating chromatic number n — ¢, for any integers n and ¢, where n > ¢+ 3
and 2 <t < §. Asmiati et al. in [1] have succeeded in determining the locating chromatic
number of homogeneous amalgamation of stars and their monotonicity properties and in [2] for
firecracker graphs. Next, Wellyyanti et al. [14] determined the locating chromatic number for
complete n-ary trees.

The generalized Petersen graph P(n,m), n > 3 and 1 < m < |(n —1)/2], consists of an
outer n-cycle y1,y2, ..., yn, a set of n spokes y;z;, 1 < ¢ < n, and n edges z;Tijtm, 1 < i < n,
with indices taken modulo n. The generalized Petersen graph was introduced by Watkins in
[13]. Let us note that the generalized Petersen graph P(n,1) is a prism defined as Cartesian
product of a cycle C), and a path Ps.

Next theorems give the locating chromatic numbers for complete graph K, and generalized
Petersen graph P(n,1).

Theorem 1.2. [7] For n > 2, the locating chromatic number of complete graph K, is n.

Theorem 1.3. [3] The locating chromatic number of generalized Petersen Graph P(n,1) is 4
for odd n >3 or5 for evenn > 4.

The barbell graph is constructed by connecting two arbitrary connected graphs G and H by
a bridge. In this paper, firstly we discuss the locating chromatic number for barbell graph B,, ,,
for m,n > 3, where G and H are complete graphs on m and n vertices, respectively. Secondly,
we determine the locating chromatic number of barbell graph Bp(, 1) for n > 3, where G' and
H are two isomorphic copies of the generalized Petersen graph P(n,1).



2 Results and Discussion

Next theorem proves the exact value of the locating chromatic number for barbell graph B,, ,,.

Theorem 2.1. Let B,,, be a barbell graph for n > 3. Then the locating chromatic number of
By is xp(Bnpn) =n+ 1.

Proof Let B, ,, n > 3, be the barbell graph with the vertex set V(By,) = {u;,v; : 1 <i <

n—1

n} and the edge set E(B,, ) = U {uiuip; : 1 <j<n—iju U {vivig; 1 1 < j <n—i}U{upv,}.

First, we determine the lower bound of the locating chromatlc number for barbell graph B,, ,,
for n > 3. Since the barbell graph B, ,, contains two isomorphic copies of a complete graph K,,
then with respect to Theorem 1.2 we have that xr,(By.,) > n. Next, suppose that ¢ is a locating
coloring using n colors. It is easy to see that the barbell graph B, , contains two vertices with
the same color codes, which is a contradiction. Thus, we have that xr(Byn) > n+ 1.

To show that n+1 is an upper bound for the locating chromatic number of barbell graph B, ,,
it suffices to prove the existence of an optimal locating coloring c¢: V(B ) — {1,2,...,n+ 1}.
For n > 3 we construct the function c¢ in the following way:

c(u;) =1, 1<i<n
n, fori=1
c(vi)) =1 1, for2<i<n-1

n+ 1, otherwise.

By using the coloring ¢, we obtain the color codes of V (B, ;) as follows:

0, for i component, 1 <i<mn
cr(u) = {2, for (n+4 1) component, 1 <i<n—1

1, otherwise,

0, for i component, 2<i<n-—1

th

for n*" component, ¢ = 1, and

(o) for (n 4+ 1)"* component, i = n,
en(v;) =
e 3, for 1% component, 1 <i<n —1

2, for 1% component, i =n

1, otherwise.

Since all vertices in V(B ) have distinct color codes, then the coloring ¢ is desired locating
coloring. Thus, x7,(Bpn) =n+ 1. O

Corollary 2.1. For n,m > 3 and m # n, the locating chromatic number of barbell graph By, n,
18
XL(Bm,n) = max{m,n}.



Next theorem provides the exact value of the locating chromatic number for barbell graph
Bp(n,1)-

Theorem 2.2. Let Bp(y,1) be a barbell graph for n > 3. Then the locating chromatic number of
BP(n,l) 18
4, for odd n

5, for even n.

XL(Bpn,1)) = {

Proof Let Bp(, 1), n > 3, be the barbell graph with the vertex set V (Bp(,1)) = {ui, Unti, Wi,
Wyt 2 1 < i <n} and the edge set E(Bp(n,1)) = {Withit1, Untillntit1, Wilit1, WnpiWntip1 : 1 <
i <n—1}U{upuy, ugntnt1, Waw1, WorWpi1} U {titn i, wip4i 1 <@ < n}U{upwy,}.

