Sehubungan dengan data/pembicaraan email dengan editor/publisher tidak lagi dapat ditelusuri, rangkaian/rekaman dari awal mengikuti konferensi dan publishing agreement dijelaskan sebagai berikut:

- 1. Acceptance of full paper and invitation to conference (16 Juni 2019)
- 2. Submitted full paper for conference
- 3. Paper for journal (ID 9393)
- 4. Submitted for journal
- 5. Revised (1) \setminus
- 6. Tambahan materi (Revised 2)
- 7. Revised (3)
- 8. Publishing agreement (26 November 2019)
- 9. PUBLISHED 27 Juni 2020

INTERNATIONAL CONFERENCE G E M A T E

June 16, 2019

Paper ID Number: 9393

Dr. Aleksander Purba E-mail: aleksander.purba@eng.unila.ac.id

Subject: Acceptance of Full Paper and Invitation to the 9th International Conference on Geotechnique, Construction Materials and Environment, 20 to 22 November 2019, Tokyo, Japan

Dear Dr. Aleksander Purba,

We are pleased to inform you that after careful review and assessment, the members of the GEOMATE2019 Technical Committee have accepted your full paper entitled "The Challenge of Developing High-Speed Rail Projects: Recent Evidence from Developing Countries" for "Oral" presentation at the conference. It is, therefore, with great pleasure that we extend our formal invitation to you to participate and present your paper at this conference.

Please make sure you register before 15th August 2019 for your papers to be included in the conference proceedings and to be evaluated for GEOMAT2019 Awards. This is strictly necessary for logistics and smooth operation of the conference. We appreciate online registration using the following link:

http://geomate.org/registration.html

Guidelines for preparing oral or poster presentations are available on conference web page: <u>http://www.geomate.org</u>

Should you require more information, please do not hesitate to contact us. We look forward to hearing from you soon. Please always refer paper ID number in any communication to us.

Sincerely yours,

Marasil

Dr. Zakaria Hossain, Conference Chairman 9th International Conference on Geotechnique, Construction Materials and Environment, Professor, Graduate School of Bioresources, Mie University 1577 Kurima Machiya-cho, Tsu-city, Mie 514-8507 Japan, E-mail: <u>editor@geomate.org</u> Tel & Fax: +81-59-231-9578 Conference URL: http://www.geomate.org

THE CHALLENGE OF DEVELOPING HIGH-SPEED RAIL PROJECTS: RECENT EVIDENCE FROM DEVELOPING COUNTRIES

Aleksander Purba Engineering Faculty, University of Lampung, Indonesia

ABSTRACT

The plan by Indonesian government to build a high-speed rail (HSR) has previously existed for years. Both the Japanese and Chinese government had both showed interest in the project, and both of them have the technological capacity to build a railway that would connect Jakarta and Bandung. This project was however awarded to China because they made a provision of soft loans for the project, while Japan on the other hand wanted the Indonesian government to completely provide the fund required to execute the project from the beginning to the end of the project. The proposed construction of the railway lines will cut travel time between Jakarta and Bandung from about three hours by car to just 45 minutes only. The project will include integration of the HSR with developments along its corridor through transit oriented developments. The line would attract around 10 million passengers per year in first year of operation, this is because of Jakarta's huge population size in addition to the number of pairs of destinations that the HSR would connect.

Keywords: High-speed rail, Indonesia, Travel time, Ridership, Transit oriented development

INTRODUCTION

A brief history into the railway system in Indonesia showed that the railway transport system was created in mid-19th century when Indonesia was still under the colonial rule of the Dutch. The railway system was created in 1939 so as to facilitate the movement of cargoes and passengers. As at that time, the length of the railway line was 6,324 km long on Java and 1,833 km long on the Sumatera Island. In 2009, the total railway length had fallen substantially from 6,324 km to 3,464 km on Java and 1,833km to 1,350 km on Sumatera Island [1]. The main reason for this decline was the competition of railway transport with road transport, thus more funds were utilized for building more roads at the expense of the railway lines. Hence, Law No. 23/2007 was approved to make railway transport an important means of transportation within Indonesia. This clearly maps out the development guide for the national railway system.

METHODOLOGY: CASE COMPARISONS

Author compare the proposed Jakarta-Bandung HSR corridor with the some of HSR corridors in Asia and Europe regions and to identify key factors that have contributed to its successful. International comparison is especially important in HSR because the research shows important differences across countries due to topography, demographics, nature of transit demand and government investment schemes [2, 3].

EARLY JAPANESE'S PROPOSAL

Japan had already indicated their interest to replicate their Shinkansen HSR technology in Indonesia since 2008. That same year, Japan had displayed their Shinkansen technology and also done a feasibility study. Considering that the Island of Java is identical to the pre-HSR Honshu in Japan, the Japanese government under the Japanese International Cooperation Agency (JICA) therefore proposed the construction of HSR for the Indonesian island of Java, backed by soft loans from the Japanese government, connecting the densely populated capital of Indonesia, Jakarta which suffers from freight and passenger congestion to Surabaya which is about 730 km apart.

A new proposal that focus on building 150 km of HSR from Jakarta to Bandung, which will result in the drastic reduction of the time spent to cover the 150 km from 3 hours to just 45 minutes as shown in Fig.1. Japan which is widely known for the manufacturing of world-class trains was the most favorable to win the contract for construction of HSR from Indonesian government. However, change in government after the 2014 Indonesian gubernatorial election which saw the swearing in of Joko Widodo in October 2014 put an end to this project. The Joko led administration basically the HSR project in January 2015, reason for this action was that the HSR project was quite too expensive for the government to execute and there were several other more important and significant infrastructural projects that were required in the underdeveloped islands outside of Java.

Fig. 1 Japanese proposed route [4]

CHINA'S APPROACH

In 2004, China's State Council adopted the Midand Long-Term Plan for railway development and the country decided to venture into the development of HSR. The government proceeded to invest huge sums of money into this plan and, in 2008, it affirmed and upgraded the Plan. Part of China's strategy was the purchase of rail technologies developed countries. This helped to accelerate China's HSR development and led to the development of China's indigenous HSR technology in 2007. This culminated in the manufacture of China's first high-speed train on 1st August, 2008, China vigorously promoted its HSR technology, transitioning and positioning their HSR technology.

Internally, China plans to establish four major train lines, connecting the north to the south and another four lines connecting the east to the west, across the entire length and breadth of the whole country. Externally, several major rail lines are also being planned, one linking Asia and Europe via Russia, another connecting China to Europe via Central Asia and the Middle East, and a third connecting southern China with Indo-China and Southeast Asia [5]. China's HSR strategy has become part an integral belt-and-road strategy and core of China's foreign policy, all these have occurred just within the past decade or thereabout [6]. The 'belt' component comprises of many land routes and the 'road' component on the other hand comprises of many sea routes. This also arise from the fact that both systems of land and sea routes link China to Europe. This initiative also led to the development of special funding and investments [7].

HISTORY AND RECENT DEVELOPMENT

The HSR project was forecasted to cover a distance of about 143 km, linking Jakarta and Bandung, thus becoming Indonesia's first ever HSR project. As highlighted earlier, the Japanese and Chinese government made known their intention. Although the Japanese and Chinese governments had

carried out previous comprehensive studies, it was only Japan that went the extra length of issuing a study for a project extending to Surabaya, which was estimate to be about 730 km. This was followed by a counter bid which was submitted by the Chinese government in April 2015, must to the chagrin of the Japanese.

This was followed by a state visit by Joko Widodo, who had a successful meeting with the Chinese president, Xi Jinping on March 26, 2015. After the meeting Xi Jinping publicly announced the support of the Chinese government for the development of Indonesian high-speed project, this was followed by the signing of a memorandum of understanding between the two governments. In July 2015, Indonesia led by Jodo Widodo officially announced their plan to commence the construction of the HSR, this would connect Jakarta and Bandung, the bidding process was then made public, therefore the contest was between the potential bidders which included both the Japanese and Chinese train-makers had. The contest became interesting as the Chinese train-maker organized a Chinese HSR Technology exhibition in August 2015. This was a brilliant move which was not new to either contenders since both the Chinese and Japanese have been engaged in fierce business competition in the past, often using intense lobbying to outdo each other. It was widely acclaimed that the primary reason behind the high display of domineering campaign displayed goes further.

The Chinese government played another card in mid-September 2015, they submitted a new proposal that offered to fully meet the Indonesian government's demands while also eliminating funding required to commence. This was followed closely by several months of bidding, negotiations, between the two countries. It temporarily led to the cancellation of the project, however, the Indonesian government made a decision to select China as the preferred bidder for the US\$5 billion project because of its financial structure which was so hard to ignore, considering the fact that this was completely different from what the Japanese plan had proposed.

China's triumph can be alluded to China's willingness fund the project. This would in fact lead to a waiver, which was different from what the Japanese had offered, and the Japanese had also refused to shift their grounds. China had even gone further ahead alleviate its deal by including its commitment to institute a program for the manufacture of light and electric rail system in partnership with local businesses. These products would be targeted at the Indonesian market, and exported neighboring markets, thus creating a seamless technology transfer system that would lead to growth of local technology for renovating and train stations.

Therefore, it looked like Indonesia had benefitted immensely from the Japan-China competition, as the Indonesian HSR bid earmarked continuous competition between Japan and China in their bid for other infrastructure projects with Asia. The HSR system has 71.63 km of the track on the ground level, while 53.54 km of the track will be raised, and the remaining 15.63 km will be below the surface. This was followed by the groundbreaking ceremony, held on January 21, 2016 to commence the construction of the HSR. The HSR system would be open to the public after its official launch in 2021.

PROJECT'S DESCRIPTION

The HSR is part of the governments' grand ambition of upgrading Indonesia's lagging infrastructure. If successful executed, the project will drastically reduce travel time to just 45 minutes only. The HSR has four stations as seen in Fig. 2.

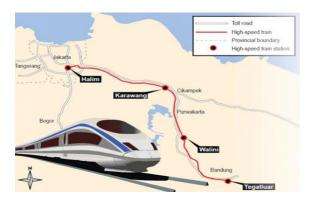


Fig. 2 Route of Jakarta to Bandung HSR

The HSR project will be financed exclusively by China. The project will include integration of the HSR stations with developments along its corridor through transit oriented developments (TOD) [8, 9].

The ambitious proposal for the national railway network comes amid recent news that the cost of the Jakarta-Bandung HSR has swelled to almost US\$6 billion, from US\$5.2 billion. On the other hand, rail ridership in Indonesia has risen substantially in recent years, making decades of underinvestment and growing urban congestion important considerations for transport stakeholders as they upgrade and construct new lines. Statistics Indonesia (BPS) reports that total rail passengers rose from 199 million in 2011 to 202 million in 2012, 216 million in 2013, 277 million in 2014 and 325 million in 2015. The average length of a passenger journey has simultaneously fallen from 95 km to 68 km, while the country's rail network remains limited to Java and Sumatra, with 22,296 km of total line operational in 2015. The Medium-Term Development Plan 2015-2019 includes an infrastructure development agenda that outlines projects such as having 3,258 km of newly built or rehabilitated rail lines, made up of 2,159 km of intercity railways and 1,099 km of urban railway, and boosting rail cargo volumes to 1.5 million twenty-foot equivalent units annually. Urban rail lines, including a planned light rail transit (LRT) system in Jakarta, are also expected to help reduce congestion and transport costs, which have become the highest in South-east Asia. It was forecast that the new line would attract around 10 million passengers per year in first year of operation, as shown in Fig. 3.

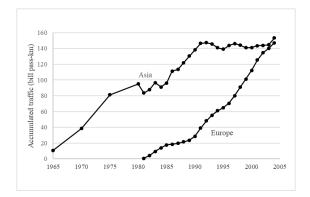


Fig. 3 Accumulated HSR traffic [10]

For 20 years, Shinkansen services in Japan enjoyed a sustained traffic, it gained 100 billion passengers-kilometer. From 1994 to 2004, within the next 20-years interval, the demand halved, because only 50 billion additional passengers-kilometer used HSR. When compared with most European HSR projects which are still in their first 20-year period, it is natural to expect high growth rates as expressed by Fig. 3. Figure 4 shows accumulated traffic used the HSR services in Asia and Europe based on traffic data from each operator during the 2010 to 2016 period. As confirmed by Fig. 4 the only China is still in it incredible constant growth and gained a huge accumulated traffic around 850 billion passenger-km. Two other Asian countries i.e. South Korea and Taiwan started HSR services in first decade of 21 centuries only gained accumulated traffic of 31.4 and 20.2 billion passenger-km respectively during the same period.

Based on long experienced of HSR services in Japan and Europe countries it is easy to predict that most China HSR projects still enjoyed a constant traffic growth for the next two decades most triggering by combined building new dedicated electrified lines and upgrading existing lines. Both South Korea and Taiwan HSR service expressed constant demand growth for the following first decade even the Korea Train Express (KTX) has transported approximately 150 million passengers since the four years after its opening. Taiwan HSR itself has carried about 100,000 passengers per day for fifty first months of commercial service. However, Shinkansen services is still in its positive growth and gained accumulated traffic of 196 billion passenger-km from 2010 to 2016, two times higher than France figures of 99 billion passenger-km during the same period. France HSR had stagnant traffic growth from 2010 to 2016; in 2016 as an example, SNCF collected accumulated traffic of 49 billion passenger-km, otherwise in 2010 it figures stood at 51 billion passenger-km. Other Europe HSR operators include Dutch, England, and Sweden indicated sustained traffic growth and collected accumulated traffic around 42 billion passenger-km until the end of 2016.

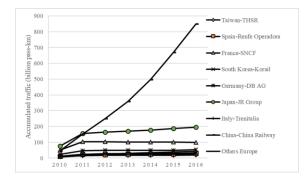


Fig. 4 Accumulated HSR traffic during the 2010 to 2016 period [11]

Based on passenger traffic data obtained from Europe and Asia, the first HSR line constructed in Indonesia is expected to gain considerable amounts of demand. However, it is important to state that in Europe and Asian countries, the construction of HSR lines was as a result of the inability of their conventional lines being unable to meet their demands, thus they needed to add a new capacity to increase rail service. It is also noteworthy to mention that many of these existing rail lines had already been doubled or tripled in a bid to increase the capacity. Therefore, the high demand for conventional rail can be said to have created a market for HSR in these countries. It is inevitable to mention that Indonesia include Jakarta and Bandung lacks of this factor that triggered HSR services successful in Europe and Asian countries.

PROPOSAL OF SG-KL HSR PROJECT

The Malaysian and Singaporean governments signed an agreement on February 2013 that would result in the construction of HSR line, connecting Malaysia [12]. It is of utmost important and key to the successful implementation of Malaysia's national development strategy, (one of the main objective is to increase the country's GDP per person by 150%) by the time this HSR line will be completed in 2020, the Malaysian government is also looking forward to a further boost in the country's economics by closelytied cooperation with the Singaporean government.

Cost of this project is estimated at RM 40 billion (USD 12 billion). The source(s) of the funding, however, has not been officially disclosed; although some private sources say that Private-Public-Partnership (PPP) funding will be used, others claim that it will be jointly co-funded by both the Malaysian and Singaporean governments considering the fact 335 km of the line will be in Malaysia while the remaining 15 km will be in Singapore. The HSR will have a total of eight stops, seven of which will be within Malaysia and one will be within Jurong East. The high speed rail line which will consist of bullet trains moving at top speed, above an estimated 300 km/hour is projected to become operational in 2026. This would therefore reduce the land journey between Kuala Lumpur and Singapore from about five hours to a mere 90 minutes' journey as shown in Fig. 5.

This project has attracted keen interest from various large corporations within Asia and Europe. However, Mahathir Mohamad who is the current Malaysian Prime Minister had announced on Monday May 28, 2018 that the HSR project will be axed, but he had also explained that it will take some time to execute because the Malaysian government and Singaporean government had also signed a contract on the multi-billion-dollar project. Meanwhile, Dr Mahathir Mohamad, the Malaysian Prime Minister had also assured that the government will remain "business friendly" to all investors involve in the project [13].

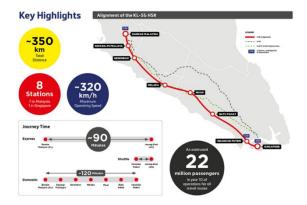


Fig. 5 Proposed Kuala Lumpur – Singapore HSR line [14]

The relationship existing between Malaysia and Singapore is considered unique because of certain factors, these include the geography of both countries, economy, politics, historical background, cultural heritage, and ethnicity. It is also attributed to the fact that Singapore separated from Malaysia in 1965, hence the similarity. It is also intriguing to know that although both countries have been characterized by healthy competition in economic and social matters, they however enjoy a very high level of economic interdependence as major trading partners. The existing relationship between Singapore and Malaysia has been described as symbiotic. However, this mutually symbiotic as the relationship has been beneficial to both countries, although the relationship has faced some challenges in the past, it has existed since 1965. The Mahathir administration which was in control in Malaysia from 1997 to 2002, was believed by many to be the most stressful period between both Singapore and Malaysia. However, the situation changed after Abdullah Badawi got into power and became the prime minister of Malaysia in 2003, and since then there has been enhanced contact and cooperation between both governments. History is starting to repeat itself again in the part of the SG -KL HSR project [13].

CONCLUSIONS

In conclusion, the Jakarta-Bandung HSR project, linking Jakarta to Bandung was executed by PT Kereta Cepat Indonesia China (KCIC), through mutually agreed business-to-business plan basis, with the Indonesian government. China, which was not only the contender had been awarded the project because of the provision of soft loans for the project; on the other hand, Japan which had showed interest in the project had requested that the Indonesian government funded the project. Surprisingly, Japan was the first to have indicated interested in the project and had even gone ahead to commence working on a feasibility study for HSR track, connecting Jakarta to the country's second largest city, Surabaya, which is about 730 kilometers apart.

Indonesia went further in 2012 to commence another feasibility study focused on the Jakarta-to-Bandung leg, this study was finalized in 2014. The highest operating speed of the trains is estimated at about 350 km/hour, the Jakarta-Bandung high speed rail would result in shortened travel time between the two hubs, reducing the time spent to cover this distance from three hours to 45 minutes only, therefore pushing forward economic development along the line through transit oriented developments. It was projected that the line would also attract about 10 million passengers each year within the first year of operation. This high figure is however a reflection of the densely populated city of Jakarta, and the several number of origin destination pairs that the HSR line would simultaneously serve.

The Kuala Lumpur-Singapore HSR is a strategic project between the Malaysian government and

Singaporean government, with its primary goal of facilitating seamless travel between the two capital cities of Kuala Lumpur and Singapore, enhancing business linkages, and connecting the citizens of both countries. The high-speed rail link is expected to reduce the travel time between the two cities from about four to five hours by road to 90 minutes only. However, it is also noteworthy to mention that the surprising decision arrived not long after the newly elected Malaysian prime minister raised the possibility of dropping the project because of its cost implications.

ACKNOWLEDGMENTS

Author would like to express my special thanks of gratitude to "Program Bantuan Seminar Luar Negeri Ditjen Penguatan Riset dan Pengembangan, Kemenristekdikti" for funding the GEOMATE2019 Tokyo.

REFERENCES

- [1] Directorate General of Railway, Ministry of Transportation, Master Plan of National Railway, April 2011.
- [2] Campos, J., and de Rus., G. Some stylized facts about high-speed rail: A review of HSR experiences around the world, Journal of Transport Policy, Vol. 16, 1, 2009, pp. 19-28.
- [3] Albalate, D., and Bel, G. High-Speed Rail: Lessons for Policy Makers from Experiences Abroad, Research Institute of Applied Economics, Universitat de Barcelona, 2010.
- [4] The Ministry of Economy, Trade and Industry, Study on the High Speed Railway Project (Jakarta-Bandung Section), Republic of Indonesia, Final Report, November 2012.
- [5] Chan, G. From Laggard to Superpower: Explaining China's High-Speed Rail 'Miracle', The Japan Institute of International Affairs, 2017.
- [6] Chan, G. China's high-speed rail diplomacy: global impacts and East Asian responses, EAI working paper, East Asian Institute, Seoul, 2016.
- [7] Chan, G. China's New Silk Roads: a new global financial order in the making? in Bo Zhiyue (ed), China-US relations in global perspective. Wellington: Victoria University Press, 2016, pp. 91-107.
- [8] Purba, A., Nakamura, F., Niken, C., Jafri, M., and Pratomo, P. A Current Review of High Speed Railways Experiences in Asia and Europe, AIP Conference Proceedings 1903, 060004, 2017, pp. 1-8.
- [9] PT Kereta Cepat Indonesia China. High Speed Railway (HSR) Jakarta - Bandung, the Acceleration of Infrastructure in West Java. Rapat Kerja Kementerian Perhubungan (Ministry of Transportation), Jakarta, 2016.