Let us distinguish two cases.

Case 1, n odd. According to Theorem 1.3 for n odd we have x1(Bp(,,1)) > 4. To show that
4 is an upper bound for the locating chromatic number of the barbell graph Bp(, 1) we describe
an locating coloring ¢ using 4 colors as follows:

1, fori=1
c(u;) =< 3, foreveni, i >2
4, for odd 7, i > 3.

2, fori=1
c(upyi) =4 3, foroddi, i >3

4, for even i, i > 2.

1, foroddi, i <n—2
c(w;)) =< 2, foreveni, i <n-—1
3, fori=mn.

1, foreveni, i<n—1
c(wpti) =< 2, foroddi, i <n—2

4, fori=n.

For n odd the color codes of V(Bp(, 1)) are:

i, for 2" component, i < ”TH
i—1, for 15 component, i < 2L
n—i+1, for 1% component, i > ”T'H
crn(uwi) =4 n—i+2, for 2" component, i > ’%Ll
0, for 3" component, i even, i > 2
for 4" component, i odd, i > 3
1, otherwise.




i, for 15! component, i < i
1—1, for 2" component, i < "TH
n—i+1, for 2" component, i > %rl
cr(unsi) =< n—i+2, for 18 component, i > "+1
0, for 4 component, i even, i > 2
for 3t" component, i odd, i > 3
L1 otherwise.
(i, for 3t" component, i < ”T_l
i+1, for 4" component, i < 251
n—1i, for 3" component, i > ”TH
crn(w;) =< n—i+1, for 4" component, i > ”TH
0, for 2" component, i even, i <n — 1
for 15¢ component, i odd, i < n — 2
L 1 otherwise.
i for 4" component, i < 251
1+ 1, for 3" component, i < ”7_1
n—1i, for 4" component, i > ’%“1
crn(wnei) = n—i+1, for 3" component, i > ”TH
0, for 1% component, i even, i <n — 1
for 2”@ component, i odd, i < n — 2
1, otherwise.

\

Since all vertices in Bp(,, 1) have distinct color codes, then the coloring ¢ with 4 colors is an
optimal locating coloring and it proves that x1(Bp(,,1)) < 4.

Case 2, n even. In view of the lower bound from Theorem 2.2 it suffices to prove the existence
of a locating coloring ¢ : V(Bp(y 1)) — {1,2,...,5} such that all vertices in Bp(n,1) have distinct
color codes. For n even, n > 4, we describe the locating coloring in the following way:

1, fori=1
3, foreveni, 2<i<n-—2
W)=Y 4 foroddi 3<i<n_1
5, fori=n.
2, fori=1
c(upti) =4 3, foroddi, i >3

4, for even i, 1 > 2.



forodd i, i <n—3

foreveni, i <mn—2

fori=n—-1

i 2 I

, fori=n.
1, foreveni, i <n—2
c(wpyi) =< 2, foroddi, i<n-—1
5, fori=n.

In fact, our locating coloring of Bp(,, 1), n even, has been chosen in such a way that the color
codes are:

(1, for 2 and 5 components, i < 5
. t . n
i—1, for 1% component, 7 < 3
. th I}
n—i, for 5" component, i > &

n—i+1, for 1% component, i > 5

n—i+2, for 2" component, i > 5

en(us) = 0, for 3th component, 7 even, 2 << n— 2
for 4" component, i odd, 3<i<n—1
2, for 4" component, i = 1
for 3" component, i =n
L1, otherwise.
1, for 1% component, i < 5
71— 1, for 2" component, i < 5
n+1, for 5" component, i < 2
n—i+1, for 2" and 5" components, i > 5
cri(unyi) = { n—i+2, for 1™ component, i > 5

0, for 3t" component, i odd, 3<i<n-—1
for 4" component, i even, 2 <i<mn

2, for 3" component, i =1

otherwise.



(4, for 4" component, i < 5

1+ 1, for 5" component, i < 5
for 3" component, i <2 —1

n — 1, for 4t" component, i > 5

n—i+1, for 5" component, i > 5

en(w;) =< n—i—1, for 3" component, 2 <i<n-—1
0, for 15* component, i odd, i <n — 3
for 2”@ component, i even, i < n — 2
2, for 1% component, i =n — 1

for 2" component, i = n

L 1 otherwise.
1, for 5" component, i < 5
i+ 1, for 4" component, i < 5
i+ 2 for 3" component, i < 5—1
n—t, for 3t" component, 5<i<n-—1
th - n
ent(wnii) = | for 5th component, z > 721
n—i+1, for 4" component, i > 5
0, for 15 component, i even, i < n — 2
for 2" component, i odd, i <n —1
2, for 1% and 3" components, i =n
1, otherwise.

Since for n even all vertices of Bp(, 1) have distinct color codes then our locating coloring has
the required properties and x (B P(n71)) < 5. This concludes the proof. O
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The locating chromatic number of a graph G is defined as the cardinality of a minimum resolving partition of the vertex set V(G)
such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in G are not contained
in the same partition class. In this case, the coordinate of a vertex v in G is expressed in terms of the distances of v to all partition
classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic

number for two families of barbell graphs.

1. Introduction

The partition dimension was introduced by Chartrand et al.
[1] as the development of the concept of metric dimension.
The application of metric dimension plays a role in robotic
navigation [2], the optimization of threat detecting sensors
[3], and chemical data classification [4]. The concept of
locating chromatic number is a marriage between the parti-
tion dimension and coloring of a graph, first introduced by
Chartrand et al in 2002 [5]. The locating chromatic number
of a graph is a newly interesting topic to study because there
is no general theorem for determining the locating chromatic
number of any graph.

Let G = (V,E) be a connected graph. We define the
distance as the minimum length of path connecting vertices u
and vin G, denoted by d(u, v). A k-coloring of G is a function
c: V(G) — {1,2,...,k}, where c(u) # c(v) for any two
adjacent vertices u and v in G. Thus, the coloring ¢ induces
a partition IT of V(G) into k color classes (independent sets)
C,,C,,...,Cy, where C; is the set of all vertices colored by
the color i for 1 < i < k. The color code ¢;(v) of a vertex v in
G is defined as the k-vector (d(v,C,),d(v,C,),...,d(v,Cy)),
where d(v,C;) = min{d(v,x) : x € C;} for 1 < i < k. The
k-coloring ¢ of G such that all vertices have different color
codes is called a locating coloring of G. The locating chromatic

number of G, denoted by x;(G), is the minimum k such that
G has a locating coloring.

The following theorem is a basic theorem proved by
Chartrand et al. [5]. The neighborhood of vertex u in a
connected graph G, denoted by N(u), is the set of vertices
adjacent to u.

Theorem 1 (see [5]). Let ¢ be a locating coloring in a connected
graph G. Ifu and v are distinct vertices of G such that d(u,t) =
d(v,t) forallt € V(G)—{u, v}, then c(u) # c(v). In particular, if
u and v are non-adjacent vertices of G such that N(u) = N(v),
then c(u) # c(v).

The following corollary gives the lower bound of the
locating chromatic number for every connected graph G.

Corollary 2 (see [5]). If G is a connected graph and there is a
vertex adjacent to k leaves, then x; (G) = k + 1.

There are some interesting results related to the determi-
nation of the locating chromatic number of some graphs. The
results are obtained by focusing on certain families of graphs.
Chartrand et al. in [5] have determined all graphs of order
n with locating chromatic number #, namely, a complete
multipartite graph of #n vertices. Moreover, Chartrand et al.
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[6] have succeeded in constructing tree on n vertices, n > 5,
with locating chromatic numbers varying from 3 to n, except
for (n — 1). Then Behtoei and Omoomi [7] have obtained the
locating chromatic number of the Kneser graphs. Recently,
Asmiati et al. [8] obtained the locating chromatic number of
the generalized Petersen graph P(n,1) for n > 3. Baskoro
and Asmiati [9] have characterized all trees with locating
chromatic number 3. In [10] were characterized all trees of
order nwithlocating chromatic number n—t, for any integers
nand t, wheren > t + 3 and 2 < t < n/2. Asmiati et al.
in [11] have succeeded in determining the locating chromatic
number of homogeneous amalgamation of stars and their
monotonicity properties and in [12] for firecracker graphs.
Next, Wellyyanti et al. [13] determined the locating chromatic
number for complete n-ary trees.