- [10] International Union of Railways (UIC). Estimation des resources et des activités économiques liées a la grande vitesse. Prepared by CENIT (Center for Innovation in Transport, Universitat Politecnica de Catalunya). Paris, 2005.
- [11] International Union of Railways (UIC). Railway Statistics, 2015.
- [12] Retrieved from: <u>www.railwaygazette.com/news/infrastructure/si</u> <u>ngle-view/view/kuala-lumpur-singapore-high-</u>

speed-railway-agreement.html [Accessed: 2018-05-30].

- [13] Retrieved from: https://www.straitstimes.com/asia/.../mahathirspore-will-be-told-of-kls-wish-to-scrap-[Accessed: 2018-05-31]
- [14] Retrieved from: http://www.myhsr.com.my/ [Accessed: 2018-05-30]

Paper ID number	First Name	Last Name	Paper Title
9105	MOHD KHAIRUL BAZLI	MOHD AZIZ	RAIN GAUGES NETWORK SIMULATION USING GEOSTATISTICS AND HYBRID PARTICLE SWARM-SIMULATED ANNEALING OPTIMIZATION
9106	Wattana	Wirivutthikorn	DIFFERENT RATIOS OF RICEBERRY RESIDUES AND WATER ON HEALTH DRINK PRODUCTION
9108	Hidenori	Tanaka	ADHESIVE STRENGTH OF INJECTABLE INORGANIC ANCHOR MATERIAL IN CONCRETE
9110	Pattira	Kasamesiri	MICROPLASTICS INGESTION BY FRESHWATER FISH IN THE CHI RIVER, THAILAND
9112	Md. Abdur	Rahman	EFFECT OF CURING PERIOD ON THE PROPERTIES OF CONCRETE
9113	Bernardo	Lejano	COMPRESSIVE STRENGTH OF CONCRETE WITH SEAWATER AND POWDERED EGGSHELLS AS PARTIAL REPLACEMENT FOR CEMENT
9115	Toshikazu	Nishio	CURRENT SITUATION EVALUATION OF TAKASAKI CITY BY FORMULATING MODEL OF URBAN POWER
9117	Tomoko	Miyagawa	CHARACTERISTICS OF CULTURAL LANDSCAPE IN THE GATEWAYTOWN OF KUDOYAMA
9119	Mohamed	Rashed	AN INVESTIGATION ON THE PRODUCTION OF STABILIZED CLAY BRICKS (UNFIRED BRICKS) WITH MIOCENE CLAY AND SOME WASTE MATERIALS
9121	Fahmi	Aldiamar	EVALUATION OF AUXILIARY METHOD IN TUNNEL CONSTRUCTION ON MIXED FACE (SOIL-ROCK) CONDITION
9122	Mitsuru	Yamazaki	EVALUATION OF RELATIONSHIP BETWEEN DECREASE IN TENSILE LOAD OF GROUND ANCHORS AND THE GEOLOGICAL CONDITIONS
9123	Shinya	Tsukada	RESIDENTS' EVALUATION AND CONTINUITY IN THE CASE OF SHIKISHIMA OPEN GARDEN IN MAEBASHI CITY
9124	Lee Li	Yong	A COMPARATIVE STUDY ON THE PERFORMANCE OF SOIL NAIL AND MICROPILE IN SOIL SLOPE STABILIZATION USING SPENCER'S METHOD
9125	Arjun	Baniya	PORE-STRUCTURAL PARAMETERS OF VOLCANIC ASH SOIL: COMPARISON BETWEEN NON-DESTRUCTIVE AND INDIRECT METHOD
9127	Muzamir	Hasan	PROPERTIES AND LIQUEFACTION RISK ON BULK CARGO CARRYING BUKIT GOH, KUANTAN BAUXITE; IN ACCORDANCE WITH IMSBC CODE
9128	Juan Wei	Koh	EFFECT OF CONSTRUCTION SEQUENCE ON THE PERFORMANCE OF GEOTEXTILE TUBES IN A CONTAINMENT BUND
9129	Juan Wei	Koh	STUDY ON THE PERFORMANCE OF SHALLOW SOIL MIXING WITH CEMENT
9131	Tharindu	Abeykoon	OPTIMISATION OF SENSOR LOCATIONS FOR RELIABLE AND ECONOMICAL EARLY WARNING OF RAINFALL-INDUCED LANDSLIDES
9132	Mary Ann	Adajar	THE COMPRESSIVE STRENGTH AND DURABILITY OF CONCRETE WITH COCONUT SHELL ASH AS CEMENT REPLACEMENT
9133	Masaaki	Takahashi	WATER POLLUTION OF THE KAIZO-GAWA RIVER
9134	Chakrit	Suvanjumrat	THE CONTACT PATCH ANALYSIS OF THE SOLID TIRE TESTING BY FINITE ELEMENT METHOD
9135	Chakrit	Suvanjumrat	DEVELOPMENT OF DYNAMIC FINITE ELEMENT MODEL FOR RIDE COMFORT EVALUATION OF NON-PNEUMATIC TIRE
9138	Nolan	Concha	EFFECTS OF MINERAL AND CHEMICAL ADMIXTURES ON THE RHEOLOGICAL PROPERTIES OF SELF COMPACTING CONCRETE
9139	Nolan	Concha	AN IMPROVED PREDICTION MODEL FOR BOND STRENGTH OF DEFORMED BARS IN RC USING UPV TEST AND ARTIFICIAL NEURAL NETWORK

			IMPROVEMENT OF STRUCTURAL ANALYSIS BY MODIFICATION OF
9141	Windu	Partono	SITE RESONSE ANALYSIS AND EARTHQUAKE FORCE DIRECTION
04.40			EVALUATION OF DEBRIS FLOW CONTROL USING SABO FACILITIES
9142	Naomasa	HONDA	BASED ON NUMERICAL SIMULATIONS
9143	Yogi	Priyo Pradana	APPLICATION OF TAILINGS AS THE SUBSTITUTION MATERIAL OF FINE
5145	Togi		AGGREGATE IN THE HOT ROLLED SAND SHEET
9144	Noor Suraya	Romali	ESTABLISHMENT OF RESIDENTIAL FLOOD DAMAGE FUNCTION
			MODEL FOR KUANTAN, MALAYSIA
			UNIT WEIGHT AND COMPRESSIVE STRENGTH OF SOFT BANGKOK
9145	Cherdsak	Suksiripattanapong	CLAY STABILIZED WITH CALCIUM CARBIDE RESIDUE AND BOTTOM
			ASH COMPOSITIONAL CHANGES IN SEA SLUDGE SAMPLES FROM HIDAKA
9147	Hirosuke	Hirano	PORT IN WAKAYAMA, SOUTHWEST JAPAN, COLLECTED MONTHLY
5147	Throsoke	Tinano	FOR A PERIOD OF 16 MONTHS
			ACCEPTANCE OF MINING COMPANIES IN INDONESIA: COST AND
9148	Einde	Evana	BENEFIT FOR SOCIETY
0.150			EXPERIMENTAL STUDY ON BEHAVIOUR OF VERTICALLY LOADED
9150	Lua	Hoang	PILED RAFTS RESTING ON SATURATED CLAYEY GROUND
9151	Misato	Uehara	VALIDATING CREATIVE THINKING PROCESS EFFECT IN THE 2011
9151	IVIISALU	Uenara	TOHOKU DISASTER AREA: DESIGNING LANDSCAPE RESILIENCE
9152	Nuttapol	Triamcherdtiwong	COMPRESSIVE STRENGTH OF LATERITIC SOIL IMPROVED WITH
5152	Huttapol		BAGASSE ASH AND CALCIUM CARBIDE RESIDUE
9153	Gilford	Estores	MICROMECHANICAL MODELING OF TENSILE STRENGTH OF SHORT
			RANDOM CARBON FIBER REINFORCED CONCRETE
			EVALUATION OF NUMERICAL APPROACH IN SLOPE STABILITY
9158	Nafisa	Tabassum	ANALYSIS CONSIDERING LARGE DEFORMATION OF GEO-MATERIALS
			A GEOSTATISTICAL APPROACH TO DEVELOP THE SOIL ZONATION
9159	Md Aftabur	Rahman	MAP: AN APPLICATION FOR CHATTOGRAM CITY
			RESPONSES OF DIATOM COMMUNITIES TO CHEMICAL VARIABLES IN
9161	Akio	Nishida	STREAM WATERS RUNNING IN SERPENTINE, LIMESTONE AND
			CLOSED-MINE AREAS IN KINKI AND CHUGOKU, JAPAN
04.62	Kanada	Colomete	PREPARATION OF GEOPOLYMER CEMENT FROM SIMULATED LUNAR
9162	Kazuki	Sakamoto	ROCK SAND USING ALKALI FUSION
9163	Apactaciva	Kostryukova	ANALYSIS OF ECOLOGY OF RIVERS AND RESERVOIRS IN CHELYABINSK
9105	Anastasiya	κοςτιγάκονα	REGION, SOUTH URAL
9164	Darika	Bunphan	EFFECT OF SALINE SOIL ON GROWTH AND YIELD OF BLACK SESAME
0101			
9165	Shota	Yoshida	FIELD PULL-OUT EXPERIMENTS OF FLIP-TYPE GROUND ANCHORS
			INSTALLED IN DRY SAND GROUND
9166	Shinya	Inazumi	DYNAMIC INTERACTION BETWEEN STEEL CASING AND EXISTING PILE WHEN PULLING-OUT EXISTING PILES
			ON QUANTITATIVE EVALUATION OF BUCKLING STRENGTH OF
9167	Yazid	Alkhatib	DAMAGED COLUMNS
			FINITE DIFFERENCE APPROXIMATION FOR SOLVING TRANSIENT HEAT
9168	Dalal	Maturi	CONDUCTION EQUATION OF THE BRICK
04.55			A STUDY OF THE COMPACTED KHON KAEN LOESS PARAMETER FOR
9169	Worapong	Phimonnok	THE DESIGN OF GRAVITY WALL
9173	Ibrahim Udala	im Udale Hussaini	FRAMEWORK OF SUSTAINABLE ENERGY DEVELOPMENT IN A BEREFT
91/3			POWER SUPPLY ECONOMY OF NIGERIA
9174	John	Smith	A STUDY OF THE TENSILE STRENGTH OF VEINS AND ITS INFLUENCE
51/4			ON ROCK MASS STRENGTH
			BEARING CAPACITY ANALYSIS OF EMBEDDED SPREAD FOUNDATION
9175	Kazuhiro	Kaneda	USING RIGID PLASTIC FINITE ELEMENT ANALYSIS WITH NONLINEAR
			CONSTITUTIVE EQUATION

9176	Arachchillage Buddhika Priyadarshani	Bandara	EXAMINATION OF CRUSHED LATERITE BRICK FOR REMOVAL OF CHROMIUM AND ARSENIC FROM WASTEWATER
9179	Rina	Yuliet	THE EFFECT OF UPWARD FLOW OF WATER TO TILT AND SETTLEMENT OF SHALLOW FOUNDATION
9180	Elsa Eka	Putri	STABILIZATION OF RIMBO PANJANG PEAT SOIL USING LIGHTWEIGHT MATERIALS MIXED WITH CEMENT AS SUBGRADE FOR ROAD PAVEMENT
9181	Oleg	Kupervasser	ALGORITHMS DEVELOPED FOR TWO POROTYPES OF AIRBORNE VISION-BASED CONTROL OF GROUND ROBOTS
9183	Kamonwan	Prathumwong	POST-FIRE BEHAVIOUR OF CONCRETE-FILLED STEEL CIRCULAR TUBE COLUMNS UNDER AXIAL COMPRESSION
9184	Teruo	Arase	CHARACTERIZATION OF TEMPERATURE ENVIRONMENT ON MIKURA- JIMA ISLAND, JAPAN WITH CONSIDEARATION OF VEGETATION RECOVERY
9186	Machimontorn	Promtong	EXPERIMENTAL STUDY OF TWO-STAGE FORCED CONVECTION FURNACE FOR RIBBED RUBBER SMOKED SHEET (RSS) PRODUCTION
9187	RATTANACHOT	THONGPONG	THE INFLUENCE OF THE FOUNDATION SIZE ON COLLAPSIBLE KHON KAEN LOESS
9189	Piyawat	Foytong	BEHAVIOR OF INDUSTRIAL BUILDING UNDER SEISMIC LOADING
9190	Reiko	Machida	DEVELOPMENT OF THE DISASTER PREVENTION EDUCATIONAL PROGRAM FOR RECONSTRUCTION AFTER THE KUMAMOTO EARTHQUAKE
9191	Kokkrit	Piyasawat	INFLUENCE OF A SHALLOW FOUNDATION DEPTH ON THE COLLAPSIBLE KHONKAEN LOESS
9192	Piyawat	Foytong	THE OPTIMAL METHOD FOR BUILDING DAMAGE FRAGILITY CURVE DEVELOPMENT
9194	Hiroyasu	Ishii	EXPERIMENTAL STUDY ON INFILLING BEHAVIOR OF PLASTOC GROUT IN VOIDS WITH CHANGING HEIGHT
9195	Tetsuya	Fukano	HEAVY METAL CONCENTRATION CHANGE IN OYSTER AFTER CHANGING LIVING PLACES WITH VARIOUS HEAVY METAL CONDITION IN OSAKA BAY, JAPAN
9196	Makiko	Kobayashi	PRELIMINARY EXAMINATION ON IN-SITU MEASUREMENT OF NEEDLE PENETRATION RESISTANCE
9197	Matsuno	Akihiro	COMPARISON MACROPORE STRUCTURE AND NETWORK FOR AUTOCLAVED AERATED CONCRETE (AAC) BLOCKS USING MICROFOCUS X-RAY CT
9198	Joenel	Galupino	PERFORMANCE OF CONCRETE MIXED WITH FLY ASH AND PLASTIC WHEN EXPOSED TO FIRE
9200	Albert Jr	Grino	EFFECTS OF GYPSUM, POTASSIUM SULFATE, AND SILICATE MINERAL POWDER AS ANTI-CRACKING AGENT IN ASPHALT COMPOSITE USING CONTINUOUS CONSTRUCTION METHOD
9201	Jomari	Tan	RECYCLED GYPSUM AND RICE HUSK ASH AS ADDITIVES IN THE STABILIZATION OF EXPANSIVE SOIL
9203	Jonathan	Dungca	ALLOWABLE SOIL BEARING CAPACITY REFERENCE FOR QUEZON CITY, PHILIPPINES
9205	Richard	De Jesus	RESISTIVITY AGAINST SULFATE ATTACK OF CONCRETE WITH HDPE AS PARTIAL SUBSTITUTE FOR FINE AGGREGATES
9207	Richard	De Jesus	ASSESSMENT OF TESTING PROTOCOLS FOR BAMBOO FOR TENSION PARALLEL TO FIBER
9208	Richard	De Jesus	REPAIR SEQUENCE AND RECOVERY TIME IN WATER DISTRIBUTION NETWORK RESILIENCY
9209	Akinobu	OGASAWARA	FIELD OBSERVATIONS OF STEEL STRIP REINFORCED SOIL WALLS CONSTRUCTED USING DIFFERENT EMBANKMENT MATERIALS
9210	Masaki	Yanai	UNIAXIAL COMPRESSION TEST WITH VARYING SILICA SAND CONTENT, PARTICLE SIZE AND TEMPERATURE