The generalized Petersen graph P(n,m), n > 3 and 1 <
m < |(n - 1)/2], consists of an outer n-cycle y;, ¥5,..., ¥,
a set of n spokes y;x;, 1 < i < n, and n edges x;x;,,,
1 < i < n, with indices taken modulo n. The generalized
Petersen graph was introduced by Watkins in [14]. Let us note
that the generalized Petersen graph P(n, 1) is a prism defined
as Cartesian product of a cycle C,, and a path P,.

Next theorems give the locating chromatic numbers for
complete graph K,, and generalized Petersen graph P(n, 1).

Theorem 3 (see [6]). Forn > 2, the locating chromatic number
of complete graph K,, is n.

Theorem 4 (see [8]). The locating chromatic number of
generalized Petersen graph P(n, 1) is 4 for odd n > 3 or 5 for
evenn > 4.

The barbell graph is constructed by connecting two
arbitrary connected graphs G and H by a bridge. In this paper,
firstly we discuss the locating chromatic number for barbell
graph B, , for m,n > 3, where G and H are complete graphs
on m and n vertices, respectively. Secondly, we determine the
locating chromatic number of barbell graph Bp, ;) for n > 3,
where G and H are two isomorphic copies of the generalized
Petersen graph P(n, 1).

2. Results and Discussion

Next theorem proves the exact value of the locating chromatic
number for barbell graph B, .

Theorem 5. Let B, , be a barbell graph for n > 3. Then the
locating chromatic number of B, ,, is x;(B,,,) = n+ 1.

Proof. Let B, ,, n > 3, be the barbell graph with the vertex
set V(B,,) = {u;,v; : 1 < i < n} and the edge set E(B

= Uzr'lz_ll{uiuﬁj 11 < j<n-iuUL
n—i}U{u,v,}.

First, we determine the lower bound of the locating
chromatic number for barbell graph B, for n > 3. Since
the barbell graph B, , contains two isomorphic copies of a
complete graph K,,, then with respect to Theorem 3 we have
X.(B,,) = n. Next, suppose that c is a locating coloring
using n colors. It is easy to see that the barbell graph B, ,

n,n)
1<j<

i+j -

contains two vertices with the same color codes, which is a
contradiction. Thus, we have that x;(B,,) = n + 1.

To show that n + 1 is an upper bound for the locating
chromatic number of barbell graph B, , it suffices to prove
the existence of an optimal locating coloring ¢ : V(B,,,) —
{1,2,...,n+ 1}. For n > 3 we construct the function ¢ in the
following way:

1<i<n

n, fori=1 W
c(v;) =11, for2<i<n-1

n+1, otherwise.

By using the coloring ¢, we obtain the color codes of V(B
as follows:

n,n)

o ()
0, fori™ component, 1<i<n
=42, for (n+ 1" component, 1 <i<n-1

1, otherwise,

(0, for i component, 2 <i<n-1 2
h

t .
for n" component, i =1, and

for (n+ 1" component, i =n,

Il
A

ar (v;) st .
3, for 1° component, 1 <i<n-1

2, for 1°" component, i =n

|1, otherwise.

Since all vertices in V(B,,,) have distinct color codes, then
the coloring c is desired locating coloring. Thus, x;(B,,) =
n+1.

Corollary 6. Forn,m > 3, and m # n, the locating chromatic
number of barbell graph B,,, , is

x. (B,,,,) = max {m,n}. (3)

Next theorem provides the exact value of the locating
chromatic number for barbell graph Bp,, ;).

Theorem 7. Let Bp, y be a barbell graph for n > 3. Then the
locating chromatic number of Bp, 1) is

4, for odd n

Xr (Bpuny) = (4)
LD 5, for even n.

Proof. Let Bp, ), n > 3, be the barbell graph with the vertex
set V(Bp(,1)) = {ths Uy Wy, W,y + 1 < i < n} and the edge set
E(Bpy,1)) = (Uit 1> Upgithy i Wil Wy iWyipy © 1 <0<
n= 11U {1y, Uyl Wy W15 W Wy} Uty W, 0 1 <
i<n}U{u,w,}

Let us distinguish two cases.

n+i
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Case 1 (n odd). According to Theorem 4 for n odd we have o (i)
X1(Bpn,1)) = 4. To show that 4 is an upper bound for the il
locating chromatic number of the barbell graph Bp, ;) we i, for 1** component, i <
describe an locating coloring c using 4 colors as follows: n2+ 1
i—1, for 2" component, i < 5
+1
n—i+1, for 2" component, i > " 5
= 1 +1
n—i+2, for1® component, i 1 5
0, for 4”’ component, i even, i > 2
1, fori=1 for 3" component, i odd, i >3
c(u;) =13, foreveni, i>2 1, otherwise.
4, for oddi, i>3.
) ar (wl
'2, fori=1 n-—1
i, for 3" component, i < 5
c(ty;) =43, foroddi, i>3 no
i+1, for 4 component, i <
4, for eveni, i>2. i ]
~ n
) ) n—i for 3™ component, i >
1, foroddi, i<n-2 _ nil

n—i+1, for4™ component, i>

c(w;)=142, foreveni, i<n-1

. 0, for 2" component, i even, i <n-1
3, fori=n.

for 1 component, i odd, i <n-2
1, foreveni, i<n-1

| L otherwise.
c(w,,;) =142 foroddi, i<n-2
. it (Wysi)
4, fori=n.
L ) . o n—1
i, for 4 component, i < 5
n-1
i+1, for 3" component, i < 5
. ._h+1
n-i, for 4™ component, i > 5
= < n+1
n—i+1, for 3™ component, i>
For n 0dd the color codes of V(Bp, ) are P 2
0, for 1 component, i even, i <n—1

for 2" component, i odd, i <n -2

1, otherwise.
(6)
o (w)
n+1
i, for 2" component, i < 5
n+1
i-1, for 1 component, i < 5
n+l
n—i+1, for 1¥ component, i >
_ n2+ 1 Since all vertices in By, ;) have distinct color codes, then the
n-i+2, for 2" component, i > 5 coloring ¢ with 4 colors is an optimal locating coloring and it
roves that y; (B <4
0, for 3" component, i even, i > 2 P X (Bpou)
for 4™ component, i odd, i >3 Case 2 (neven). In view ofthe lower bound from Theprem 7
it suffices to prove the existence of a locating coloring ¢ :
L otherwise. V(Bp(,1)) — {1,2,...,5} such that all vertices in Bp,;,
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have distinct color codes. For n even, n > 4, we describe the o (i)
locating coloring in the following way:

i for 1% component, i < g
i-1, for 2" component, i < g
n+1i, for 5t component, i < g
(1, fori=1 n—i+1, for 2™ and 5" components, i > g
3, foreveni, 2<i<n—2 =1n-i+2, for1™ component,i > g
C(ui):'4) foroddi, 3<i<n-1 0, f0r3thc0mp0nent,iodd,SsiSn—l

. for 4™ component, i even, 2<i<n
5, fori=n.

) 2, for 3" component, i = 1
2, fori=1 1, otherwise.
c(u,;) =143, foroddi, i>3 o (1)
4, for eveni, i>2. I
Ny (7) i, for 4" component, i <

1, foroddi, i<n-3

IN

IN

NI IN[INIINI
|
—

i+1, for 5 component, i

2, foreveni, i<n-2 for 3t t i
¢ (w,) = 1 or component,

3, fori=n-1

n—i for 4" component, i >
(4 fori=n. n-i+1, for 5™ component, i >
1, foreveni, i<n-2 “1n-i-1, for 3™ component, gSiSn—l
c(wy;) =12, foroddi, i<n-1 0, for 1% component, i odd, i <n -3
(5, fori=n. for 2" component, i even, i <n—2
2, for 1 component, i =n— 1
for 2" component, i =n
1, otherwise.
In fact, our locating coloring of Bp, ), n even, has been 1 (W)

chosen in such a way that the color codes are

. . on
i, for 5" component, i < 5
. . n
i+1, for 4™ component, i < 3
n
i+2 for 3™ component, i < 3° 1
. n
‘n (u’) n—i, for 3t component, 3 <i<n-1
. . n
i, for 2 and 5" components, i < 3 B for 5 component, i > g
. ¢ .. n a n
i-1, for 1% component, i < 3 n—i+1, for4™ component, i> 2
n—i, for 5" component, i > > 0, for 1% component, i even, i < n -2
n ; .
n—i+1, for1* component, i > 5 for 2" component, i odd, i <n-1
_ Jn—i+2, for 2 component, i > g 2, for 17 and 3™ components, i =n
0, for 3" component, i even, 2 <i<n-2 | L otherwise.
for 4" component, i odd, 3<i<n-1 (8)
2, for 4™ component, i =1 ) ) o
" Since for n even all vertices of Bp, ;) have distinct color codes
for 3™ component, i =n then our locating coloring has the required properties and
(1, otherwise. XL(Bp(n,1)) < 5. This concludes the proof. O
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The locating chromatic number of a graph G is defined as the cardinality of a minimum resolving partition of the vertex set V/(G)
such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in G are not contained
in the same partition class. In this case, the coordinate of a vertex v in G is expressed in terms of the distances of v to all partition
classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic

number for two families of barbell graphs.