Seriel Kobayashi CONSIGNISTIE EFFECTO FEMPERATURE DUE TO HIGH-LEVEL RADIOACTIVE WASTE 2213 Mahd Sham Mohamad CLUSTERING OF RAINFALL DATA USING K-MEANS ALGORITHM CLUSTERING OF RAINFALL DATA USING K-MEANS ALGORITHM 2215 MERI JAYANTI RESULTING USING TARINFALL DATA USING K-MEANS ALGORITHM 2216 Piyapong Wongkhunkaew EFFECT OF CLIMATE VARIABILITY CON STUCY (MANUK WATERSHED) 2216 Piyapong Wongkhunkaew STUDY ON NICE PRODUCTION OF INCIT-LASTERN THALLAND 2217 Keiichiro Shibata PSCUED ON NOTHEASTERN THALLAND 2218 Wachirawit Piinruttanadet HISTORICAL HYDROLOGICAL DATA CENERATION FOR UNGAUGDD 2220 Pongpinid Piniduek REGONALIZATION OF RAINFALL DATA CENERATION FOR UNGAUGDD 2221 Minoru Yamanaka DETECTION OF CONCELLE ACTUVE FAULTS BY MIRGOTEMORAT 2222 Pongpinid Piniduek REGONALIZATION OF RAINFALL DATA CENERATION FOR UNGAUGD 2233 Michiko Masuda STINBUTION OF ALLO TON THE AUGT EFMORET 2244 Hironobu Ito DISTRIBUTION OF FATWITH UCCAL SPECIAL 2333 Pinit Tanachalchokskir				
Patholic Construction RADIOACTIVE WASTE 9213 Mohd Sham Mohamad CLUSTERING OF RAINFALL DATA LUSING K-MEANS ALGORITHM 9215 MERRI JAYANTI RESOURCES SUBTAINABILITY (CASE STUDY: CIMANUK WATERSHED) OF JATIGED RESERVOR, WEST JAVA) 9216 Piyapong Wongkhunkaew DEFECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHALSTRN THAILAND 9217 Keiichiro Shibata STUDY ON EXTRACTION FROM CESUMI NO CONTAMINATED SOIL PACED IN FLEXIBLE CONTAINER BAC AND ADSORPTION USING RICE HUSK 9218 Wachirawit Plinruttanadet HISTORICAL HYDROLOGICAL DATA GENERATION FOR UNGAUGDD WATERSHED BY WATER BALANCE TOOL 9212 Minoru Parmanka DETECTION OF CONCELED ACTIVE FAULTS BY MICROTREMOR AT REVER WATER BALANCE TOOL 9220 Pongpinid Piniduek REGIONALIZTION OF RANFALL IN NORTHEASTERN THAILAND 9221 Minoru Yamanaka DETECTION OF CONCELED ACTIVE FAULTS BY MICROTREMOR AT REVER WATER BALANCE TOOL 9224 Minoru Parmaka DETECTION OF CONCELED ACTIVE FAULTS BY MICROTREMOR AT REVER WATER DISAPPEAR SECTION 9234 Hicrobu Ito DISTREMUNERABILITY OF HAILANT CONTININALID 9234 Hicrobu Ito DISTREMUNERABI	0212	Conri	Kabayashi	THE SWELLING EXPERIMENT OF BENTONITE BUFFER MATERIAL
9213 Mohd Sham Mohamad CLUSTERING OF RAINFALL DATA USING K-MEANS ALGORITHM 9215 MERRI JAYANTI CLIMATE CHARGE IMPACTS ON HYDROLOGY REGIME AND WATER 9216 MERRI JAYANTI RESOURCES SUISTAINABRILITY CAR STEDYIC CIMANUK WATERSHED 9217 Kelichiro Shibata EFFECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF 9217 Kelichiro Shibata PACKED IN FLEXIBLE CONTAINER BAG AND ADSORPTION USING RICE 9218 Wachirawit Plinruttanadet HISTORICAL HYDROLOGICAL DATA GENERATION FOR UNGAUGDD 9211 Kelichiro Shibata PERCED CONCEALED ACTIVE FAULTS PMICHON OF RUNAGAUGD 9220 Pongpinid Plinruttanadet HISTORICAL HYDROLOGICAL DATA GENERATION FOR UNGAUGD 9221 Minoru Yamanaka REGIONALIZATION OF RAINFALL IN NORTHEASTERN THAILAND 9222 Pongpinid Plindluek REGIONALIZATION OF PATA WITH JOCAL SPECIAL 9223 Minoru Yamanaka REFECT CONCEALED ACTIVE FAULTS PMICHORA AT RIVER WATER DISAPPEAR ASCETOON 9224 Minoru Yamanaka REFECT CONCEALED ACTIVE FAULTS PMICHORA AT RIVER WATER DISAPPEAR ASCETOO 9234 Minor	9212	Senn	Kobayashi	
9215 MERI JAVANTI CLIMATE CHANGE IMPACTS ON HYDROLOGY REGIME AND WATER RESOURCES SUBTAINABILITY (CASE STUDY: CIMANUK WATERSHED) OF JATGEDE RESERVOR, WEST JAVA) 9216 Piyapong Wongkhunkaew REFECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHASTERN THAILANDEFFECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHASTERN THAILANDEFFECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHASTERN THAILANDEFFECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHASTERN THAILAND 9217 Keiichiro Shibata PICACED IN FLEXIBLE CONTAINER BAG AND ADSORPTION USING RICE HUSK 9218 Wachirawit Plinruttanadet HISTORICAL HYDROLOGICAL DATA GENERATION FOR UNGAUGDD WATERSHED BY WATER BALANCE TOOL 9220 Pongpinid Pliniduek REGIONALIZATION OF RAINFALLI IN NORTHEASTERN THAILAND 9221 Minoru Yamanaka DETECTION OF CONCELED ACTIVE FAULTS BY MICROTIEMORAT RIVER WATER BALANCE TOOL 9222 Ahmad Numan CEMENTS, GGBRS, AND SUPERPLASTICZER 9231 Michiko Masuda THE HABITAT CONDITION ANALYSIS OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVICTION OF PAINEABILITY OF THAILAND SUCWEE CHAO PREVENDANCE VALUAURENT ON OF RIVERABULTY OF SURVEY CHAO 9233 Pinit Tanachalchoksirikun GROLINDWATER VULHERABULTY OF SURVEY CHAO PREVENDAWAE RASULINE OF THAILAND SUCWEE CHAO PREVENDAWAE RASUNDERE SURVEY OF A TWO-STOREY DEP	0212		Mahawaad	
9215 MERI JAYANTI RESOURCES SUISTAINABILITY (CASE STUDY: CIMANUK WATERSHED OF JATIGEDE RESERVOIR, WEST JAVA) 9216 Piyapong Wongkhunkaew FFFCT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHEASTERN THALANDE PEFCT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHEASTERN THALAND 9217 Keiichiro Shibata PACKED IN FLEXIBLE CONTAINER BAG AND ADSORPTION USING RICE HUSK 9218 Wachirawit Plinruttanadet HISTORICAL HYDROLOGICAL DATA GENERATION FOR UNGAUGOD WATERSHED BY WATER BALANCE TOOL 9220 Pongpinid Pinidluek REGIONALIZATION OF RAINFALL IN NORTHEASTERN THALAND 9221 Minoru Yamanaka PEFCTO OF CONCALED ACTIVE FAULTS BY MICROTREMOR AT RIVER WATER DISAPPEAR SECTION 9221 Minoru Yamanaka PERFORMANCE EVALUATION OF PATA WITH LOCAL SPECIAL CEMENTS, GGBFS, AND SUPERPLASTICIZER 9223 Ahmad Numan PERFORMANCE EVALUATION OF PATA WITH LOCAL SPECIAL CEMENTS, GGBFS, AND SUPERPLASTICIZER 9234 Hironobu Ito DISTRIBUTION OF ACID SUPERPLASTICIZER 9234 Hironobu Tanachaichoksirikun PRIAVA BASIN 9240 Megan Quiaem RESULENCY OF A TWO-STOREY DEPED STANADAD SCHOOL BUILLING UISTRUTTON OF PHYSICAL MODEL ON SUPTATIOR CABDAP<	9213	Iviona Sham	wonamad	
Image: Construction of the second s	0045			
9216 Piyapong Wongkhunkaew EFFECT OF CLIMATE VARIABILITY ON NICE PRODUCTION OF NORTHEASTERN THAILANDEFFECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHEASTERN THAILANDE 9217 Keiichiro Shibata PZCEVEN PRESENT HAILANDEFFECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHEASTERN THAILAND 9218 Wachirawit Plinruttanadet PLINCE IN FLEXIBLE CONTAINER BAG AND ADSORPTION USING RICE HUSK 9218 Wachirawit Plinruttanadet REGIONALIZATION OF RAINFALL IN NORTHEASTERN THAILAND 9220 Pongpinid Pinidluek REGIONALIZATION OF RAINFALL IN NORTHEASTERN THAILAND 9221 Minoru Yamanaka DETECTION OF CONCALED ACTIVE FAULTS BY MICROTREMOR AT RIVER WATER DISAPPEAR SECTION 9226 Ahmad Numan PERFORMANCE EVALUATION OF PEAT WITH LOCAL SPECIAL CEMENTS, GGBTS, AND SUPERPLASTICIZER 9231 Michiko Masuda SIMBOL OF CONSERVATION AREA 9234 Hironobu Ito DISTRIBUTION OF ACID SOL ON CUT SLOPE OF SHIKOKU 9234 Megan Quiaem RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE RUD FAMEWAK 9240 Megan Quiaem RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE RUD FAMAWARA BASIN	9215	MERRI	JAYANTI	
9216 Piyapong Wongkhunkaew NORTHEASTERN THAILANDETECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHEASTERN THAILAND 9217 Kelichiro Shibata STUDY ON EXTRACTION FROM CESIUM IN CONTAMINATED SOIL PACKED IN FLEXIBLE CONTAINER BAG AND ADSORPTION USING RICE HUSK 9218 Wachirawit Plinruttanadet HISTORICAL HYDROLOGICAL DATA GENERATION FOR UNGAUGDD WATERSHED BY WATER BALANCE TOOL 9220 Pongpinid Pinidluek REGONAUIZATION OF RAINFALL IN NORTHEASTERN THAILAND 9221 Minoru Yamanaka DETECTION OF CONCEALED ACTIVE FAULTS BY MICROTREMOR AT RIVER WATER DISAPERA SECTION 9226 Ahmad Numan PERFORMANCE EVALUATION OF PEAT WITH LOCAL SPECIAL CEMENTS, GGEPS, AND SUPERPLASTICIZER 9231 Michiko Masuda THE HABITAT CONDITION ANALYSS OF LUEHDORIHA JAPONICA, THE SIMBOL OF CONSERVATION AREA 9232 Pinit Tanachaichoksirikun GROUNDWATER VULNERABLITY OF THAILAND'S LOWER CHAO PHRAYA BASIN 9240 Megan Quiaem RESULENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE RED FRAMEWORK 9241 Nipun Insog RIGGI INCLUSIONS UNDER CYCLIC LOADING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATION OS OIL REINFORCED BY R				
PRODUCTION OF NORTHEASTERN THAILAND 9217 Keiichiro Shibata PACRED IN FERNILE CONTAINER BAG AND ADSORPTION USING RICE HUSK 9218 Wachirawit Pilnruttanadet HISTORICAL HYDROLOGICAL DATA GENERATION FOR UNGAUGDD WATERSHED BY WATER BALANCE TOOL 9220 Pongpinid Pinidluek REGIONALIZATION OF RAINFALL IN NORTHEASTERN THAILAND 9221 Minoru Yamanaka REFECTION OF CONCEALED ACTIVE FAULTS BY MICROTREMOR AT RIVER WATER DISAPPEAR SECTION 9226 Ahmad Nurman CERETORIO NE CONCEALED ACTIVE FAULTS BY MICROTREMOR AT RIVER WATER DISAPPEAR SECTION 9226 Ahmad Nurman CEMENTS, GGES, AND SUPERPLASTICIZER 9231 Michiko Masuda STIME ON ANALYSIS OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA 9234 Hironobu Ito DISTRIBUTION OF ACID SOIL ON CUT SLOPE OF SHIKOKU 9239 Pinit Tanachaichoksirikun PRAVA BASIN 9240 Megan Quiaem RESULENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USNES GATIVE METHOD FOR INVESTIGATION SOIL LAYERS OF AN INDVIDUAL VULNERABLE SLOPE 9241 Nipun Insog ATREVA BASIN 9242 Eko Andi Suryo <td></td> <td></td> <td></td> <td></td>				
9217 Keiichiro Shibata STUDY ON EXTRACTION FROM CESIUM IN CONTAMINATED SOIL PACKED IN FLEXIBLE CONTAINER BAG AND ADSORPTION USING RICE HUSK 9218 Wachirawit Plinruttanadet HISTORICAL HYDROLOGICAL DATA GENERATION FOR UNGAUGDD WATERSHED BY WATER BALANCE TOOL 9220 Pongpinid Pinidiuek REGIONALIZATION OF RAINFALL IN NORTHEASTERN THAILAND 9221 Minoru Yamanaka REVE WATER DISAPPEAR SECTION 9226 Ahmad Numan PERFORMANCE EVALUATION OF FAINFALL IN NORTHEASTERN THAILAND 9226 Ahmad Numan PERFORMANCE EVALUATION OF FAINFALL IN NORTHEASTERN THAILAND 9231 Michiko Masuda THE HABITAT CONDITION ANALTSI OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA 9232 Hironobu Ito DISTRIBUTION OF ACID SOLI, ON CUT SLOPE OF SHIKOKU 9234 Hironobu Ito DISTRIBUTION OF ACID SOLI, ON CUT SLOPE OF SHIKOKU 9234 Megan Quiaem USING THE RUL FRAMEWORK 9240 Megan Quiaem USING THE RUL FRAMEWORK 9241 Nipun Insog RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE RUL FRAMEWORK 9242	9216	Piyapong	Wongkhunkaew	
9217 Keichiro Shibata PACKED IN FLEXIBLE CONTAINER BAG AND ADSORPTION USING RICE HUSK 9218 Wachirawit Plinruttanadet HUSK 9220 Pongpinid Plindluek REGIONALIZATION OF RAINFALL IN NORTHEASTERN THAILAND 9221 Minoru Yamanaka DETECTION OF CONCEALED ACTIVE FAULTS BY MICROTREMOR AT RIVER WATER DISAPPEAR SECTION 9226 Ahmad Numan CEMENTS, GGES, AND SUPERIVATION OF PEAT WITH LOCAL SPECIAL CEMENTS, GGES, AND SUPERIVATION OF PEAT WITH LOCAL SPECIAL CEMENTS, GGES, AND SUPERIVATION OF ACID SOLI ON CUT SLOPE OF SHIKOKU 9234 Hironobu Ito DISTRIBUTION OF ACID SOLI ON CUT SLOPE OF SHIKOKU 9239 Pinit Tanachaichoksirikin PRAVA BASIN 9240 Megan Quiaem RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORR 9241 Nipun Insog RIGID INCLUSIONS UNDER CYCLIC LOADING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATION SOIL LAYERS OF RIGID INCLUSIONS UNDER CYCLIC LOADING 9243 shangning tao A TTENUATION SEPANDER SUPPORT FOR CARBON FOOTRINT 9244 Narunat Heama THEE-OIMENSIONAL ANALYSES OF EXIST				PRODUCTION OF NORTHEASTERN THAILAND
HUSK HUSK 9218 Wachirawit Plinruttanadet HISTORICAL PVROLOGICAL DATA GENERATION FOR UNGAUGDD 9220 Pongpinid Pinidluek REGIONALIZATION OF RAINFALL IN NORTHEASTERN THAILAND 9221 Minoru Yamanaka RIVER WATER DISAPPEAR SECTION 9226 Ahmad Numan PERFORMANCE EVALUATION OF PAT WITH LOCAL SPECIAL 9226 Ahmad Numan PERFORMANCE EVALUATION OF PAT WITH LOCAL SPECIAL 9231 Michiko Masuda THE HABITAT CONDITION ANALYSIS OF LUEHDORIFIA JAPONICA, THE 9234 Hironobu Ito DISTRIBUTION OF ACID SOL ON CUT SLOPE OF SHIKOKU 9239 Pinit Tanachaichoksirikun GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO 9240 Megan Quiaem RISIDIENTON OF ALIOSOL ON CUT SLOPE OF SHIKOKU 9241 Nipun Insog RISIDI NCUSIONS UNBER CYCLIC LODNING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULRERABLE SLOPE 9244 Narunat Heama THERE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES 9244 Narunat				STUDY ON EXTRACTION FROM CESIUM IN CONTAMINATED SOIL
9218 Wachirawit Plinruttanadet HISTORICAL HYDROLOGICAL DATA GENERATION FOR UNGAUGDD WATTERSHED BY WATER BALANCE TOOL 9220 Pongpinid Pinidluek REGIONALIZATION OF RAITAKASTERN THAILAND 9221 Minoru Yamanaka DETECTION OF CONCEALED ACTIVE FAULTS BY MICROTREMOR AT RIVER WATER DISAPPEAR SECTION 9226 Ahmad Numan PERFORMANCE EVALUATION OF PART WITH LOCAL SPECIAL CEMENTS, GGPS, AND SUPERLASTICIZER 9231 Michiko Masuda SIMBOL OF CONSERVATION AREA 9234 Hironobu Ito DISTRIBUTION OF ARITA MALYSIS OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA 9239 Pinit Tanachaichoksirikun GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAYA BASIN 9240 Megan Quiaem RESILIENCY OF A TWO STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9241 Nipun Insog RIGID INCLUSIONS UNDER CYCLIC LOADING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVERIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABIL SUOPE 9243 shangning tao ATTENUATION BEHAVIORS WITH SOIL MONEL RESPONSES 9244 Narunat Heama DUE TO ADJACENT LOADED PLI	9217	Keiichiro	Shibata	PACKED IN FLEXIBLE CONTAINER BAG AND ADSORPTION USING RICE
9218 Wachirawit Plinruttanadet WATERSHED BY WATER BALANCE TOOL 9220 Pongpinid Pinidluek REGIONAUZATION OF RAINFALL IN NORTHEASTERN THAILAND 9221 Minoru Yamanaka DETECTION OF CONCRELED ACTIVE FAULTS BY MICROTREMOR AT RIVER WATER DISAPPEAR SECTION 9226 Ahmad Numan CEMENTS, GERS, AND SUPERIPASTICIZER 9231 Michiko Masuda THE HABITAT CONDITION ANALYSIS OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA 9234 Hironobu Ito DISTRIBUTION OF FACID SOLI ON CUT SLOPE OF SHIKOKU 9239 Pinit Tanachaichoksirikun GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO 9240 Megan Quiaem RESULENCY OF A TWO-STORY DEPED STANDARD SCHOOL BUILDING 9241 Nipun Insog RESULENCY OF A TWO-STORY DEPED STANDARD SCHOOL BUILDING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAVERS OF AN INDVIDUAL VULNERABLE SLOPE 9243 shangning tao ATTENJATION BEHAVIORS WITH SOIL MOSTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT I LOADED PILES ROW				HUSK
9220 Pongpinid Pinidluek REGIONALIZATION OF RAINARCE TOOL 9221 Minoru Yamanaka DETECTION OF CONCEALED ACTIVE FAULTS BY MICROTREMOR AT RIVER WATER DISAPPEAR SECTION 9226 Ahmad Numan PERFORMANCE EVALUATION OF PART AVAILIN NORTHEASTERN THAILAND 9226 Ahmad Numan PERFORMANCE EVALUATION OF PART AVAILIN NORTHEASTERN THAILAND 9227 Michiko Masuda SIMBOL OF CONSERVATION ANALYSIS OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA 9234 Hironobu Ito DISTRIBUTION OF ALTANCHSON AREA 9239 Pinit Tanachaichoksirikun GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAYA BASIN 9240 Megan Quiaem RESULIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9241 Nipun Insog RESULENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOI NOVESTIGATING SOIL LAVERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAVER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heam	9218	Wachirawit	Plinruttanadet	HISTORICAL HYDROLOGICAL DATA GENERATION FOR UNGAUGDD
9221 Minoru Yamanaka DETECTION OF CONCEALED ACTIVE FAULTS BY MICROTREMOR AT RIVER WATER DISAPPEAR SECTION 9226 Ahmad Numan PERFORMANCE EVALUATION OF PEAT WITH LOCAL SPECIAL CEMENTS, GGBFS, AND SUPERPLASTICIZER 9231 Michiko Masuda THE HABITAT CONDITION ANALYSIS FO LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA 9234 Hironobu Ito DISTRIBUTION OF ACID SOIL ON CUT SLOPE OF SHIKOKU 9239 Pinit Tanachaichoksirikun GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAYA BASIN 9240 Megan Quiaem RESILENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE RED FRAMEWORK 9241 Nipun Insog RIGD INCLUSIONS UNDER CYCLIC LOADING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAYE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND <td< td=""><td>5210</td><td>wachinawic</td><td>T init attailadet</td><td>WATERSHED BY WATER BALANCE TOOL</td></td<>	5210	wachinawic	T init attailadet	WATERSHED BY WATER BALANCE TOOL
9221 Minoru Yamanaka RIVER WATER DISAPPEAR SECTION 9226 Ahmad Numan PERFORMANCE EVALUATION OF PEAT WITH LOCAL SPECIAL CEMENTS, GGBES, AND SUPERLASTICIZER 9231 Michiko Masuda THE HABITAT CONDITION ANALYSIS OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA 9234 Hironobu Ito DISTRIBUTION OF ACID SOLIO NC UT SLOPE OF SHIKOKU 9239 Pinit Tanachaichoksiriku GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAYA BASIN 9240 Megan Quiaem RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9241 Nipun Insog INVESTIGATION OF PHYSICAL MODEL ON SOFT SOIL REINFORCED BY RIGID INCLUSIONS UNDER CYCICL LODING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao THREE-DIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND	9220	Pongpinid	Pinidluek	REGIONALIZATION OF RAINFALL IN NORTHEASTERN THAILAND
Prescription RIVER WATER DISAPPEAR SECTION 9226 Ahmad Numan PERFORMANCE EVALUATION OF PEAT WITH LOCAL SPECIAL CEMENTS, GGBFS, AND SUPERPLASTICIZER 9231 Michiko Masuda THE HABITAT CONDITION ANALYSIS OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA 9234 Hironobu Ito DISTRIBUTION OF ACID SOIL ON CUT SLOPE OF SHIKOKU 9239 Pinit Tanachaichoksirikun GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAYA BASIN 9240 Megan Quiaem RESILEINCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE RED FRAMEWORK 9241 Nipun Insog RIGID INCLUSIONS UNDER CYCLIC LOADING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAYE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama DLE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STA	0221	Minoru	Vamanaka	DETECTION OF CONCEALED ACTIVE FAULTS BY MICROTREMOR AT
9226 Ahmad Numan CEMENTS, GGBFS, AND SUPERPLASTICIZER 9231 Michiko Masuda THE HABITAT CONDITION ANALYSIS OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA 9234 Hironobu Ito DISTRIBUTION OF ACID SOIL ON CUT SLOPE OF SHIKOKU 9239 Pinit Tanachaichoksirikun GROUNDWATER NULNERABILITY OF THAILAND'S LOWER CHAO PHRAYA BASIN 9240 Megan Quiaem RESILENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9241 Nipun Insog RESILENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SUFFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9250 Nopadon Kronprasert SAFET AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9251 T	9221	WIITOFU	fdilidiidKd	RIVER WATER DISAPPEAR SECTION
P231CCEMENTS, GGBS, AND SUPERPLASTICIZER9231MichikoMasudaTHE HABITAT CONDITION ANALYSIS OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA9234HironobuItoDISTRIBUTION OF ACID SOIL ON CUT SLOPE OF SHIKOKU GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAVA BASIN9240MeganQuiaemGROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAVA BASIN9241NipunInsogRESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE RED FRAMEWORK9242Eko AndiSuryoA NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLEJTY OF SLOPE SURFACE LAYER BY WAVE A TIENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION9244NarunatHeamaTHREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADACENT LOADED PLES ROW9245pornsudaphanukarnBLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND9246SuphaphatKwonpongsagoonWEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND9248Erica EliceUYUTULZATION OF PHILIPPINE GOLD MINE TAILING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9255NopadonKronprasertCONTAMINATION IN THE KINOKAWA RIVER CATCHMENT COTAMINATION IN THE KINOKAWA RIVER CATCHMENT SAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9258YokoSakkibaraCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY <td>0226</td> <td>Alexand</td> <td>Numer</td> <td>PERFORMANCE EVALUATION OF PEAT WITH LOCAL SPECIAL</td>	0226	Alexand	Numer	PERFORMANCE EVALUATION OF PEAT WITH LOCAL SPECIAL
9231MichikoMasudaTHE HABITAT CONDITION ANALYSIS OF LUEHDORIFIA JAPONICA, THE SIMBOL OF CONSERVATION AREA9234HironobuItoDISTRIBUTION OF ACID SOIL ON CUT SLOPE OF SHIKOKU9239PinitTanachaichoksirikunGROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAYA BASIN9240MeganQuiaemRESULENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK9241NipunInsogINVESTIGATION OF PHYSICAL MODEL ON SOFT SOIL REINFORCED BY RIGID INCLUSIONS UNDER CYCLIC LOADING9242Eko AndiSuryoA NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF A NIN-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF A NINDUDAL VULNERABLE SLOPE9243shangningtaoESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION9244NarunatHeamaTHREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW9245pornsudaphanukarnBLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND9246SuphaphatKwonpongsagoonWEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONA IN THAILAND9248Erica EliceUYUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258No	9226	Anmad	Numan	CEMENTS, GGBFS, AND SUPERPLASTICIZER
9231 Michiko Masuda SIMBOL OF CONSERVATION AREA 9234 Hironobu Ito DISTRIBUTION OF ACID SOIL ON CUT SLOPE OF SHIKOKU 9239 Pinit Tanachaichoksirikun GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAYA BASIN 9240 Megan Quiaem RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9241 Nipun Insog RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND 9247 Suphaphat Kwonpongsagoon DEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PR				THE HABITAT CONDITION ANALYSIS OF LUEHDORIFIA JAPONICA, THE
9239 Pinit Tanachaichoksirikun GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAYA BASIN 9240 Megan Quiaem RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE RED FRAMEWORK 9241 Nipun Insog INVESTIGATION OF PHYSICAL MODEL ON SOFT SOIL REINFORCED BY RIGID INCLUSIONS UNDER CYCLIC LOADING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND 9247 Suphaphat Kwonpongsagoon WEB APPLICATION OF PHILIPPINE GOLD MINE SLAUGHTERING PROCESSES 9248 Erica Elice Uy UTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION 9250 Nopadon Kronprasert SAFETY AND OPERATIONAL A	9231	Michiko	Masuda	
9239 Pinit Tanachaichoksirikun GROUNDWATER VULNERABILITY OF THAILAND'S LOWER CHAO PHRAYA BASIN 9240 Megan Quiaem RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE RED FRAMEWORK 9241 Nipun Insog INVESTIGATION OF PHYSICAL MODEL ON SOFT SOIL REINFORCED BY RIGID INCLUSIONS UNDER CYCLIC LOADING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND 9247 Suphaphat Kwonpongsagoon WEB APPLICATION OF PHILIPPINE GOLD MINE SLAUGHTERING PROCESSES 9248 Erica Elice Uy UTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION 9250 Nopadon Kronprasert SAFETY AND OPERATIONAL A	9234	Hironobu	lto	DISTRIBUTION OF ACID SOIL ON CUT SLOPE OF SHIKOKU
9239 Pinit Tanachaichoksirikun PHRAYA BASIN 9240 Megan Quiaem RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9241 Nipun Insog RESTILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND 9248 Erica Elice Uy UTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION 9250 Nopadon Kronprasert SAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9251 Takuma Kubohara AND WATER PLANTS AS AN INDEX OF RUKER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT 9254 Nopadon Kronprasert CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY				
9240 Megan Quiaem RESILIENCY OF A TWO-STOREY DEPED STANDARD SCHOOL BUILDING USING THE REDI FRAMEWORK 9241 Nipun Insog INVESTIGATION OF PHYSICAL MODEL ON SOFT SOIL REINFORCED BY RIGID INCLUSIONS UNDER CYCLIC LOADING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE A TTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND 9247 Suphaphat Kwonpongsagoon DEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES 9248 Erica Elice Uy UTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION 9250 Nopadon Kronprasert SAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9255 Nopadon	9239	Pinit	Tanachaichoksirikun	
9240 Megan Quiaem USING THE REDI FRAMEWORK 9241 Nipun Insog INVESTIGATION OF PHYSICAL MODEL ON SOFT SOIL REINFORCED BY RIGD INCLUSIONS UNDER CYCLIC LOADING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND 9248 Erica Elice Uy DEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES 9250 Nopadon Kronprasert SAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9251 Takuma Kubohara EFFECT OF AUTOMAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9251 Nopadon Kronprasert SAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9253 Nopadon Kronprasert EFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAI				
9241 Nipun Insog INVESTIGATION OF PHYSICAL MODEL ON SOFT SOIL REINFORCED BY RIGID INCLUSIONS UNDER CYCLIC LOADING 9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND 9248 Erica Elice Uy UTILIZATION OF PHUIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION 9248 Erica Elice Uy UTILIZATION OF PHUIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION 9250 Nopadon Kronprasert SAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9251 Takuma Kubohara EFFECTIVENESS OF FRADIZA CACHMENT 9255 Nopadon Kronprasert SAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9	9240	Megan	Quiaem	
9241NipunInsogRIGID INCLUSIONS UNDER CYCLIC LOADING9242Eko AndiSuryoA NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE9243shangningtaoESTIMATE THE INSTABLITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION9244NarunatHeamaTHREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW9245pornsudaphanukarnBLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND9246SuphaphatKwonpongsagoonWEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECT OF AUTOMAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9255NopadonKronprasertEFFECT OF AUTOMAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEM FOR RC STRUCTURE BY THAILAND9258YokoSakekibaraCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY SAKEN DATTITUDES ON MOUNTAINOUS ROADS IN THAILAND				
9242 Eko Andi Suryo A NON-DESTRUCTIVE METHOD FOR INVESTIGATING SOIL LAYERS OF AN INDIVIDUAL VULNERABLE SLOPE 9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND 9247 Suphaphat Kwonpongsagoon DEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES 9248 Erica Elice Uy UTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION 9250 Nopadon Kronprasert SAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9251 Takuma Kubohara EFFECT OF AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT 9255 Nopadon Kronprasert DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND 9258<	9241	Nipun	Insog	
9242Eko AndiSuryoAN INDIVIDUAL VULNERABLE SLOPE9243shangningtaoESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION9244NarunatHeamaTHREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW9245pornsudaphanukarnBLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND9246SuphaphatKwonpongsagoonWEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND9247SuphaphatKwonpongsagoonDEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECT VENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakiharaCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY				
9243 shangning tao ESTIMATE THE INSTABILITY OF SLOPE SURFACE LAYER BY WAVE ATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION 9244 Narunat Heama THREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW 9245 pornsuda phanukarn BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND 9246 Suphaphat Kwonpongsagoon WEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND 9247 Suphaphat Kwonpongsagoon DEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES 9248 Erica Elice Uy UTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION 9250 Nopadon Kronprasert SAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9251 Takuma Kubohara EFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT 9255 Nopadon Kronprasert DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND 9254 Yoko Sakakibara CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	9242	Eko Andi	Suryo	
9243shangningtaoATTENUATION BEHAVIORS WITH SOIL MOISTURE AND DEFORMATION9244NarunatHeamaTHREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW9245pornsudaphanukarnBLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND9246SuphaphatKwonpongsagoonWEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND9247SuphaphatKwonpongsagoonDEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECT VENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakibaraCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY		shangning		
Deformation9244NarunatHeamaTHREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW9245pornsudaphanukarnBLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND9246SuphaphatKwonpongsagoonWEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND9247SuphaphatKwonpongsagoonDEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECT OF AUTOMATED SPED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9255NopadonKronprasertEFFECT OF AUTOMATED SPED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakiharaCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	02/13		tao	
9244NarunatHeamaTHREE-DIMENSIONAL ANALYSES OF EXISTING TUNNEL RESPONSES DUE TO ADJACENT LOADED PILES ROW9245pornsudaphanukarnBLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND9246SuphaphatKwonpongsagoonWEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND9247SuphaphatKwonpongsagoonDEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaAND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakibaraCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	5245		ldU	
9244NarunatHeamaDUE TO ADJACENT LOADED PILES ROW9245pornsudaphanukarnBLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND9246SuphaphatKwonpongsagoonWEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND9247SuphaphatKwonpongsagoonDEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakibaraCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY				
9245pornsudaphanukarnBLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND9246SuphaphatKwonpongsagoonWEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND9247SuphaphatKwonpongsagoonDEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakibaraCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	9244	Narunat	Heama	
9246SuphaphatKwonpongsagoonWEB APPLICATION SUPPORT FOR CARBON FOOTPRINT MANAGEMENT OF PETROL STATIONS IN THAILAND9247SuphaphatKwonpongsagoonDEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakiharaCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY				DOE TO ADJACENT LOADED FILLS NOW
9246SuphaphatKwonpongsagoonMANAGEMENT OF PETROL STATIONS IN THAILAND9247SuphaphatKwonpongsagoonDEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakiharaCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	9245	pornsuda	phanukarn	BLACK CARBON IN PM2.5 AT ROADSIDE SITE IN BANGKOK, THAILAND
9246SuphaphatKwonpongsagoonMANAGEMENT OF PETROL STATIONS IN THAILAND9247SuphaphatKwonpongsagoonDEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakiharaCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY				
9247SuphaphatKwonpongsagoonDEVELOPMENT OF A WEB APPLICATION FOR ESTIMATING CO2- EQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakibaraCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	9246	Suphaphat	Kwonpongsagoon	
9247SuphaphatKwonpongsagoonEQUIVALENT EMISSIONS OF POULTRY AND SWINE SLAUGHTERING PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakibaraCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY		+		
PROCESSES9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakiharaCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	0247	Combranderst	K	
9248Erica EliceUyUTILIZATION OF PHILIPPINE GOLD MINE TAILINGS AS A MATERIAL FOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakibaraCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	9247	Supnapnat	Kwonpongsagoon	
9248Erica EliceUyFOR GEOPOLYMERIZATION9250NopadonKronprasertSAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND9251TakumaKuboharaEFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT9255NopadonKronprasertEFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND9258YokoSakakibaraCHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY				
9250 Nopadon Kronprasert SAFETY AND OPERATIONAL ANALYSIS FOR MEDIAN U-TURN INTERSECTIONS IN THAILAND 9251 Takuma Kubohara EFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT 9255 Nopadon Kronprasert EFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND 9258 Yoko Sakakibara CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	9248	Erica Elice	Uy	
9250 Nopadon Kronprasert INTERSECTIONS IN THAILAND 9251 Takuma Kubohara EFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT 9255 Nopadon Kronprasert EFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND 9258 Yoko Sakakihara CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY				
9251 Takuma Kubohara EFFECTIVENESS OF FE AND ZN CONCENTRATION OF RIVER INSECTS AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT 9255 Nopadon Kronprasert EFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND 9258 Yoko Sakakibara CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	9250	Nopadon	Kronprasert	
9251 Takuma Kubohara AND WATER PLANTS AS AN INDEX OF RIVER METAL CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT 9255 Nopadon Kronprasert EFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND 9258 Yoko Sakakibara CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY			P	
9255 Nopadon Kronprasert EFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND 9258 Yoko Sakakibara CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY				
9255 Nopadon Kronprasert EFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND 9258 Yoko Sakakibara CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	9251	Takuma	Kubohara	
9255 Nopadon Kronprasert DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN THAILAND 9258 Yoko Sakakibara CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY				CONTAMINATION IN THE KINOKAWA RIVER CATCHMENT
9258 Yoko Sakakibara CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY				EFFECT OF AUTOMATED SPEED ENFORCEMENT SYSTEMS ON
9258 Yoko Sakakibara CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY	9255	Nopadon	Kronprasert	DRIVING BEHAVIOR AND ATTITUDES ON MOUNTAINOUS ROADS IN
9258 Voko Sakakibara				THAILAND
NEAR-INFRARED SPECTROSCOPY	0750	Voko	Sakakihara	CHLORIDE ION MEASUREMENT SYSTEM FOR RC STRUCTURE BY
	3230		JakaNillala	NEAR-INFRARED SPECTROSCOPY

9261	Miller	Cutora	ASSESSMENT OF LANDSLIDE SUSCEPTIBILITY: A CASE STUDY OF
			CARABAO MOUNTAIN IN BAGUIO CITY
9266	Evi Nur	Cahya	RECYCLED POROUS CONCRETE EFFECTIVENESS FOR FILTRATION MATERIAL ON WASTEWATER TREATMENT
9268	Tang	Junfeng	WATER MOVEMENT AND DEFORMATION IN UNSATURATED MULTI- LAYERED SLOPE UNDER HEAVY RAINFALL CONDITIONS
9270	Eva	Arifi	THE INFLUECE OF UTILIZATION OF FLY ASH AND RECYCLED COARSE AGGREGATE TO THE STRENGTH OF PERVIOUS CONCRETE
9272	Nopadon	Kronprasert	EVALUATING PASSENGER EVACUATION STRATEGIES IN A MASS RAPID TRANSIT STATION IN THAILAND
9275	Alina	Paranina	SPACE RHYTHMS AND TECHNOLOGIES OF ASTRONOMIC NAVIGATION AS FACTORS OF CULTURAL GENESIS AND SAPIENTATION
9277	Hirohisa	Kinoshita	DRAINAGE DENSITY AND RAINFALL INTENSITY AS SLOPE FAILURE SUSCEPTIBILITY INDEX IN SMALL CATCHMENT AREA
9278	Syaiful	Anam	ANALYSIS OF ENERGY SECURITY CHANGES ON ENERGY REDUCER DUE TO BASIC REDUCTION OF ENERGY REDUCERS USING THE HYDRAULIC PHYSICAL MODEL TEST
9281	Yul	Martin	CONCRETE MIXTURE WITH COCONUT FIBER AND BENTONIT TO REDUCE THE VALUE OF GROUNDING RESISTANCE
9282	Javier	Camacho-Tauta	EFFECT OF THE INDUCED ANISOTROPY ON THE STIFFNESS OF FLY-ASH TREATED SOILS
9284	Boontarika	Thongdonphum	POLLUTION CARRYING CAPACITY ASSESSMENT IN THE LOWER PART OF MAE KLONG RIVER, THAILAND
9285	Ku Muhammad Naim	Ku Khalif	A RELIABILITY BASED CONSISTENT FUZZY PREFERENCE RELATIONS FOR RISK ASSESSMENT IN OIL AND GAS INDUSTRY
9287	Chollada	Kanjanakul	FOUNDATION DESIGN AND SLOPE FAILURE PROTECTION FOR A LARGE COMMUNITY BUIDING IN KHANOM, NAKHON SI THAMMARAT
9288	Nor Hayati	Hamid	EXPERIMENTAL STUDY OF CORNER BEAM-COLUMN JOINT WITH FUSE-BAR DESIGNED EC8 UNDER CYCLIC LOADING
9289	Jirayut	Suebsuk	COMPRESSIVE STRENGTH AND WORKABILITY OF CEMENT MORTAR CONTAINING RECYCLED ASPHALT PAVEMENT
9293	Nattapong	Damrongwiriyanupap	EFFECT OF ASSOCIATED CATIONS ON CHLORIDE PENETRATION INTO CONCRETE
9294	Worawit	Phojan	EFFECT OF CHLORIDE AND SULPHATE ON COMPRESSIVE STRENGTH OF BANGKOK CLAY ADMIXED CEMENT
9295	Lestelle	Torio-Kaimo	UNCONFINED COMPRESSIVE STRENGTH OF CLAY REINFORCED WITH KEROSENE-TREATED COIR FIBER
9297	Ryota	Morizaki	STUDY ON ENGINEERING APPLICATION OF CRUSHED SHELL PARTICLES FOR THE CONSTRUCTION MATERIALS
9298	Takaaki	Wajima	LEAD IMMOBILIZATION IN ARTIFICIAL CONTAMINATED SOIL USING SULFUR-IMPREGNATED CARBONACIOUS BAMBOO
9299	Valery	Tsaplev	ULTRASONIC PROTECTIVE IMPREGNATION OF POROUS CONSTRUCTIONS AND NATURAL MATERIALS
9301	Maged	Al Mandalawi	ANALYSIS OF GEOTECHNICAL BEHAVIOR OF ROCK CONFIGURATIONS IMPLEMENTING GEOLOGICAL STRUCTURES IN THE LIMIT EQUILIBRIUM METHOD
9302	Maged	Al Mandalawi	THE INFLUENCE OF ROCK SLOPE SCALES ON THE STABILITY AND FAILURE MECHANISMS
9304	Masanobu	Kii	ESTIMATION OF TRANSPORT DEMAND USING SATELLITE IMAGE- CASE STUDY OF CHIANG MAI, THAILAND-
9305	Tatsuya	Matsuda	PIV ANALYSIS OF THE SANDY SOIL TRANSPORTATION INDUCED OCEAN WAVE ON WAVE FLUME EXPERIMENT

9306	ANAS	PURI	EFFECTS OF VOID UNDER THE SLAB OF THE NAILED-SLAB PAVEMENT
			SYSTEM DUE TO THE SOIL STRESS
9307	Thitinun	Pongnam	NITROGEN SULFIDE AND BOD REDUCTION OF DOMESTIC WASTEWATER USING AQUATIC PLANTS
9308	Nolan	Concha	A DETERMINISTIC APPROACH OF GENERATING EARTHQUAKE
			LIQUEFACTION SEVERITY MAP OF MINDORO, PHILIPPINES
9309	Pattaraphon	Na Nongkhai	THE EFFICIENCY OF SOLAR POWERED WATER PUMPING SYSTEMS FOR DRIP IRRIGATION
			THE INCREASING OF UNDRAINED SHEAR STRENGTH AND SHEAR
9311	Pithan	Pairojn	MODULUS OF SOFT BANGKOK CLAY BY SILICA POWDER USING
			UNCONFINED COMPRESSION TEST WITH BENDER ELEMENT
			EVALUATION OF GROUNDWATER FLOW CHARACTERISTICS BY
9317	Shuichi	Miyaji	VOLTAGE DIFFERENCE METHOD ELECTRICAL PROSPECTING
			EFFECTS OF PULVERIZED MUSSEL SHELL ON THE PROPERTIES OF
9318	Ralph Joseph	Santos	EXPANSIVE SOIL
	A.1*		SUSTAINABLE UTILIZATION OF INDUSTRIAL BY-PRODUCTS FOR
9320	Alireza	Mohammadinia	STABILIZATION OF RECYCLED CONSTRUCTION AND DEMOLITION
			AGGREGATES
9321	Charoenchai	Ridtirud	HIGH CALCIUM FLY ASH GEOPOLYMER CONTAINING NATURAL
5521	Charochenar	Mathad	RUBBER LATEX AS ADDITIVE
0224	Cupaliana	A	LIFE CYCLE ASSESSMENT (LCA) OF ORDINARY CONCRETE AND
9324	Supakorn	Aranyasen	GEOPOLYMER CONCRETE
			PREPARATION OF DESALINATION AGENT FROM CA-TYPE CLAY
9325	Fumika	Sekihata	MINERALS
9328	Thananat	Wanichanon	STABLE TRAJECTORIES CONTROL OF UNMANNED GROUND VEHICLE
5520	Thanapat	Wanichanon	VISUALIZATION OF CEMENT DEEP MIXING CONSTRUCTION PROCES
0220	Hana Can		
9329	Hong-Son	NGUYEN	BY INCORPORATING INFORMATION AND COMMUNICATION
			TECHNOLOGY (ICT)
9330	Jaewon	Yoo	AN EXPERIMENTAL STUDY ON THE REDUCTION EFFECT OF
5550		100	SETTLEMENT WITH STIFFNESS OF THE SOIL FLOW PROTECTOR
9331	EKARIZAN	SHAFFIE	MOISTURE SUSCEPTIBILITY OF SUPERPAVE ASPHALT MIXTURE WITH
9221	ENANIZAN	SHAFFIE	RUBBER POLYMER MODIFIED ASPHALT BINDER
			IDENTIFICATION OF MASS MOVEMENT (LIQUEFACTION) HAZARD IN
9332	Ihwan	Fauzi	SIBALAYA CENTRAL SULAWESI INDONESIA
			EFFECT OF CEMENT SOIL STABILIZATION ON THE PREVENTION OF
9335	Yuko	Ishida	SOIL OUTFLOW FROM BACK OF THE BRIDGE ABUTMENT
			A STUDY ON THE EFFECT OF FLOODING DEPTHS AND DURATION ON
9336	Abdul Naser Abdul	Ghani	SOIL SUBGRADE PERFORMANCE AND STABILITY
0000	N da u a ait		SPATIAL ESTIMATION OF CADMIUM CONTAMINATED SEDIMENT
9338	Manasit	Sinsanthithet	FROM THE UPSTREAM OF THE REMOTE CONTAMINATED AREA OF
			THE MAE TAO BASIN, THAILAND
9339	Thanapat	Wanichanon	STABILITY ANALYSIS OF AN ACTIVE VEHICLE SUSPENSION SYSTEM
9340	Nozomu	Hirose	STUDY ON LAND SURFACE EMISSIVITY ESTIMATION OVER EAST
5540	Nozoma	Throse	ASIA
0242	I ta a atu a		IMAGE ANALYSIS FOR QUANTIFICATION OF LOCAL SCALING ON
9342	Liangjun	Hu	CONCRETE SURFACE
			EXPERIMENTAL STUDIES OF HYDROGEOCHEMICAL INTERACTIONS C
9345	Moshood	TIJANI	SEAWATER AND CEMENT CONCRETES: IMPACTS ON STRENGTHS AN
5343			DURABILITY.
	Manganul		
9347	Mangapul	Tambunan	WATER QUALITY INDEX ANALYSIS OF LAKE RAWA BESAR, DEPOK,
	Parlindungan		WEST JAVA AND ITS RELATIONSHIP WITH LAND USE
9348	Abu Bakar	Sambah	GIS FOR COASTAL HAZARD ANALYSIS
9349	Wanchai	Teparaksa	DIAPHRAGM WALL DISPLACEMENT WITH UPLIFT CONSIDERATION
JJ 1 J	vvanchai	reputation	FOR VERY DEEP BASEMENT EXCAVATION IN SOFT BANGKOK CLAY