1. Introduction

The partition dimension was introduced by Chartrand et al.
[1] as the development of the concept of metric dimension.
The application of metric dimension plays a role in robotic
navigation [2], the optimization of threat detecting sensors
[3], and chemical data classification [4]. The concept of
locating chromatic number is a marriage between the parti-
tion dimension and coloring of a graph, first introduced by
Chartrand et al in 2002 [5]. The locating chromatic number
of a graph is a newly interesting topic to study because there
is no general theorem for determining the locating chromatic
number of any graph.

Let G = (V,E) be a connected graph. We define the
distance as the minimum length of path connecting vertices u
and v in G, denoted by d(u, v). A k-coloring of G is a function
c: V(G) — {1,2,...,k}, where c(u) # c(v) for any two
adjacent vertices u and v in G. Thus, the coloring ¢ induces
a partition IT of V(G) into k color classes (independent sets)
C,,C,,...,Cy, where C; is the set of all vertices colored by
the color i for 1 < i < k. The color code ¢;;(v) of a vertex v in
G is defined as the k-vector (d(v,C,),d(v,C,),...,d(v,C)),
where d(v,C;) = min{d(v,x) : x € C;} for 1 < i < k. The
k-coloring ¢ of G such that all vertices have different color
codes is called a locating coloring of G. The locating chromatic

number of G, denoted by y; (G), is the minimum k such that
G has a locating coloring.

The following theorem is a basic theorem proved by
Chartrand et al. [5]. The neighborhood of vertex u in a
connected graph G, denoted by N(u), is the set of vertices
adjacent to u.

Theorem 1 (see [5]). Let ¢ be a locating coloring in a connected
graph G. Ifu and v are distinct vertices of G such that d(u, t) =
d(v,t) forallt € V(G)—{u, v}, then c(u) # c(v). In particular, if
u and v are non-adjacent vertices of G such that N(u) = N(v),
then c(u) # c(v).

The following corollary gives the lower bound of the
locating chromatic number for every connected graph G.

Corollary 2 (see [5]). If G is a connected graph and there is a
vertex adjacent to k leaves, then x; (G) = k + 1.

There are some interesting results related to the determi-
nation of the locating chromatic number of some graphs. The
results are obtained by focusing on certain families of graphs.
Chartrand et al. in [5] have determined all graphs of order
n with locating chromatic number #, namely, a complete
multipartite graph of n vertices. Moreover, Chartrand et
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al. [6] have succeeded in constructing tree on n vertices,
n > 5, with locating chromatic numbers varying from 3
to n, except for (n — 1). Then Behtoei and Omoomi [7]
have obtained the locating chromatic number of the Kneser
graphs. Recently, Asmiati et al. [8] obtained the locating
chromatic number of the generalized Petersen graph P(n, 1)
for n > 3. Baskoro and Asmiati [9] have characterized all
trees with locating chromatic number 3. In [10] all trees
of order n with locating chromatic number n — 1 were
characterized, for any integers n and t, where n > t + 3
and 2 < t < n/2. Asmiati et al. in [11] have succeeded in
determining the locating chromatic number of homogeneous
amalgamation of stars and their monotonicity properties and
in [12] for firecracker graphs. Next, Wellyyanti et al. [13]
determined the locating chromatic number for complete n-
ary trees.

The generalized Petersen graph P(n,m), n > 3 and 1 <
m < |(n - 1)/2], consists of an outer n-cycle y;, y,,..., ¥,
a set of n spokes y;x;, 1 < i < n, and n edges x;x;,,,
1 < i < n, with indices taken modulo #. The generalized
Petersen graph was introduced by Watkins in [14]. Let us note
that the generalized Petersen graph P(#, 1) is a prism defined
as Cartesian product of a cycle C, and a path P,.