9351	Opu Chandra	Debanath	USE OF FLY ASH BASED GEOPOLYMER FOR STABILIZATION OF EXPANSIVE SOIL
9353	Mounir	Mabsout	INFLUENCE OF RAILING STIFFNESS ON SINGLE-SPAN TWO-LANE STEEL GIRDER BRIDGES
9354	Anizahyati	Alisibramulisi	THE EFFECT OF SPAN LENGTH AND BEAM TYPE VARIATIONS TO THE BRIDGE DECK ANALYSIS
9355	Sakchai	Srichandum	MULTIPLE PLANTS MULTIPLE SITES READY MIXED CONCRETE SCHEDULE DISPATCHING USING IMPROVED ANT COLONY OPTIMIZATION
9356	Piyavadee	Srivichai	OPTIMIZATION OF BIOGAS PRODUCTION FROM CO-DIGESTION OF WASTE ACTIVATED SLUDGE AND MODIFIED TAPIOCA STARCH SLUDGE
9357	Daisuke	KANBARA	RELATIONSHIP BETWEEN DRAINAGE DENSITY AND DEGREE OF DISSECTION OF LARGE-SCALE LANDSLIDES IN SHIKOKU, JAPAN
9359	Tanapol	Khunin	HEAVY METAL SEDIMENT AVAILABILITY ASSESSMENT OF THE REMOTE CONTAMINATED UPSTREAM OF THE MAE TAO BASIN
9360	Sho Adam	Fukazawa	DIFFERENCE OF FLOODING PHENOMENON WITH BANK BREACH BY DIFFERENCE OF BACK WATER EFFECT IN 2016 FLOOD AT TOKORO RIVER
9362	Richard	De Jesus	EFFECT OF SUGARCANE BAGASSE ASH ON ALKALI SILICA REACTION OF CONCRETE WITH SODA LIME GLASS AS AGGREGATES
9363	Sopa	Chinwetkitvanich	REALITY IN PACKAGE ON-SITE GREASE TRAP PERFORMANCE: SUCCESS OR FAILURE IN FOG REMOVAL?
9364	Dea	Pertiwi	EVALUATING HYDRAULIC AND MECHANICAL PROPERTIES OF NATURAL PREFABRICATED VERTICAL DRAIN (PVD) ON A LABORATORY SCALE
9366	Jinichi	Koue	NUMERICAL SIMULATION FOR SEASONAL AND INTER-ANNUAL CHANGE OF DISSOLVED OXYGEN IN LAKE BIWA, JAPAN
9367	Dea	Pertiwi	EVALUATION OF ELASTIC AXIAL STIFFNESS REFERS TO TENSILE STRENGTH TESTING OF GEOGRIDS AND NON-WOVEN GEOTEXTILES
9370	Nishat	Nawal	NUMERICAL AND ANALYTICAL STUDY OF STABILITY OF AN EXISTING MULTI-LAYERED ROADSIDE SLOPE WITH THE VALIDATION BY A PHYSICAL MODEL
9371	Andius Dasa	Putra	DEFORMATION ON THE EMBANKMENTS DUE TO SLAKING PHENOMENON AND ITS EFFORT TO ELIMINATE
9375	Pornthip	Keangin	NUMERICAL STUDY OF THE FACTORS THAT AFFECT THERMAL EFFICIENCY DURING INFRARED GAS STOVE HEATING
9376	Bella	Fauziah	PERFORMANCE EVALUATION OF TRANS KOTA TANGERANG RAPID TRANSIT (BRT) BUS SERVICE
9377	Anh Quang	TRAN	SEDIMENT FLOW CHARACTERISTICS AROUND CYLINDRICAL STRUCTURE REGARDING SEABED EFFECTIVE STRESS RESPONSE
9384	Michael	Almeida	A MULTI-SPATIAL ASSESSMENT FRAMEWORK TO GEOLOGICAL HAZARD FOR HIGH-RISE BUILDING PROJECT IN METRO MANILA, PHILIPPINES
9385	DANIELA	IONESCU	CHARACTERIZATION OF CEMENTITIOUS BACKFILL WITH HIGH SULPHUR CONTENT
9386	Zul-Atfi	Ismail	LESSON LEARNED IN MAINTAINING THE PRECAST CONCRETE BUILDINGS
9387	Nur Atiqah Aainaa	Abd Latiff	EXTREME HAZE DURING NON-DROUGHT (ENSO) YEARS: ASSESSMENT ON AEROSOLS CHARACTERIZATION OVER PENINSULAR MALAYSIA IN JUNE 2013
9391	Najmun	Nahar	PEOPLE'S PERCEPTION AND ATTITUDE TO ENVIRONMENTAL POLLUTION AND ITS IMPACTS ON DHAKA CITY, BANGLADESH
9393	Aleksander	Purba	THE CHALLENGE OF DEVELOPING HIGH-SPEED RAIL PROJECTS: RECENT EVIDENCE FROM DEVELOPING COUNTRIES

			EXPLORATION OF THE POTENTIALS OF CARBONIC ANHYDRASE-
9394	Davin	Setiamarga	PRODUCING BACTERIA UTILIZATION IN GEOPOLYMER-BASED
			BIOCONCRETE DEVELOPMEN
9399	Marselina	Djayasinga	ABILITY AND WILLINGNESS TO PAY FOR WASTE WATER
5555	Warsenna	Djayasinga	MANAGEMENT MAINTENNACE SERVICES (IPAL)
9400	Karin	Kandananond	THE FIRE DYNAMIC SIMULATION IN A FACTORY WITH MULTIPLE
5400	Karin	Kandananona	STORAGE RACKS
9401	Haryati	Awang	INFLUENCE OF CHEMICAL PROPERTIES AND MINERAL CONTENTS TO
5401	That yaci	Awang	THE SANDSTONE STRENGTH
9403	Essaid	Bilal	WHAT EFFECT OF DIFFERENT APPLICATION (AMENDMENT) OF
9403	Loodiu	Dilai	SEWAGE SLUDGE ON RAPSEED OIL QUALITY
9404	Hamartoni	Ahadis	MINING REGULATION AND IT'S IMPACT ON PUBLIC WELFARE
9407	Yukihiro	MORIKAWA	NUMERICAL ANALYSIS ON MECHANISM OF DEWATERING AS A
9407	TUKITITO	WORKAWA	MITIGATION METHOD AGAINST LIQUEFACTION IN SOFT GROUND
9409	Mohammad Zillur	Rahman	9409
0411	Custlens	Curious	FOUNDATION, SUPPORT AND DEVELOPMENT OF THE REPUTATION IN
9411	Svetlana	Gurieva	COMPANY
0.44.2	Nevetilesk	A	ECOTOURISM DEMAND FORECASTING AT NATIONAL PARK KUALA
9412	Noratikah	Abu	TAHAN, PAHANG
			EMBODIED CARBON EMISSIONS OF CONSTRUCTION MATERIALS: A
9418	Nantamol	Limphitakphong	CASE STUDY OF BUILDING IN THAILAND
			NUMERICAL SIMULATION OF THE SETTLEMENT BEHAVIOUR OF
9419	Femy	M. Makkar	PLANAR AND 3D GEOGRID REINFORCED SAND BED
			THE EFFECTIVENESS OF FLOOD OCCURRENCE COUNTER MEASURE
9423	Agus	Suharyanto	PLAN DUE TO LOCAL CONDITION
			PARTICULATE MECHANICS PARAMETERS FOR GEOTECHNICAL AND
9424	Joash Bryan	Adajar	AGRICULTURAL ENGINEERING APPLICATIONS
9427	Ghada	Bassioni	FTIR AND UV IN STEEL PIPELINE COATING APPLICATION
5427	Gliaua	Bassion	
	YUANITA	WINDUSARI	LANDING PREFERENCE OF MOSQUITOES ON HUMAN SKIN AMONG
9428			ABO BLOOD SYSTEM : CASE STUDY IN THE KEMELAK BINDUNG
			LANGIT VILLAGE, OGAN KOMERING ULU DISTRICT, SOUTH SUMATRA
		Metham	STABILIZATION OF MARGINAL CRUSHED ROCK USING CEMENT AND
9430	Mathagul		FLY ASH AS A GREEN BASE COURSE MATERIAL
			STATIC PILE LOAD TEST: INTERNATIONAL PRACTICE REVIEW AND
9432	Fabien	Szymkiewicz	
			DISCUSSION ABOUT THE EUROPEAN AND JAPANESE STANDARDS
9437	irshad	ahmad	COMPARISON OF DIFFERENT METHODS FOR ANALYSIS OF COMBINED
9439	Xingyi	Wu	THE INFLUENCE OF TEMPERATURE AND MOISTURE ON THE
9439	Хіпдуі		BEHAVIOR OF FINE GRAINED SOILS
			ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF
9440	Ambar	Pertiwiningrum	ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS
	Ambar	Pertiwiningrum	ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS PURIFICATION
	Ambar		ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS PURIFICATION ANALYSIS OF CHANGES IN SHEAR STRENGHT AND STIFFNESS OF HO
	Ambar Trung	Pertiwiningrum Ngo Duc	ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS PURIFICATION
9440			ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS PURIFICATION ANALYSIS OF CHANGES IN SHEAR STRENGHT AND STIFFNESS OF HO
9440 9448	Trung	Ngo Duc	ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS PURIFICATION ANALYSIS OF CHANGES IN SHEAR STRENGHT AND STIFFNESS OF HO CHI MINH CITY' SOFT SOIL UNDER THE UNLOADING STRESS PATHS
9440			ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS PURIFICATION ANALYSIS OF CHANGES IN SHEAR STRENGHT AND STIFFNESS OF HO CHI MINH CITY' SOFT SOIL UNDER THE UNLOADING STRESS PATHS FOR DEEP EXCAVATIONS CALCULATION
9440 9448 9450	Trung Hor Mun Audrey	Ngo Duc Yim	ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OFBIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGASPURIFICATIONANALYSIS OF CHANGES IN SHEAR STRENGHT AND STIFFNESS OF HOCHI MINH CITY' SOFT SOIL UNDER THE UNLOADING STRESS PATHSFOR DEEP EXCAVATIONS CALCULATIONQA/QC PLAN AND EVALUATION OF CHARACTERISTIC VALUE FOR
9440 9448	Trung	Ngo Duc	ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OFBIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGASPURIFICATIONANALYSIS OF CHANGES IN SHEAR STRENGHT AND STIFFNESS OF HOCHI MINH CITY' SOFT SOIL UNDER THE UNLOADING STRESS PATHSFOR DEEP EXCAVATIONS CALCULATIONQA/QC PLAN AND EVALUATION OF CHARACTERISTIC VALUE FORDEEP CEMENT MIXING
9440 9448 9450 9455	Trung Hor Mun Audrey Karen Joyce	Ngo Duc Yim Santiago	ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS PURIFICATIONANALYSIS OF CHANGES IN SHEAR STRENGHT AND STIFFNESS OF HO CHI MINH CITY' SOFT SOIL UNDER THE UNLOADING STRESS PATHS FOR DEEP EXCAVATIONS CALCULATIONQA/QC PLAN AND EVALUATION OF CHARACTERISTIC VALUE FOR DEEP CEMENT MIXINGGREEN CONCRETE HOLLOW BLOCKS UTILIZING BASIC OXYGEN
9440 9448 9450	Trung Hor Mun Audrey	Ngo Duc Yim	ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS PURIFICATION ANALYSIS OF CHANGES IN SHEAR STRENGHT AND STIFFNESS OF HO CHI MINH CITY' SOFT SOIL UNDER THE UNLOADING STRESS PATHS FOR DEEP EXCAVATIONS CALCULATION QA/QC PLAN AND EVALUATION OF CHARACTERISTIC VALUE FOR DEEP CEMENT MIXING GREEN CONCRETE HOLLOW BLOCKS UTILIZING BASIC OXYGEN FURNACE STEEL SLAG
9440 9448 9450 9455	Trung Hor Mun Audrey Karen Joyce	Ngo Duc Yim Santiago	ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS PURIFICATION ANALYSIS OF CHANGES IN SHEAR STRENGHT AND STIFFNESS OF HO CHI MINH CITY' SOFT SOIL UNDER THE UNLOADING STRESS PATHS FOR DEEP EXCAVATIONS CALCULATION QA/QC PLAN AND EVALUATION OF CHARACTERISTIC VALUE FOR DEEP CEMENT MIXING GREEN CONCRETE HOLLOW BLOCKS UTILIZING BASIC OXYGEN FURNACE STEEL SLAG CONCRETE STRUCTURES INTERACTING WITH SUBSOIL DEPENDING
9440 9448 9450 9455 9458	Trung Hor Mun Audrey Karen Joyce Michal	Ngo Duc Yim Santiago Kropacek	ORGANIC CYCLE SYSTEM IN BIOGAS SYSTEM: THE RECYCLING OF BIOGAS SLUDGE FROM COW MANURE AS BIOCHAR FOR BIOGAS PURIFICATIONANALYSIS OF CHANGES IN SHEAR STRENGHT AND STIFFNESS OF HO CHI MINH CITY' SOFT SOIL UNDER THE UNLOADING STRESS PATHS FOR DEEP EXCAVATIONS CALCULATIONQA/QC PLAN AND EVALUATION OF CHARACTERISTIC VALUE FOR DEEP CEMENT MIXINGGREEN CONCRETE HOLLOW BLOCKS UTILIZING BASIC OXYGEN FURNACE STEEL SLAGCONCRETE STRUCTURES INTERACTING WITH SUBSOIL DEPENDING ON THE USE OF SLIDING JOINT

9461	Radim	Cajka	TESTS OF FRC COMPOSITE SLABS ON THE SUBSOIL
9462	Irene Olivia	Ubay	STABILITY ASSESSMENT OF AN AGING EARTH FILL DAM CONSIDERING ANISOTROPIC BEHAVIOUR OF CLAY
9463	Mohammed	Russedul Islam	ALTERNATIVE OPTIONS FOR ROAD MAINTENANCE MANAGEMENT IN BANGLADESH UNDER CLIMATE CHANGE CONDITION
9464	Md Jahidul	Islam	INFLUENCE OF COARSE AGGREGATE PROPERTIES ON CONCRETE
			PERFORMANCE QUANTITATIVE EVALUATION OF WATER POLLUTANT LOAD FROM
9465	Hiroto	Tanouchi	KINOKAWA RIVER BASIN BY HIGH-FREQUENCY WATER QUALITY OBSERVATION
9466	LEI	ZHAO	RAINFALL-INDUCED DEFORMATION BEHAVIOR OF CRACKS ON BROWN COAL OPEN PIT BATTER IN AUSTRALIA
9471	Norisham	Ibrahim	VARIATION OF STRAIN DURING THE CONSTRUCTION OF AN INCREMENTALLY LAUNCHED BRIDGE
9472	Askar	Zhussupbekov	ANALYSIS OF RAINFALL IN THE KAZAKHSTAN
9474	Fumitake	NISHIMURA	INFLUENCE OF LIGHT ON MICROBIAL RIVER WATER ECOSYSTEM AND ITS SELF-PURIFICATION CAPACITY
9476	Giancarlo	Ventura	STABILIZATION OF CLAYEY SOILS USING POWDERED MARINE SHELLS
9478	Hiromasa	Iwai	UNDRAINED TRIAXIAL COMPRESSION BEHAVIOR OF CARBON- DIOXIDE-HYDRATE-BEARING SAND AND ITS CONSTITUTIVE MODELING
9480	Muh. Irham	Sahana	MAPPING OF SEAWATER INTRUSION INTO COASTAL AQUIFER (CASE STUDY: PEKALONGAN COASTAL AREA, CENTRAL JAVA)
9481	Baiq Heni	Sulistiawati	EXAMINATION OF CALCITE PRECIPITATION USING PLANT-DERIVED UREASE ENZYME FOR SOIL IMPROVEMENT TECHNIQUE
9482	Galih Bhekti	Sula Pratama	AN EXPERIMENTAL STUDY ON THE EVOLUTION OF UNSATURATED SOIL PARAMETERS DUE TO VARIOUS DEGREE OF SATURATION
9484	Sam	Dakka	BIMODAL NUCLEAR THERMAL PROPULSION FOR INTERPLANETARY
9485	Greg	You	EFFECT OF CROSS-SECTIONAL SHAPE ON PILLAR STRENGTH
9487	Muammar	Qadafi	TRIHALOMETHANE AND HALOACETIC ACID FORMATION POTENTIAL OF TROPICAL PEAT WATER: EFFECT OF TIDAL AND SEASONAL VARIATIONS
9488	Jafril	Tanjung	A SIMPLE METHOD FOR STRENGTHENING THE BRICK MASONRY INFILLED IN THE REINFORCED CONCRETE FRAME STRUCTURE
9489	Devon	Adamson	EVALUATING MSE WALL DEFORMATIONS USING TERRESTRIAL LASER SCANNING AND FINITE ELEMENT MODELLING
9490	Maidiawati	Maidiawati	SEISMIC ANALYSIS OF DAMAGED BUILDINGS BASED ON POST- EARTHQUAKE INVESTIGATION OF THE 2018 PALU EARTHQUAKE
9493	Yi	Yang	MODELLING OF GRANULAR PILE COLLAPSE BY USING MATERIAL POINT METHOD AND DISCRETE ELEMENT METHOD
9495	Paron	Vongchan	GREEN BUSINESS MODEL OF BIOMASS VERY SMALL POWER PRODUCERS IN THAILAND
9495	Hannah	Rafols	ENHANCED SAFE CONDUCT AND PREPARATION FOR EFFECTIVE EVACUATION (ESCAPEE)
9496	Ji-Sung	Lee	THREE DIMENSIONAL STABILITY OF CIRCULAR OPENINGS IN UNDRAINED SOILS
9497	Fadhil	Al-Asadi	DETERMINATION OF CRITICAL TUNNEL HEADING PRESSURE
9499	Tomoyoshi	NISHIMURA	DIRECT SHEAR STRENGTH OF HEATING AND HYDRATION BENTONITE- SAND MIXTURE SAND

THE CHALLENGE OF DEVELOPING HIGH-SPEED RAIL PROJECTS: RECENT EVIDENCE FROM DEVELOPING COUNTRIES

*Aleksander Purba1

¹Engineering Faculty, University of Lampung, Lampung, Indonesia

*Corresponding Author, Received: 00 Oct. 2018, Revised: 00 Nov. 2018, Accepted: 00 Dec. 2018

ABSTRACT: The plan by Indonesian government to build a high-speed rail (HSR) has previously existed for years. Both the Japanese and Chinese government had both showed interest in the project, and both of them have the technological capacity to build a railway that would connect Jakarta and Bandung. This project was however awarded to China because they made a provision of soft loans for the project, while Japan on the other hand wanted the Indonesian government to completely provide the fund required to execute the project from the beginning to the end of the project. The proposed construction of the railway lines will cut travel time between Jakarta and Bandung from about three hours by car to just 45 minutes only. The project will include integration of the HSR with developments along its corridor through transit oriented developments. The line would attract around 10 million passengers per year in first year of operation, this is because of Jakarta's huge population size in addition to the number of pairs of destinations that the HSR would connect. However, even the KL – SG HSR project signed an agreement on February 2013, it is noteworthy to mention that the surprising decision arrived not long after the newly elected Malaysian prime minister raised the possibility of dropping the project because of its cost implications.

Keywords: High-speed rail, Indonesia, Travel time, Ridership, Transit oriented development

1. INTRODUCTION

A brief history into the railway system in Indonesia showed that the railway transport system was created in mid-19th century when Indonesia was still under the colonial rule of the Dutch. The railway system was created in 1939 so as to facilitate the movement of cargoes and passengers. As at that time, the length of the railway line was 6,324 km long on Java and 1,833 km long on the Sumatera Island. In 2009, the total railway length had fallen substantially from 6,324 km to 3,464 km on Java and 1,833km to 1,350 km on Sumatera Island [1]. The main reason for this decline was the competition of railway transport with road transport, thus more funds were utilized for building more roads at the expense of the railway lines. Hence, Law No. 23/2007 was approved to make railway transport an important means of transportation within Indonesia. This clearly maps out the development guide for the national railway system.

2. METHODOLOGY: CASE COMPARISONS

Author compare the proposed Jakarta-Bandung HSR corridor with the some of HSR corridors in Asia and Europe regions and to identify key factors that have contributed to its successful. International comparison is especially important in HSR because the research shows important differences across countries due to topography, demographics, nature of transit demand and government investment schemes [2, 3].

3. EARLY JAPANESE'S PROPOSAL

Japan had already indicated their interest to replicate their Shinkansen HSR technology in Indonesia since 2008. That same year, Japan had displayed their Shinkansen technology and also done a feasibility study. Considering that the Island of Java is identical to the pre-HSR Honshu in Japan, the Japanese government under the Japanese International Cooperation Agency (JICA) therefore proposed the construction of HSR for the Indonesian island of Java, backed by soft loans from the Japanese government, connecting the densely populated capital of Indonesia, Jakarta which suffers from freight and passenger congestion to Surabaya which is about 730 km apart. A new proposal that focus on building 150 km of HSR from Jakarta to Bandung, which will result in the drastic reduction of the time spent to cover the 150 km from 3 hours to just 45 minutes as shown in Fig.1. Japan which is widely known for the manufacturing of world-class trains was the most favorable to win the contract for construction of HSR from Indonesian government. However,

change in government after the 2014 Indonesian gubernatorial election which saw the swearing in of Joko Widodo in October 2014 put an end to this project. The Joko led administration basically the HSR project in January 2015, reason for this action was that the HSR project was quite too expensive for the government to execute and there were several other more important and significant infrastructural projects that were required in the underdeveloped islands outside of Java.