Next theorems give the locating chromatic numbers for
complete graph K,, and generalized Petersen graph P(n, 1).

Theorem 3 (see [6]). Forn > 2, the locating chromatic number
of complete graph K,, is n.

Theorem 4 (see [8]). The locating chromatic number of
generalized Petersen graph P(n, 1) is 4 for odd n > 3 or 5 for
evenn > 4.

The barbell graph is constructed by connecting two
arbitrary connected graphs G and H by a bridge. In this paper,
firstly we discuss the locating chromatic number for barbell
graph B, for m,n > 3, where G and H are complete graphs
on m and n vertices, respectively. Secondly, we determine the
locating chromatic number of barbell graph Bp, ) for n > 3,
where G and H are two isomorphic copies of the generalized
Petersen graph P(n, 1).

2. Results and Discussion

Next theorem proves the exact value of the locating chromatic
number for barbell graph B,, .

Theorem 5. Let B, , be a barbell graph for n > 3. Then the
locating chromatic number of B, ,, is x;(B,,) = n+ 1.

Proof. Let B,,, n > 3, be the barbell graph with the vertex
set V(B,,) = {u;,v; : 1 < i < n} and the edge set E(B, )
= U:':—ll{u,-uﬁj cl<j<n-itu U::ll{vivﬂj 1 <j<
n—itU{u,v,}.

First, we determine the lower bound of the locating
chromatic number for barbell graph B, , for n > 3. Since
the barbell graph B, , contains two isomorphic copies of a
complete graph K,,, then with respect to Theorem 3 we have
Xr(B,,) = n. Next, suppose that ¢ is a locating coloring

using n colors. It is easy to see that the barbell graph B, ,
contains two vertices with the same color codes, which is a
contradiction. Thus, we have that x; (B, ,,) > n + 1.

To show that n + 1 is an upper bound for the locating
chromatic number of barbell graph B, , it suffices to prove
the existence of an optimal locating coloring ¢ : V(B,,) —
{1,2,...,n+ 1}. For n > 3 we construct the function ¢ in the
following way:

n, fori=1
(1)

for2<i<n-1

n+1, otherwise.

By using the coloring ¢, we obtain the color codes of V(B
as follows:

n,n)

o (u;)
.th .
0, fori" component, 1 <i<n

, for (n+1)™ component, 1<i<n-1

Il
— Do

, otherwise,

(0, for i" component, 2 <i<n-1 2

h

for " component, i = 1, and

for (n+1)™ component, i = n,

ar (vi) st )
3, for I component, 1 <i<n-1

t .
2, for 1* component, i =n

|1, otherwise.

Since all vertices in V(B, ) have distinct color codes, then
the coloring c is desired locating coloring. Thus, x;(B,,) =
n+1.

Corollary 6. Forn,m > 3, and m # n, the locating chromatic
number of barbell graph B,,, , is

XL (Bm,n) = max {m) i’l} . (3)

Next theorem provides the exact value of the locating
chromatic number for barbell graph Bp,, ;).

Theorem 7. Let Bp,,) be a barbell graph for n > 3. Then the
locating chromatic number of Bp, 1) is
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4, for odd n

Xr (Bpuny) = (4)
ey 5, for even n.

Proof. Let Bp, ), n > 3, be the barbell graph with the vertex
set V(Bp, 1)) = {tj 4o Wy W,y + 1 < i < n}and the edge set
E(Bp(n1)) = (Uil 1> Uit rists Wlisps WyyWpyjyy 0 1 <0<
n- 1} U {unul’ UppUpyi1> WyWp» wann+1} U {uiunﬂ" WiWy,; 1<
i<npU{u,w,}.

Let us distinguish two cases.

Case I (n odd). According to Theorem 4 for n odd we have
XL(Bp,1)) = 4. To show that 4 is an upper bound for the
locating chromatic number of the barbell graph By, ;) we
describe an locating coloring ¢ using 4 colors as follows:

(1, fori=1
for even i, i >2

4, for odd i, i > 3.

(2, fori=1
c(thyy;) =143, foroddi, i>3

4, for eveni, i>2.
) (5)
1, foroddi, i<n-2

foreveni, i<n-1
3, fori=n.
1, foreveni, i<n-1

c(wy;) =142, foroddi, i<n-2

4, fori=n.