Fig.1 Japanese proposed route [4]

4. CHINA'S PROPOSAL

In 2004, China's State Council adopted the Midand Long-Term Plan for railway development and the country decided to venture into the development of HSR. The government proceeded to invest huge sums of money into this plan and, in 2008, it affirmed and upgraded the Plan. Part of China's strategy was the purchase of rail technologies developed countries. This helped to accelerate China's HSR development and led to the development of China's indigenous HSR technology in 2007. This culminated in the manufacture of China's first high-speed train on 1st August, 2008, China vigorously promoted its HSR technology, transitioning and positioning their HSR technology. Internally, China plans to establish four major train lines, connecting the north to the south and another four lines connecting the east to the west, across the entire length and breadth of the whole country. Externally, several major rail lines are also being planned, one linking Asia and Europe via Russia, another connecting China to Europe via Central Asia and the Middle East, and a third connecting southern China with Indo-China and Southeast Asia [5]. China's HSR strategy has become part an integral belt-and-road strategy and core of China's foreign policy, all these have occurred just within the past decade or thereabout [6]. The 'belt' component comprises of many land routes and the 'road' component on the other hand comprises of many sea routes. This also arise from the fact that both systems of land and sea routes link China to Europe. This initiative also led to the development of special funding and investments [7].

5. HISTORY AND RECENT DEVELOPMENT

The HSR project was forecasted to cover a distance of about 143 km, linking Jakarta and Bandung, thus becoming Indonesia's first ever HSR project. As highlighted earlier, the Japanese and Chinese government made known their intention. Although the Japanese and Chinese governments had carried out previous comprehensive studies, it was only Japan that went the extra length of issuing a study for a project extending to Surabaya, which was estimate to be about 730 km. This was followed by a counter bid which was submitted by the Chinese government in April 2015, must to the chagrin of the Japanese. This was followed by a state visit by Joko Widodo, who had a successful meeting with the Chinese president, Xi Jinping on March 26, 2015. After the meeting Xi Jinping publicly announced the support of the Chinese government for the development of Indonesian high-speed project, this was followed by the signing of a memorandum of understanding between the two governments. In July 2015, Indonesia led by Jodo Widodo officially announced their plan to commence the construction of the HSR, this would connect Jakarta and Bandung, the bidding process was then made public, therefore the contest was between the potential bidders which included both the Japanese and Chinese train-makers had. The contest became interesting as the Chinese trainmaker organized a Chinese HSR Technology exhibition in August 2015. This was a brilliant move which was not new to either contenders since both the Chinese and Japanese have been engaged in fierce business competition in the past, often using intense lobbying to outdo each other. It was widely acclaimed that the primary reason behind the high display of domineering campaign displayed goes further. The Chinese government played another card in mid-September 2015, they submitted a new proposal that offered to fully meet the Indonesian government's demands while also eliminating funding required to commence. This was followed closely by several months of bidding, negotiations, between the two countries. It temporarily led to the cancellation of the project, however, the Indonesian government made a decision to select China as the preferred bidder for the US\$5 billion project because of its financial structure which was so hard to ignore, considering the fact that this was completely different from what the Japanese plan had proposed. China's triumph can be alluded to China's willingness fund the project. This would in fact lead to a waiver, which was different from what the Japanese had offered, and the Japanese had also refused to shift their grounds. China had even gone further ahead alleviate its deal by including its commitment to institute a program for the manufacture of light and electric rail system in partnership with local businesses. These products would be targeted at the Indonesian market, and exported neighboring markets, thus creating a seamless technology transfer system that would lead to growth of local technology for renovating and train stations. Therefore, it looked like Indonesia had benefitted immensely from the Japan-China competition, as the Indonesian HSR bid earmarked continuous competition between Japan and China in their bid for other infrastructure projects with Asia. The HSR system has 71.63 km of the track on the ground level, while 53.54 km of the track will be raised, and the remaining 15.63 km will be below the surface. This was followed by the groundbreaking ceremony, held on January 21, 2016 to commence the construction of the HSR. The HSR system would be open to the public after its official launch in 2021.

6. PROJECT'S DESCRIPTION

The HSR is part of the governments' grand ambition of upgrading Indonesia's lagging infrastructure. If successful executed, the project will drastically reduce travel time to just 45 minutes only. The HSR has four stations as seen in Fig. 2. The HSR project will be financed exclusively by China. The project will include integration of the HSR stations with developments along its corridor through transit oriented developments (TOD) [8 -10]. The ambitious proposal for the national railway network comes amid recent news that the cost of the Jakarta-Bandung HSR has swelled to almost US\$6 billion, from US\$5.2 billion. On the other hand, rail ridership in Indonesia has risen substantially in recent years, making decades of underinvestment growing urban congestion important and

considerations for transport stakeholders as they upgrade and construct new lines. Statistics Indonesia (BPS) reports that total rail passengers rose from 199 million in 2011 to 202 million in 2012, 216 million in 2013, 277 million in 2014 and 325 million in 2015. The average length of a passenger journey has simultaneously fallen from 95 km to 68 km, while the country's rail network remains limited to Java and Sumatra, with 22,296 km of total line operational in 2015. The Medium-Term Development Plan 2015-2019 includes an infrastructure development agenda that outlines projects such as having 3,258 km of newly built or rehabilitated rail lines, made up of 2,159 km of intercity railways and 1,099 km of urban railway, and boosting rail cargo volumes to 1.5 million twenty-foot equivalent units annually.

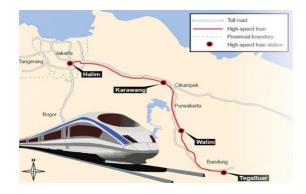


Fig. 2 Route of Jakarta to Bandung HSR

Urban rail lines, including a planned light rail transit (LRT) system in Jakarta, are also expected to help reduce congestion and transport costs, which have become the highest in South-east Asia. It was forecast that the new line would attract around 10 million passengers per year in first year of operation, as shown in Fig. 3.

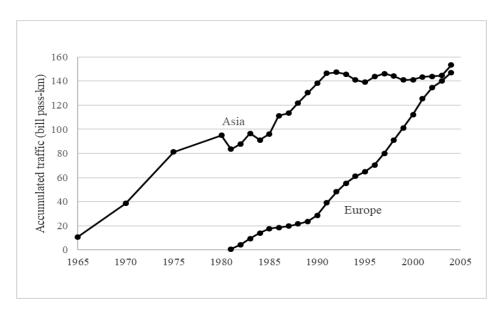


Fig. 3 Accumulated HSR traffic [11]

For 20 years, Shinkansen services in Japan enjoyed a sustained traffic, it gained 100 billion passengerskilometer. From 1994 to 2004, within the next 20years interval, the demand halved, because only 50 billion additional passengers-kilometer used HSR. When compared with most European HSR projects which are still in their first 20-year period, it is natural to expect high growth rates as expressed by Fig. 3. Hence, Fig. 4 shows accumulated traffic used the HSR services in Asia and Europe based on traffic data from each operator during the 2010 to 2016 period. As confirmed by Fig. 4 the only China is still in it incredible constant growth and gained a huge accumulated traffic around 850 billion passenger-km. Two other Asian countries i.e. South Korea and Taiwan started HSR services in first decade of 21 centuries only gained accumulated traffic of 31.4 and 20.2 billion passenger-km respectively during the same period. Based on long experienced of HSR services in Japan and Europe countries it is easy to predict that most China HSR projects still enjoyed a constant traffic growth for the next two decades most triggering by combined building new dedicated electrified lines and upgrading existing lines. Both South Korea and Taiwan HSR service expressed constant demand growth for the following first decade even the Korea Train Express (KTX) has transported approximately 150 million passengers since the four years after its opening. Taiwan HSR itself has carried about 100,000 passengers per day for fifty first months of commercial service. However, Shinkansen services is still in its positive growth and gained accumulated traffic of 196 billion passenger-km from 2010 to 2016, two times higher than France figures of 99 billion passenger-km during the same period. France HSR had stagnant traffic growth from 2010 to 2016; in 2016 as an example, SNCF collected accumulated traffic of 49 billion passenger-km, otherwise in 2010 it figures stood at 51 billion passenger-km. Other Europe HSR operators include Dutch, England, and Sweden indicated sustained traffic growth and collected accumulated traffic around 42 billion passenger-km until the end of 2016.

Table 1 Parahyangan statistics 2005 – 2016 [12]

Year	No. of passenger
2005	743,875
2006	529,725
2007	328,348
2008	610,662
2009	664,442
2010	592,434
2011	436,249
2012	439,003
2013	441,930
2014	406,361
2015	474,315
2016	560,320

Based on passenger traffic data obtained from Europe and Asia, the first HSR line constructed in Indonesia is expected to gain considerable amounts of demand. However, it is important to state that in Europe and Asian countries, the construction of HSR lines was as a result of the inability of their conventional lines being unable to meet their demands, thus they needed to add a new capacity to increase rail service. It is also noteworthy to mention that many of these existing rail lines had already been doubled or tripled in a bid to increase the capacity. Therefore, the high demand for conventional rail can be said to have created a market for HSR in these countries. It is inevitable to mention that Indonesia include Jakarta and Bandung lacks of this factor that triggered HSR services successful in Europe and Asian countries as shown in the table above. The Parahyangan conventional line, which began operating in 1971 in the Jakarta – Bandung corridor only carries a total of 560,320 passengers in 2016.

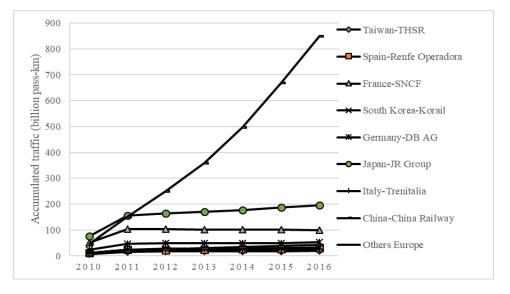


Fig. 4 Accumulated HSR traffic during the 2010 to 2016 period [13]

7. PROPOSAL OF SG – KL HSR PROJECT

The Malaysian and Singaporean governments signed an agreement on February 2013 that would result in the construction of HSR line, connecting Malaysia [14]. It is of utmost important and key to the successful implementation of Malaysia's national development strategy, (one of the main objective is to increase the country's GDP per person by 150%) by the time this HSR line will be completed in 2020, the Malaysian government is also looking forward to a further boost in the country's economics by closely-tied cooperation with the Singaporean government. Cost of this project is estimated at RM 40 billion (USD 12 billion). The source(s) of the funding, however, has not been officially disclosed; although some private sources say that Private-Public-Partnership (PPP) funding will be used, others claim that it will be jointly co-funded by both the Malaysian and Singaporean governments considering the fact 335 km of the line will be in Malaysia while the remaining 15 km will be in Singapore. The HSR will have a total of eight stops, seven of which will be within Malaysia and one will be within Jurong East. The high speed rail line which will consist of bullet trains moving at top speed, above an estimated 300 km/hour is projected to become operational in 2026. This would therefore reduce the land journey between Kuala Lumpur and Singapore from about five hours to a mere 90 minutes' journey as shown in Fig. 5. This project has attracted keen interest from various large corporations within Asia and Europe. However, Mahathir Mohamad who is the current Malaysian Prime Minister had announced on Monday May 28, 2018 that the HSR project will be axed, but he had also explained that it will take some time to execute Malaysian because the government and Singaporean government had also signed a contract on the multi-billion-dollar project. Meanwhile, Dr Mahathir Mohamad, the Malaysian Prime Minister had also assured that the government will remain "business friendly" to all investors involve in the project [15]. The relationship existing between Malaysia and Singapore is considered unique because of certain factors, these include the geography of both countries, economy, politics, historical background, cultural heritage, and ethnicity. It is also attributed to the fact that Singapore separated from Malaysia in 1965, hence the similarity. It is also intriguing to know that although both countries have been characterized by healthy competition in economic and social matters, they however enjoy a very high level of economic interdependence as major trading partners. The existing relationship between Singapore and Malaysia has been described as symbiotic. However, this mutually symbiotic as the relationship has been beneficial to both countries, although the relationship has faced some challenges in the past, it has existed since 1965. The Mahathir administration which was in control in Malavsia from 1997 to 2002, was believed by many to be the most stressful period between both Singapore and Malaysia. However, the situation changed after Abdullah Badawi got into power and became the prime minister of Malaysia in 2003, and since then there has been enhanced contact and cooperation between both governments. History is starting to repeat itself again in the part of the SG - KL HSR project [15].

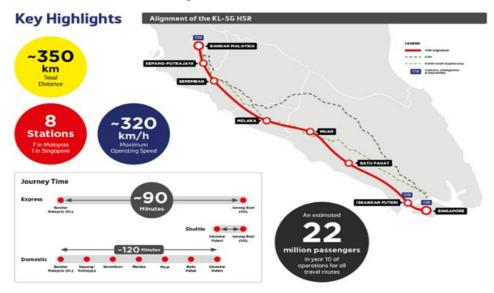


Fig. 5 Proposed Kuala Lumpur – Singapore HSR line [16]

8. CONCLUSIONS

In conclusion, the Jakarta-Bandung HSR project, linking Jakarta to Bandung was executed by PT Kereta Cepat Indonesia China (KCIC), through mutually agreed business-to-business plan basis, with the Indonesian government. China, which was not only the contender had been awarded the project because of the provision of soft loans for the project; on the other hand, Japan which had showed interest in the project had requested that the Indonesian government funded the project. Surprisingly, Japan was the first to have indicated interested in the project and had even gone ahead to commence working on a feasibility study for HSR track, connecting Jakarta to the country's second largest city, Surabaya, which is about 730 kilometers apart. Indonesia went further in 2012 to commence another feasibility study focused on the Jakarta-to-Bandung leg, this study was finalized in 2014. The highest operating speed of the trains is estimated at about 350 km/hour, the Jakarta-Bandung high speed rail would result in shortened travel time between the two hubs, reducing the time spent to cover this distance from three hours to 45 minutes only, therefore pushing forward economic development along the line through transit oriented developments. It was projected that the line would also attract about 10 million passengers each year within the first year of operation. This high figure is however a reflection of the densely populated city of Jakarta, and the several number of origin destination pairs that the HSR line would simultaneously serve. The Kuala Lumpur-Singapore HSR is a strategic project between the government Malaysian and Singaporean government, with its primary goal of facilitating seamless travel between the two capital cities of Kuala Lumpur and Singapore, enhancing business linkages, and connecting the citizens of both countries. The high-speed rail link is expected to reduce the travel time between the two cities from about four to five hours by road to 90 minutes only. However, it is also noteworthy to mention that the surprising decision arrived not long after the newly elected Malaysian prime minister raised the possibility of dropping the project because of its cost implications.

9. REFERENCES

- [1] Directorate General of Railway, Ministry of Transportation, Master Plan of National Railway, 2011.
- [2] Campos, J., and de Rus., G. Some stylized facts about high-speed rail: A review of HSR experiences around the world, J. of Transport Policy, Vol. 16, No. 1, 2009, pp. 19-28.
- [3] Albalate, D., and Bel, G. High-Speed Rail: Lessons for Policy Makers from Experiences Abroad, Research Institute of Applied Economics, Universitat de Barcelona, 2010.
- [4] The Ministry of Economy, Trade and Industry, Study on the High Speed Railway Project

(Jakarta-Bandung Section), Republic of Indonesia, Final Report, 2012.

- [5] Chan, G. From Laggard to Superpower: Explaining China's High-Speed Rail 'Miracle', The Japan Institute of International Affairs, 2017.
- [6] Chan, G. China's high-speed rail diplomacy: global impacts and East Asian responses, EAI working paper, East Asian Institute, Seoul, 2016.
- [7] Chan, G. China's New Silk Roads: a new global financial order in the making? in Bo Zhiyue (ed), China-US relations in global perspective. Wellington: Victoria University Press, 2016, pp. 91-107.
- [8] Purba, A., Nakamura, F., Niken, C., Jafri, M., and Pratomo, P. A Current Review of High Speed Railways Experiences in Asia and Europe, AIP Conference Proceedings 1903, 060004, 2017, pp. 1-8.
- [9] Purba, A., Nakamura, F., Purba, T., Jafri, M., and Herianto, D, Jakarta – Bandung high-speed rail project, facts and challenges, Conference Proceeding, in Proc. of International Conference on Urban Disaster Resilience, 2019, pp. 1-9.
- [10] PT Kereta Cepat Indonesia China. High Speed

Railway (HSR) Jakarta - Bandung, the Acceleration of Infrastructure in West Java. Rapat Kerja Kementerian Perhubungan (Ministry of Transportation), 2016.

- [11] International Union of Railways (UIC). Estimation des resources et des activités économiques liées a la grande vitesse. Prepared by CENIT (Center for Innovation in Transport, Universitat Politecnica de Catalunya), 2005.
- [12] Retrieved from http://repository.unpas.ac.id/31688/6/BAB%2 0III.pdf [Accessed: 2018-05-31]
- [13] International Union of Railways (UIC). Railway Statistics, 2015.
- [14] Retrieved from: www.railwaygazette.com/news/infrastructure/ single-view/view/kuala-lumpur-singaporehigh-speed-railway-agreement.html [Accessed: 2018-05-30].
- [15] Retrieved from: https://www.straitstimes.com/asia/.../mahathirspore-will-be-told-of-kls-wish-to-scrap-[Accessed: 2018-05-31]
- [16] Retrieved from: http://www.myhsr.com.my/ [Accessed: 2018-05-30].

THE CHALLENGE OF DEVELOPING HIGH-SPEED RAIL PROJECTS: RECENT EVIDENCE FROM DEVELOPING COUNTRIES

*Aleksander Purba1

¹Engineering Faculty, University of Lampung, Lampung, Indonesia

*Corresponding Author, Received: 00 Oct. 2018, Revised: 00 Nov. 2018, Accepted: 00 Dec. 2018

ABSTRACT: The plan by Indonesian government to build a high-speed rail (HSR) has previously existed for years. Both the Japanese and Chinese government had both showed interest in the project, and both of them have the technological capacity to build a railway that would connect Jakarta and Bandung. This project was however awarded to China because they made a provision of soft loans for the project, while Japan on the other hand wanted the Indonesian government to completely provide the fund required to execute the project from the beginning to the end of the project. The proposed construction of the railway lines will cut travel time between Jakarta and Bandung from about three hours by car to just 45 minutes only. The project will include integration of the HSR with developments along its corridor through transit oriented developments. The line would attract around 10 million passengers per year in first year of operation, this is because of Jakarta's huge population size in addition to the number of pairs of destinations that the HSR would connect. However, even the KL – SG HSR project signed an agreement on February 2013, it is noteworthy to mention that the surprising decision arrived not long after the newly elected Malaysian prime minister raised the possibility of dropping the project because of its cost implications.

Keywords: High-speed rail, Indonesia, Travel time, Ridership, Transit oriented development

1. INTRODUCTION

A brief history into the railway system in Indonesia showed that the railway transport system was created in mid-19th century when Indonesia was still under the colonial rule of the Dutch. The railway system was created in 1939 so as to facilitate the movement of cargoes and passengers. As at that time, the length of the railway line was 6,324 km long on Java and 1,833 km long on the Sumatera Island. In 2009, the total railway length had fallen substantially from 6,324 km to 3,464 km on Java and 1,833km to 1,350 km on Sumatera Island [1]. The main reason for this decline was the competition of railway transport with road transport, thus more funds were utilized for building more roads at the expense of the railway lines. Hence, Law No. 23/2007 was approved to make railway transport an important means of transportation within Indonesia. This clearly maps out the development guide for the national railway system.

2. METHODOLOGY: CASE COMPARISONS

Author compare the proposed Jakarta-Bandung HSR corridor with the some of HSR corridors in Asia and Europe regions and to identify key factors that have contributed to its successful. International comparison is especially important in HSR because the research shows important differences across countries due to topography, demographics, nature of transit demand and government investment schemes [2, 3].

3. EARLY JAPANESE'S PROPOSAL

Japan had already indicated their interest to replicate their Shinkansen HSR technology in Indonesia since 2008. That same year, Japan had displayed their Shinkansen technology and also done a feasibility study. Considering that the Island of Java is identical to the pre-HSR Honshu in Japan, the Japanese government under the Japanese International Cooperation Agency (JICA) therefore proposed the construction of HSR for the Indonesian island of Java, backed by soft loans from the Japanese government, connecting the densely populated capital of Indonesia, Jakarta which suffers from freight and passenger congestion to Surabaya which is about 730 km apart. A new proposal that focus on building 150 km of HSR from Jakarta to Bandung, which will result in the drastic reduction of the time spent to cover the 150 km from 3 hours to just 45 minutes as shown in Fig.1. Japan which is widely known for the manufacturing of world-class trains was the most favorable to win the contract for construction of HSR from Indonesian government. However,

change in government after the 2014 Indonesian gubernatorial election which saw the swearing in of Joko Widodo in October 2014 put an end to this project. The Joko led administration basically the HSR project in January 2015, reason for this action was that the HSR project was quite too expensive for the government to execute and there were several other more important and significant infrastructural projects that were required in the underdeveloped islands outside of Java.