For n odd the color codes of V(Bpy, ) are

o (u;)
n+1
i, for 2" component, i < 5
. n+1
i—1, for 1 component, i < 5
. .. on+1l
n—i+1, for 1¥ component, i > 5
= 9 . . n+l
n—i+2, for2™ component, i > >
0, for 3" component, i even, i > 2
for 4" component, i odd, i >3
| L otherwise.

3
et (Usi)
. . n+1
i for 1** component, i < 5
. n+1l
i—-1, for 2" component, i < 5
. . n+1
n—i+1, for2™ component, i > >
= 9 . . n+1
n—i+2, for1° component, i 5
0, for 4”’ component, i even, i > 2
for 3" component, i odd, i >3
|1, otherwise.
ar (wl
. ., n-1
i, for 3" component, i < 5
. . n-1
i+1, for 4 component, i < 5
. ._n+1
n-i, for 3" component, i > 5
= < . th . n+1
n—i+1, for 4" component, i> 2
0, for 2" component, i even, i <n-—1
for 1 component, i odd, i <n-2
| L otherwise.
a1 (W)
(. . _n-1
i, for 4™ component, i < ——
. ., n-—1
i+1, for 3" component, i < 5
. th . n+ 1
n—i, for 4" component, i > -
= . ._h+l
1n-i+1, for 3™ component, i > -
0, for 1 component, i even, i <n—1
for 2" component, i odd, i <n -2
L1, otherwise.
(6)

Since all vertices in By, ;) have distinct color codes, then the
coloring ¢ with 4 colors is an optimal locating coloring and it
proves that x; (Bp(, 1)) < 4.

Case 2 (n even). In view of the lower bound from Theorem 7
it suffices to prove the existence of a locating coloring ¢ :
V(Bp(,1)) — {1,2,...,5} such that all vertices in Bp, ;)
have distinct color codes. For n even, n > 4, we describe the
locating coloring in the following way:

1, fori=1
, foreveni, 2<i<n-2
c(u) =

3
4, foroddi, 3<i<n-1

for i = n.

v



, fori=1

2
c(u,,;)=143, foroddi, i>3
4

, foreveni, i>2.

1, foroddi, i<n-3
2, foreveni, i<n-2
3, fori=n-1
4, fori=n.

1, foreveni, i<n-2

c(wy;) =142, foroddi, i<n-1

In fact, our locating coloring of Bp, ), n even, has been

5, fori=n.

chosen in such a way that the color codes are

Cn(”i)
(i
i—1,
n-—i,
n—i+1,
_In—-i+2,
0)
2,
L1,
Cl‘[(un+i)
i,
i—1,
n+i,
n—i+1,
TAin-i+2,
0)
2,
L1,

for 2" and 5" components, i <

SN

S

for 1% component, i < —

\4

for 5 component, i

t .
for 1 component,

\Y
lewl: NI

for 2" component, i

\%

for 3t

component, i even, 2<i<n-2
for 4 component, i odd, 3 <i<n-1
for 4™ component, i =1

for 3" component, i =n

otherwise.

for 1 component, i

IN

IN
RIS o IS

for 2" component,

for 5" component, i

IN

. n
for 2 and 5" components, i > —
2
._n
for 1" component, i > 5
for 3" component, i odd, 3<i<n-1
for 4" component, i even, 2<i<n

for 3t component, i =1

otherwise.

7)
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Cil (wi)

(. . n
i, for 4™ component, i < 5
. ..n
i+1, for 5t component, i < 5

.n

for 3" component, i < 3 1
. .n
n-—i, for 4™ component, i > 5
. .n
n—i+1, fors™ component, i > 5

n—-i-1, for 3™ component,

NI
IN
IN
S

|
—

0, for 1% component, i odd, i <n-3

for 2 component, i even, i <n-—2

2, for 1% component, i = n— 1
for 2" component, i =n
L1, otherwise.
arr (Wysi)
i, for 5" component, i < g
i+1, for 4™ component, i < g
i+2 for 3™ component, i < g -1
n—i, for 3™ component, g <i<n-1
_ for 5" component, i > g
n—i+1, for 4™ component, i > g
0, for 1% component, i even, i <n -2
for 2 component, i odd, i <n -1
2, for 1% and 3" components, i = n
| 1, otherwise.

(8)

Since for n even all vertices of Bp,, ;) have distinct color codes
then our locating coloring has the required properties and
X1(Bp(,1)) < 5. This concludes the proof. O
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