Fig.1 Japanese proposed route [4]

4. CHINA'S PROPOSAL

In 2004, China's State Council adopted the Midand Long-Term Plan for railway development and the country decided to venture into the development of HSR. The government proceeded to invest huge sums of money into this plan and, in 2008, it affirmed and upgraded the Plan. Part of China's strategy was the purchase of rail technologies developed countries. This helped to accelerate China's HSR development and led to the China's development of indigenous HSR technology in 2007. This culminated in the manufacture of China's first high-speed train on 1st August, 2008, China vigorously promoted its HSR technology, transitioning and positioning their HSR technology. Internally, China plans to establish four major train lines, connecting the north to the south and another four lines connecting the east to the west, across the entire length and breadth of the whole country. Externally, several major rail lines are also being planned, one linking Asia and Europe via Russia, another connecting China to Europe via Central Asia and the Middle East, and a third connecting southern China with Indo-China and Southeast Asia [5]. China's HSR strategy has become part an integral belt-and-road strategy and core of China's foreign policy, all these have occurred just within the past decade or thereabout [6]. The 'belt' component comprises of many land routes and the 'road' component on the other hand comprises of many sea routes. This also arise from the fact that both systems of land and sea routes link China to Europe. This initiative also led to the development of special funding and investments [7].

5. HISTORY AND RECENT DEVELOPMENT

The HSR project was forecasted to cover a distance of about 143 km, linking Jakarta and Bandung, thus becoming Indonesia's first ever HSR project. As highlighted earlier, the Japanese and Chinese government made known their intention. Although the Japanese and Chinese governments had carried out previous comprehensive studies, it was only Japan that went the extra length of issuing a study for a project extending to Surabaya, which was estimate to be about 730 km. This was followed by a counter bid which was submitted by the Chinese government in April 2015, must to the chagrin of the Japanese. This was followed by a state visit by Joko Widodo, who had a successful meeting with the Chinese president, Xi Jinping on March 26, 2015. After the meeting Xi Jinping publicly announced the support of the Chinese government for the development of Indonesian high-speed project, this was followed by the signing of a memorandum of understanding between the two governments. In July 2015, Indonesia led by Jodo Widodo officially announced their plan to commence the construction of the HSR, this would connect Jakarta and Bandung, the bidding process was then made public, therefore the contest was between the potential bidders which included both

the Japanese and Chinese train-makers had. The contest became interesting as the Chinese trainmaker organized a Chinese HSR Technology exhibition in August 2015. This was a brilliant move which was not new to either contenders since both the Chinese and Japanese have been engaged in fierce business competition in the past, often using intense lobbying to outdo each other. It was widely acclaimed that the primary reason behind the high display of domineering campaign displayed goes further. The Chinese government played another card in mid-September 2015, they submitted a new proposal that offered to fully meet the Indonesian government's demands while also eliminating funding required to commence. This was followed closely by several months of bidding, negotiations, between the two countries. It temporarily led to the cancellation of the project, however, the Indonesian government made a decision to select China as the preferred bidder for the US\$5 billion project because of its financial structure which was so hard to ignore, considering the fact that this was completely different from what the Japanese plan had proposed. China's triumph can be alluded to China's willingness fund the project. This would in fact lead to a waiver, which was different from what the Japanese had offered, and the Japanese had also refused to shift their grounds. China had even gone further ahead alleviate its deal by including its commitment to institute a program for the manufacture of light and electric rail system in partnership with local businesses. These products would be targeted at the Indonesian market, and exported neighboring markets, thus creating a seamless technology transfer system that would lead to growth of local technology for renovating and train stations. Therefore, it looked like Indonesia had benefitted immensely from the Japan-China competition, as the Indonesian HSR bid earmarked continuous competition between Japan and China in their bid for other infrastructure projects with Asia. The HSR system has 71.63 km of the track on the ground

level, while 53.54 km of the track will be raised, and the remaining 15.63 km will be below the surface. This was followed by the groundbreaking ceremony, held on January 21, 2016 to commence the construction of the HSR. The HSR system would be open to the public after its official launch in 2021.

6. PROJECT'S DESCRIPTION

The HSR is part of the governments' grand ambition of upgrading Indonesia's lagging infrastructure. If successful executed, the project will drastically reduce travel time to just 45 minutes only. The HSR has four stations as seen in Fig. 2. The HSR project will be financed exclusively by China. The project will include integration of the HSR stations with developments along its corridor through transit oriented developments (TOD) [8 -10]. The ambitious proposal for the national railway network comes amid recent news that the cost of the Jakarta-Bandung HSR has swelled to almost US\$6 billion, from US\$5.2 billion. On the other hand, rail ridership in Indonesia has risen substantially in recent years, making decades of underinvestment growing urban congestion important and considerations for transport stakeholders as they upgrade and construct new lines. Statistics Indonesia (BPS) reports that total rail passengers rose from 199 million in 2011 to 202 million in 2012, 216 million in 2013, 277 million in 2014 and 325 million in 2015. The average length of a passenger journey has simultaneously fallen from 95 km to 68 km, while the country's rail network remains limited to Java and Sumatra, with 22,296 km of total line operational in 2015. The Medium-Term Development Plan 2015-2019 includes an infrastructure development agenda that outlines projects such as having 3,258 km of newly built or rehabilitated rail lines, made up of 2,159 km of intercity railways and 1,099 km of urban railway, and boosting rail cargo volumes to 1.5 million twenty-foot equivalent units annually.

Fig. 2 Route of Jakarta to Bandung HSR

Urban rail lines, including a planned light rail transit (LRT) system in Jakarta, are also expected to help reduce congestion and transport costs, which have become the highest in South-east Asia. It was forecast that the new line would attract around 10 million passengers per year in first year of operation, as shown in Fig. 3.

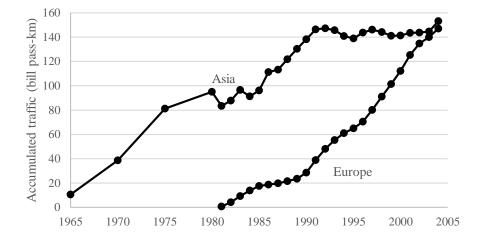


Fig. 3 Accumulated HSR traffic [11]

For 20 years, Shinkansen services in Japan enjoyed a sustained traffic, it gained 100 billion passengerskilometer. From 1994 to 2004, within the next 20years interval, the demand halved, because only 50 billion additional passengers-kilometer used HSR. When compared with most European HSR projects which are still in their first 20-year period, it is natural to expect high growth rates as expressed by Fig. 3. Hence, Fig. 4 shows accumulated traffic used the HSR services in Asia and Europe based on traffic data from each operator during the 2010 to 2016 period. As confirmed by Fig. 4 the only China is still in it incredible constant growth and gained a huge accumulated traffic around 850 billion passenger-km. Two other Asian countries i.e. South Korea and Taiwan started HSR services in first decade of 21 centuries only gained accumulated traffic of 31.4 and 20.2 billion passenger-km respectively during the same period. Based on long experienced of HSR services in Japan and Europe countries it is easy to predict that most China HSR projects still enjoyed a constant traffic growth for the next two decades most triggering by combined building new dedicated electrified lines and upgrading existing lines. Both South Korea and Taiwan HSR service expressed constant demand growth for the following first decade even the Korea Train Express (KTX) has transported approximately 150 million passengers since the four years after its opening. Taiwan HSR itself has carried about 100,000 passengers per day for fifty first months of commercial service. However, Shinkansen services is still in its positive growth and gained accumulated traffic of 196 billion passenger-km from 2010 to 2016, two times higher than France figures of 99 billion passenger-km during the same period. France HSR had stagnant traffic growth from 2010 to 2016; in 2016 as an example, SNCF collected accumulated traffic of 49 billion passenger-km, otherwise in 2010 it figures stood at 51 billion passenger-km. Other Europe HSR operators include Dutch, England, and Sweden indicated sustained traffic growth and collected accumulated traffic around 42 billion passenger-km until the end of 2016.

Table 1 Parahyangan statistics 2005 – 2016 [12]

Year	No. of passenger
2005	743,875
2006	529,725
2007	328,348
2008	610,662
2009	664,442
2010	592,434
2011	436,249
2012	439,003
2013	441,930
2014	406,361
2015	474,315
2016	560,320

Based on passenger traffic data obtained from Europe and Asia, the first HSR line constructed in Indonesia is expected to gain considerable amounts of demand. However, it is important to state that in Europe and Asian countries, the construction of HSR lines was as a result of the inability of their conventional lines being unable to meet their demands, thus they needed to add a new capacity to increase rail service. It is also noteworthy to mention that many of these existing rail lines had already been doubled or tripled in a bid to increase the capacity. Therefore, the high demand for conventional rail can be said to have created a market for HSR in these countries. It is inevitable to mention that Indonesia include Jakarta and Bandung lacks of this factor that triggered HSR services successful in Europe and Asian countries as shown in the table above. The Parahyangan conventional line, which began operating in 1971 in the Jakarta – Bandung corridor only carries a total of 560,320 passengers in 2016.



Fig. 4 Accumulated HSR traffic during the 2010 to 2016 period [13]

7. PROPOSAL OF SG - KL HSR PROJECT

The Malaysian and Singaporean governments signed an agreement on February 2013 that would result in the construction of HSR line, connecting Malaysia [14]. It is of utmost important and key to the successful implementation of Malaysia's national development strategy, (one of the main objective is to increase the country's GDP per person by 150%) by the time this HSR line will be completed in 2020, the Malaysian government is also looking forward to a further boost in the country's economics by closely-tied cooperation with the Singaporean government. Cost of this project is estimated at RM 40 billion (USD 12 billion). The source(s) of the funding, however, has not been officially disclosed; although some private sources say that Private-Public-Partnership (PPP) funding will be used, others claim that it will be jointly co-funded by both the Malaysian and Singaporean governments considering the fact 335 km of the line will be in Malaysia while the remaining 15 km will be in Singapore. The HSR will have a total of eight stops, seven of which will be within Malaysia and one will be within Jurong East. The high speed rail line which will consist of bullet trains moving at top speed, above an estimated 300 km/hour is projected to become operational in 2026. This would therefore reduce the land journey between Kuala Lumpur and Singapore from about five hours to a mere 90 minutes' journey as shown in Fig. 5. This project has attracted keen interest from various large corporations within Asia and Europe. However, Mahathir Mohamad who is the current Malaysian Prime Minister had announced on Monday May 28, 2018 that the HSR project will be axed, but he had also explained that it will take some time to execute Malaysian because the government and Singaporean government had also signed a contract on the multi-billion-dollar project. Meanwhile, Dr Mahathir Mohamad, the Malaysian Prime Minister had also assured that the government will remain "business friendly" to all investors involve in the project [15]. The relationship existing between Malaysia and Singapore is considered unique because of certain factors, these include the geography of both countries, economy, politics, historical background, cultural heritage, and ethnicity. It is also attributed to the fact that Singapore separated from Malaysia in 1965, hence the similarity. It is also intriguing to know that although both countries have been characterized by

healthy competition in economic and social matters, they however enjoy a very high level of economic interdependence as major trading partners. The existing relationship between Singapore and Malaysia has been described as symbiotic. However, this mutually symbiotic as the relationship has been beneficial to both countries, although the relationship has faced some challenges in the past, it has existed since 1965. The Mahathir administration which was in control in Malaysia from 1997 to 2002, was believed by many to be the most stressful period between both Singapore and Malaysia. However, the situation changed after Abdullah Badawi got into power and became the prime minister of Malaysia in 2003, and since then there has been enhanced contact and cooperation between both governments. History is starting to repeat itself again in the part of the SG – KL HSR project [15].

Fig. 5 Proposed Kuala Lumpur - Singapore HSR line [16]

8. CONCLUSIONS

In conclusion, the Jakarta-Bandung HSR project, linking Jakarta to Bandung was executed by PT Kereta Cepat Indonesia China (KCIC), through mutually agreed business-to-business plan basis, with the Indonesian government. China, which was not only the contender had been awarded the project because of the provision of soft loans for the project; on the other hand, Japan which had showed interest in the project had requested that the Indonesian government funded the project. Surprisingly, Japan was the first to have indicated interested in the project and had even gone ahead to commence working on a feasibility study for HSR track, connecting Jakarta to the country's second largest city, Surabaya, which is about 730 kilometers apart. Indonesia went further in 2012 to commence another feasibility study focused on the Jakarta-to-Bandung leg, this study was finalized in 2014. The highest operating speed of the trains is estimated at about 350 km/hour, the Jakarta-Bandung high speed rail would result in shortened travel time between the two hubs, reducing the time spent to cover this distance from three hours to 45 minutes only, therefore pushing forward economic development along the line through transit oriented developments. It was projected that the line would also attract about 10 million passengers each year within the first year of operation. This high figure is however a reflection of the densely populated city of Jakarta, and the several number of origin destination pairs that the HSR line would simultaneously serve. The Kuala Lumpur-Singapore HSR is a strategic project between the Malaysian government and Singaporean government, with its primary goal of facilitating seamless travel between the two capital cities of Kuala Lumpur and Singapore, enhancing business linkages, and connecting the citizens of both countries. The high-speed rail link is expected to reduce the travel time between the two cities from about four to five hours by road to 90 minutes only. However, it is also noteworthy to mention that the surprising decision arrived not long after the newly elected Malaysian prime minister raised the possibility of dropping the project because of its cost implications.

9. REFERENCES

[1] Directorate General of Railway, Ministry of

Transportation, Master Plan of National Railway, 2011.

- [2] Campos, J., and de Rus., G. Some stylized facts about high-speed rail: A review of HSR experiences around the world, J. of Transport Policy, Vol. 16, No. 1, 2009, pp. 19-28.
- [3] Albalate, D., and Bel, G. High-Speed Rail: Lessons for Policy Makers from Experiences Abroad, Research Institute of Applied Economics, Universitat de Barcelona, 2010.
- [4] The Ministry of Economy, Trade and Industry, Study on the High Speed Railway Project (Jakarta-Bandung Section), Republic of Indonesia, Final Report, 2012.
- [5] Chan, G. From Laggard to Superpower: Explaining China's High-Speed Rail 'Miracle', The Japan Institute of International Affairs, 2017.
- [6] Chan, G. China's high-speed rail diplomacy: global impacts and East Asian responses, EAI working paper, East Asian Institute, Seoul, 2016.
- [7] Chan, G. China's New Silk Roads: a new global financial order in the making? in Bo Zhiyue (ed), China-US relations in global perspective. Wellington: Victoria University Press, 2016, pp. 91-107.
- [8] Purba, A., Nakamura, F., Niken, C., Jafri, M., and Pratomo, P. A Current Review of High Speed Railways Experiences in Asia and Europe, AIP Conference Proceedings 1903, 060004, 2017, pp. 1-8.
- [9] Purba, A., Nakamura, F., Purba, T., Jafri, M.,

and Herianto, D, Jakarta – Bandung high-speed rail project, facts and challenges, Conference Proceeding, in Proc. of International Conference on Urban Disaster Resilience, 2019, pp. 1-9.

- [10] PT Kereta Cepat Indonesia China. High Speed Railway (HSR) Jakarta - Bandung, the Acceleration of Infrastructure in West Java. Rapat Kerja Kementerian Perhubungan (Ministry of Transportation), 2016.
- [11] International Union of Railways (UIC). Estimation des resources et des activités économiques liées a la grande vitesse. Prepared by CENIT (Center for Innovation in Transport, Universitat Politecnica de Catalunya), 2005.
- [12] Retrieved from http://repository.unpas.ac.id/31688/6/BAB%2 0III.pdf [Accessed: 2018-05-31]
- [13] International Union of Railways (UIC). Railway Statistics, 2015.
- [14] Retrieved from: www.railwaygazette.com/news/infrastructure/ single-view/view/kuala-lumpur-singaporehigh-speed-railway-agreement.html [Accessed: 2018-05-30].
- [15] Retrieved from: https://www.straitstimes.com/asia/.../mahathirspore-will-be-told-of-kls-wish-to-scrap-[Accessed: 2018-05-31]
- [16] Retrieved from: http://www.myhsr.com.my/ [Accessed: 2018-05-30].

Tambahan Data (Revisi-2)

Moda transportasi kereta api semakin mendapat tempat di hati masyarakat seiring dengan peningkatan pelayanan di setiap sektor. Hal ini terbukti dengan meningkatnya volume penumpang kereta api dari tahun ke tahun. Pada 2016, KAI mengangkut 352,3 juta penumpang. Di tahun 2017, jumlahnya naik 12% menjadi 394,1 juta penumpang. Lonjakan penumpang berlanjut di tahun 2018 dengan jumlah total 425 juta penumpang atau naik 8%.

Sampai dengan Semester I 2019 terjadi peningkatan sebesar 2% dibandingkan dengan periode yang sama di tahun sebelumnya. Pada Semester I 2019 PT Kereta Api Indonesia (Persero) melayani 210,7 juta penumpang. Sedangkan di Semester I 2018, KAI melayani 207 juta penumpang.

Sumber: <u>https://kai.id/information/full_news/2650-peningkatan-volume-penumpang-kereta-api-bukti-kepercayaan-masyarakat-kepada-kai</u>

YearNo of passenger2005743,8752006529,7252007328,3482008610,6622009664,4422010592,4342011436,2492012439,0032013441,9302014406,3612015474,3152016560,320		
2006529,7252007328,3482008610,6622009664,4422010592,4342011436,2492012439,0032013441,9302014406,3612015474,315	Year	No of passenger
2007328,3482008610,6622009664,4422010592,4342011436,2492012439,0032013441,9302014406,3612015474,315	2005	743,875
2008 610,662 2009 664,442 2010 592,434 2011 436,249 2012 439,003 2013 441,930 2014 406,361 2015 474,315	2006	529,725
2009664,4422010592,4342011436,2492012439,0032013441,9302014406,3612015474,315	2007	328,348
2010 592,434 2011 436,249 2012 439,003 2013 441,930 2014 406,361 2015 474,315	2008	610,662
2011436,2492012439,0032013441,9302014406,3612015474,315	2009	664,442
2012 439,003 2013 441,930 2014 406,361 2015 474,315	2010	592,434
2013 441,930 2014 406,361 2015 474,315	2011	436,249
2014 406,361 2015 474,315	2012	439,003
2015 474,315	2013	441,930
· · · · · · · · · · · · · · · · · · ·	2014	406,361
2016 560,320	2015	474,315
	2016	560,320

THE CHALLENGE OF DEVELOPING HIGH-SPEED RAIL PROJECTS: RECENT EVIDENCE FROM DEVELOPING COUNTRIES

*Aleksander Purba1

¹Engineering Faculty, University of Lampung, Lampung, Indonesia

*Corresponding Author, Received: 00 Oct. 2018, Revised: 00 Nov. 2018, Accepted: 00 Dec. 2018

ABSTRACT: The plan by Indonesian government to build a high-speed rail (HSR) has previously existed for years. Both the Japanese and Chinese government had both showed interest in the project, and both of them have the technological capacity to build a railway that would connect Jakarta and Bandung. This project was however awarded to China because they made a provision of soft loans for the project, while Japan on the other hand wanted the Indonesian government to completely provide the fund required to execute the project from the beginning to the end of the project. The proposed construction of the railway lines will cut travel time between Jakarta and Bandung from about three hours by car to just 45 minutes only. The project will include integration of the HSR with developments along its corridor through transit oriented developments. The line would attract around 10 million passengers per year in first year of operation, this is because of Jakarta's huge population size in addition to the number of pairs of destinations that the HSR would connect. However, even the KL – SG HSR project signed an agreement on February 2013, it is noteworthy to mention that the surprising decision arrived not long after the newly elected Malaysian prime minister raised the possibility of dropping the project because of its cost implications.

Keywords: High-speed rail, Indonesia, Travel time, Ridership, Transit oriented development

1. INTRODUCTION

A brief history into the railway system in Indonesia showed that the railway transport system was created in mid-19th century when Indonesia was still under the colonial rule of the Dutch. The railway system was created in 1939 so as to facilitate the movement of cargoes and passengers. As at that time, the length of the railway line was 6,324 km long on Java and 1,833 km long on the Sumatera Island. In 2009, the total railway length had fallen substantially from 6,324 km to 3,464 km on Java and 1,833km to 1,350 km on Sumatera Island [1]. The main reason for this decline was the competition of railway transport with road transport, thus more funds were utilized for building more roads at the expense of the railway lines. Hence, Law No. 23/2007 was approved to make railway transport an important means of transportation within Indonesia. This clearly maps out the development guide for the national railway system.

2. METHODOLOGY: CASE COMPARISONS

Author compare the proposed Jakarta-Bandung HSR corridor with the some of HSR corridors in Asia and Europe regions and to identify key factors that have contributed to its successful. International comparison is especially important in HSR because the research shows important differences across countries due to topography, demographics, nature of transit demand and government investment schemes [2, 3].

3. EARLY JAPANESE'S PROPOSAL

Japan had already indicated their interest to replicate their Shinkansen HSR technology in Indonesia since 2008. That same year, Japan had displayed their Shinkansen technology and also done a feasibility study. Considering that the Island of Java is identical to the pre-HSR Honshu in Japan, the Japanese government under the Japanese International Cooperation Agency (JICA) therefore proposed the construction of HSR for the Indonesian island of Java, backed by soft loans from the Japanese government, connecting the densely populated capital of Indonesia, Jakarta which suffers from freight and passenger congestion to Surabaya which is about 730 km apart. A new proposal that focus on building 150 km of HSR from Jakarta to Bandung, which will result in the drastic reduction of the time spent to cover the 150 km from 3 hours to just 45 minutes as shown in Fig.1. Japan which is widely known for the manufacturing of world-class trains was the most favorable to win the contract for construction of HSR from Indonesian government. However,

change in government after the 2014 Indonesian gubernatorial election which saw the swearing in of Joko Widodo in October 2014 put an end to this project. The Joko led administration basically the HSR project in January 2015, reason for this action was that the HSR project was quite too expensive for the government to execute and there were several other more important and significant infrastructural projects that were required in the underdeveloped islands outside of Java.



Fig.1 Japanese proposed route [4]

4. CHINA'S PROPOSAL

In 2004, China's State Council adopted the Midand Long-Term Plan for railway development and the country decided to venture into the development of HSR. The government proceeded to invest huge sums of money into this plan and, in 2008, it affirmed and upgraded the Plan. Part of China's strategy was the purchase of rail technologies developed countries. This helped to accelerate China's HSR development and led to the China's development of indigenous HSR technology in 2007. This culminated in the manufacture of China's first high-speed train on 1st August, 2008, China vigorously promoted its HSR technology, transitioning and positioning their HSR technology. Internally, China plans to establish four major train lines, connecting the north to the south and another four lines connecting the east to the west, across the entire length and breadth of the whole country. Externally, several major rail lines are also being planned, one linking Asia and Europe via Russia, another connecting China to Europe via Central Asia and the Middle East, and a third connecting southern China with Indo-China and Southeast Asia [5]. China's HSR strategy has become part an integral belt-and-road strategy and core of China's foreign policy, all these have occurred just within the past decade or thereabout [6]. The 'belt' component comprises of many land routes and the 'road' component on the other hand comprises of many sea routes. This also arise from the fact that both systems of land and sea routes link China to Europe. This initiative also led to the development of special funding and investments [7].

5. HISTORY AND RECENT DEVELOPMENT

The HSR project was forecasted to cover a distance of about 143 km, linking Jakarta and Bandung, thus becoming Indonesia's first ever HSR project. As highlighted earlier, the Japanese and Chinese government made known their intention. Although the Japanese and Chinese governments had carried out previous comprehensive studies, it was only Japan that went the extra length of issuing a study for a project extending to Surabaya, which was estimate to be about 730 km. This was followed by a counter bid which was submitted by the Chinese government in April 2015, must to the chagrin of the Japanese. This was followed by a state visit by Joko Widodo, who had a successful meeting with the Chinese president, Xi Jinping on March 26, 2015. After the meeting Xi Jinping publicly announced the support of the Chinese government for the development of Indonesian high-speed project, this was followed by the signing of a memorandum of understanding between the two governments. In July 2015, Indonesia led by Jodo Widodo officially announced their plan to commence the construction of the HSR, this would connect Jakarta and Bandung, the bidding process was then made public, therefore the contest was between the potential bidders which included both

the Japanese and Chinese train-makers had. The contest became interesting as the Chinese trainmaker organized a Chinese HSR Technology exhibition in August 2015. This was a brilliant move which was not new to either contenders since both the Chinese and Japanese have been engaged in fierce business competition in the past, often using intense lobbying to outdo each other. It was widely acclaimed that the primary reason behind the high display of domineering campaign displayed goes further. The Chinese government played another card in mid-September 2015, they submitted a new proposal that offered to fully meet the Indonesian government's demands while also eliminating funding required to commence. This was followed closely by several months of bidding, negotiations, between the two countries. It temporarily led to the cancellation of the project, however, the Indonesian government made a decision to select China as the preferred bidder for the US\$5 billion project because of its financial structure which was so hard to ignore, considering the fact that this was completely different from what the Japanese plan had proposed. China's triumph can be alluded to China's willingness fund the project. This would in fact lead to a waiver, which was different from what the Japanese had offered, and the Japanese had also refused to shift their grounds. China had even gone further ahead alleviate its deal by including its commitment to institute a program for the manufacture of light and electric rail system in partnership with local businesses. These products would be targeted at the Indonesian market, and exported neighboring markets, thus creating a seamless technology transfer system that would lead to growth of local technology for renovating and train stations. Therefore, it looked like Indonesia had benefitted immensely from the Japan-China competition, as the Indonesian HSR bid earmarked continuous competition between Japan and China in their bid for other infrastructure projects with Asia. The HSR system has 71.63 km of the track on the ground

level, while 53.54 km of the track will be raised, and the remaining 15.63 km will be below the surface. This was followed by the groundbreaking ceremony, held on January 21, 2016 to commence the construction of the HSR. The HSR system would be open to the public after its official launch in 2021.

6. PROJECT'S DESCRIPTION

The HSR is part of the governments' grand ambition of upgrading Indonesia's lagging infrastructure. If successful executed, the project will drastically reduce travel time to just 45 minutes only. The HSR has four stations as seen in Fig. 2. The HSR project will be financed exclusively by China. The project will include integration of the HSR stations with developments along its corridor through transit oriented developments (TOD) [8 -10]. The ambitious proposal for the national railway network comes amid recent news that the cost of the Jakarta-Bandung HSR has swelled to almost US\$6 billion, from US\$5.2 billion. On the other hand, rail ridership in Indonesia has risen substantially in recent years, making decades of underinvestment growing urban congestion important and considerations for transport stakeholders as they upgrade and construct new lines. Statistics Indonesia (BPS) reports that total rail passengers rose from 199 million in 2011 to 202 million in 2012, 216 million in 2013, 277 million in 2014 and 325 million in 2015. The average length of a passenger journey has simultaneously fallen from 95 km to 68 km, while the country's rail network remains limited to Java and Sumatra, with 22,296 km of total line operational in 2015. The Medium-Term Development Plan 2015-2019 includes an infrastructure development agenda that outlines projects such as having 3,258 km of newly built or rehabilitated rail lines, made up of 2,159 km of intercity railways and 1,099 km of urban railway, and boosting rail cargo volumes to 1.5 million twenty-foot equivalent units annually.

Jakarta-Bandung High-Speed Rail

Fig. 2 Route of Jakarta to Bandung HSR [11]

Urban rail lines, including a planned light rail transit (LRT) system in Jakarta, are also expected to help reduce congestion and transport costs, which have become the highest in South-east Asia. It was forecast that the new line would attract around 10 million passengers per year in first year of operation, as shown in Fig. 3.

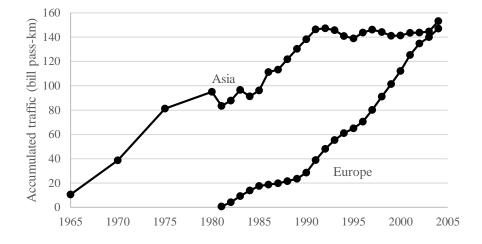


Fig. 3 Accumulated HSR traffic [12]

For 20 years, Shinkansen services in Japan enjoyed a sustained traffic, it gained 100 billion passengerskilometer. From 1994 to 2004, within the next 20years interval, the demand halved, because only 50 billion additional passengers-kilometer used HSR. When compared with most European HSR projects which are still in their first 20-year period, it is natural to expect high growth rates as expressed by Fig. 3. Hence, Fig. 4 shows accumulated traffic used the HSR services in Asia and Europe based on traffic data from each operator during the 2010 to 2016 period. As confirmed by Fig. 4 the only China is still in it incredible constant growth and gained a huge accumulated traffic around 850 billion passenger-km. Two other Asian countries i.e. South Korea and Taiwan started HSR services in first decade of 21 centuries only gained accumulated traffic of 31.4 and 20.2 billion passenger-km respectively during the same period. Based on long experienced of HSR services in Japan and Europe countries it is easy to predict that most China HSR projects still enjoyed a constant traffic growth for the next two decades most triggering by combined building new dedicated electrified lines and upgrading existing lines. Both South Korea and Taiwan HSR service expressed constant demand growth for the following first decade even the Korea Train Express (KTX) has transported approximately 150 million passengers since the four years after its opening. Taiwan HSR itself has carried about 100,000 passengers per day for fifty first months of commercial service. However, Shinkansen services is still in its positive growth and gained accumulated traffic of 196 billion passenger-km from 2010 to 2016, two times higher than France figures of 99 billion passenger-km during the same period. France HSR had stagnant traffic growth from 2010 to 2016; in 2016 as an example, SNCF collected accumulated traffic of 49 billion passenger-km, otherwise in 2010 it figures stood at 51 billion passenger-km. Other Europe HSR operators include Dutch, England, and Sweden indicated sustained traffic growth and collected accumulated traffic around 42 billion passenger-km until the end of 2016.

Table 1 Parahyangan statistics 2005 – 2016 [13]

Year	No. of passenger
2005	743,875
2006	529,725
2007	328,348
2008	610,662
2009	664,442
2010	592,434
2011	436,249
2012	439,003
2013	441,930
2014	406,361
2015	474,315
2016	560,320

Based on passenger traffic data obtained from Europe and Asia, the first HSR line constructed in Indonesia is expected to gain considerable amounts of demand. However, it is important to state that in Europe and Asian countries, the construction of HSR lines was as a result of the inability of their conventional lines being unable to meet their demands, thus they needed to add a new capacity to increase rail service. It is also noteworthy to mention that many of these existing rail lines had already been doubled or tripled in a bid to increase the capacity. Therefore, the high demand for conventional rail can be said to have created a market for HSR in these countries. It is inevitable to mention that Indonesia include Jakarta and Bandung lacks of this factor that triggered HSR services successful in Europe and Asian countries as shown in the table above. The Parahyangan conventional line, which began operating in 1971 in the Jakarta – Bandung corridor only carries a total of 560,320 passengers in 2016.

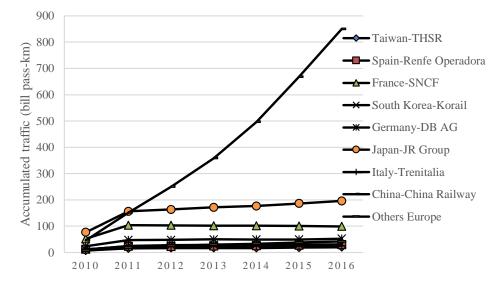


Fig. 4 Accumulated HSR traffic during the 2010 to 2016 period [14]

7. PROPOSAL OF SG – KL HSR PROJECT

The Malaysian and Singaporean governments signed an agreement on February 2013 that would result in the construction of HSR line, connecting Malaysia [15]. It is of utmost important and key to the successful implementation of Malaysia's national development strategy, (one of the main objective is to increase the country's GDP per person by 150%) by the time this HSR line will be completed in 2020, the Malaysian government is also looking forward to a further boost in the country's economics by closely-tied cooperation with the Singaporean government. Cost of this project is estimated at RM 40 billion (USD 12 billion). The source(s) of the funding, however, has not been officially disclosed; although some private sources say that Private-Public-Partnership (PPP) funding will be used, others claim that it will be jointly co-funded by both the Malaysian and Singaporean governments considering the fact 335 km of the line will be in Malaysia while the remaining 15 km will be in Singapore. The HSR will have a total of eight stops, seven of which will East. The high speed rail line which will consist of bullet trains moving at top speed, above an estimated 300 km/hour is projected to become operational in 2026. This would therefore reduce the land journey between Kuala Lumpur and Singapore from about five hours to a mere 90 minutes' journey as shown in Fig. 5. This project has attracted keen interest from various large corporations within Asia and Europe. However, Mahathir Mohamad who is the current Malaysian Prime Minister had announced on Monday May 28, 2018 that the HSR project will be axed, but he had also explained that it will take some time to execute because the Malaysian government and Singaporean government had also signed a contract on the multi-billion-dollar project. Meanwhile, Dr Mahathir Mohamad, the Malaysian Prime Minister had also assured that the government will remain "business friendly" to all investors involve in the project [16]. The relationship existing between Malaysia and Singapore is considered unique because of certain factors, these include the geography of both countries, economy, politics,

be within Malaysia and one will be within Jurong

historical background, cultural heritage, and ethnicity. It is also attributed to the fact that Singapore separated from Malaysia in 1965, hence the similarity. It is also intriguing to know that although both countries have been characterized by healthy competition in economic and social matters, they however enjoy a very high level of economic interdependence as major trading partners. The existing relationship between Singapore and Malaysia has been described as symbiotic. However, this mutually symbiotic as the relationship has been beneficial to both countries, although the relationship has faced some challenges in the past, it has existed since 1965. The Mahathir administration which was in control in Malaysia from 1997 to 2002, was believed by many to be the most stressful period between both Singapore and Malaysia. However, the situation changed after Abdullah Badawi got into power and became the prime minister of Malaysia in 2003, and since then there has been enhanced contact and cooperation between both governments. History is starting to repeat itself again in the part of the SG – KL HSR project [16].

Fig. 5 Proposed Kuala Lumpur - Singapore HSR line [17]

8. CONCLUSIONS

In conclusion, the Jakarta-Bandung HSR project, linking Jakarta to Bandung was executed by PT Kereta Cepat Indonesia China (KCIC), through mutually agreed business-to-business plan basis, with the Indonesian government. China, which was not only the contender had been awarded the project because of the provision of soft loans for the project; on the other hand, Japan which had showed interest in the project had requested that the Indonesian government funded the project. Surprisingly, Japan was the first to have indicated interested in the project and had even gone ahead to commence working on a feasibility study for HSR track, connecting Jakarta to the country's second largest city, Surabaya, which is about 730 kilometers apart. Indonesia went further in 2012 to commence another feasibility study focused on the Jakarta-to-Bandung leg, this study was finalized in 2014. The highest operating speed of the trains is estimated at about 350 km/hour, the Jakarta-Bandung high speed rail would result in shortened travel time between the two hubs, reducing the time spent to cover this distance from three hours to 45 minutes only, therefore pushing forward economic development along the line through transit oriented developments. It was projected that the line would also attract about 10 million passengers each year within the first year of operation. This high figure is however a reflection of the densely populated city of Jakarta, and the several number of origin destination pairs that the HSR line would simultaneously serve. The Kuala Lumpur-Singapore HSR is a strategic project between the Malaysian Singaporean government and government, with its primary goal of facilitating seamless travel between the two capital cities of Kuala Lumpur and Singapore, enhancing business linkages, and connecting the citizens of both countries. The high-speed rail link is expected to reduce the travel time between the two cities from about four to five hours by road to 90 minutes only. However, it is also noteworthy to mention that the surprising decision arrived not long after the newly elected Malaysian prime minister raised the possibility of dropping the project because of its cost implications.

9. REFERENCES

- [1] Directorate General of Railway, Ministry of Transportation, Master Plan of National Railway, 2011.
- [2] Campos, J., and de Rus., G. Some stylized facts about high-speed rail: A review of HSR

experiences around the world, J. of Transport Policy, Vol. 16, No. 1, 2009, pp. 19-28.

- [3] Albalate, D., and Bel, G. High-Speed Rail: Lessons for Policy Makers from Experiences Abroad, Research Institute of Applied Economics, Universitat de Barcelona, 2010.
- [4] The Ministry of Economy, Trade and Industry, Study on the High Speed Railway Project (Jakarta-Bandung Section), Republic of Indonesia, Final Report, 2012.
- [5] Chan, G. From Laggard to Superpower: Explaining China's High-Speed Rail 'Miracle', The Japan Institute of International Affairs, 2017.
- [6] Chan, G. China's high-speed rail diplomacy: global impacts and East Asian responses, EAI working paper, East Asian Institute, Seoul, 2016.
- [7] Chan, G. China's New Silk Roads: a new global financial order in the making? in Bo Zhiyue (ed), China-US relations in global perspective. Wellington: Victoria University Press, 2016, pp. 91-107.
- [8] Purba, A., Nakamura, F., Niken, C., Jafri, M., and Pratomo, P. A Current Review of High Speed Railways Experiences in Asia and Europe, AIP Conference Proceedings 1903, 060004, 2017, pp. 1-8.
- [9] Purba, A., Nakamura, F., Purba, T., Jafri, M., and Herianto, D, Jakarta – Bandung high-speed rail project, facts and challenges, Conference Proceeding, in Proc. of International Conference on Urban Disaster Resilience, 2019, pp. 1-9.

- [10] PT Kereta Cepat Indonesia China. High Speed Railway (HSR) Jakarta - Bandung, the Acceleration of Infrastructure in West Java. Rapat Kerja Kementerian Perhubungan (Ministry of Transportation), 2016.
- [11]Retrieved from: https://www.caixinglobal.com/2018-10-11/indonesias-china-financed-high-speed-railproject-off-track-101333896.html [Accessed: 2020-02-16].
- [12] International Union of Railways (UIC). Estimation des resources et des activités économiques liées a la grande vitesse. Prepared by CENIT (Center for Innovation in Transport, Universitat Politecnica de Catalunya), 2005.
- [13] Retrieved from http://repository.unpas.ac.id/31688/6/BAB%2 0III.pdf [Accessed: 2018-05-31]
- [14] International Union of Railways (UIC). Railway Statistics, 2015.
- [15] Retrieved from: www.railwaygazette.com/news/infrastructure/ single-view/view/kuala-lumpur-singaporehigh-speed-railway-agreement.html [Accessed: 2018-05-30].
- [16] Retrieved from: https://www.straitstimes.com/asia/.../mahathirspore-will-be-told-of-kls-wish-to-scrap-[Accessed: 2018-05-31]
- [17] Retrieved from: https://www.metrorailnews.in/myhsr-corp-toappoint-a-technical-advisory-consultant-forkl-sg-hsr-project/ [Accessed: 2020-02-16].

International Journal of GEOMATE

A Scientific International Journal on Geotechnique, Construction Materials and Environment

PUBLISHING AGREEMENT

Dear Sir,

I am required to obtain copyright of papers from authors for the term of copyright and I would be grateful if you would confirm your acceptance by signing and returning the agreement below. I will not withhold permission for any reasonable request from you to publish any part of this paper in connection with any other work by you, provided the usual acknowledgments are given regarding copyright notice and reference to the original publication.

If it is appropriate, the author's employer may sign this agreement and, in any event, the employer may reserve the right to use the paper internally or for promotional purposes only by indicating to this agreement.

The author warrants that the manuscript is the author's original work and has not been published before (if excerpts from copyrighted works are included, the author will obtain written permission from the copyright owners and show credit to the sources in the manuscript). The author also warrants that the article contains no libelous or unlawful statements and does not infringe on the rights of others.

If the work was prepared jointly the author agrees to inform co-authors of the terms of the agreement and to sign on their behalf.

Editors-in-Chief

1. Authors' Confirmation (Please answer the followings)

- Q1. Does the abstract contains "background, methodology, results, and conclusions" within 150 words to 250 words? Answer (Yes or No): Yes
- Q2. Have you filled in the gap in all pages (no blank space at all)? Answer (Yes or No): Yes
- Q3. Are the references inside text according to the template? Answer (Yes or No): Yes
- Q4. Are all figures drawn according to the template? (Yes or No)? Answer (Yes or No): Yes
- Q5. Are all figures with the same font size 10 and symbol etc? Answer (Yes or No): Yes
- Q6. Does the paper length at least 6 to 8 pages or more)? Answer (Yes or No): Yes
- Q7. Are the legends and values of figures 10 font size? Answer (Yes or No): Yes
- Q8. Does the list of references according to the template? Answer (Yes or No): Yes
- Q9. Does the copyright signed by all authors? (Yes or No)? Answer (Yes or No): Yes
- Q10. Are all equations clear and font size 10? (Yes or No)? Answer (Yes or No): Yes
- Q11. Does your paper contain at least 10 recent references? Answer (Yes or No): Yes
- Q12. Have you proofread English grammar by a native? Answer (Yes or No): Yes
- Q13. Do you know the following free version of grammar correction? Answer (Yes or No): Yes https://www.grammarly.com/office-addin/windows
- Q14. Does your paper contain at least 4 tables and/or figures? Answer (Yes or No): Yes
- Q15. Have you understood guidelines given on web page? Answer (Yes or No): Yes

2. Authors' Biography (Please write all authors' full name and biodata here)

Mr. Aleksander Purba is currently a senior lecturer in the Department of Civil Engineering, University of

Lampung, Indonesia. His email is aleksander.purba@eng.unila.ac.id

3. Authors' Contributions (Please write all authors' contribution here)

Please state the contributions made by each author in the preparation, development, and publication of this manuscript.

Aleksander Purba: Conception, design, acquisition, analysis, and interpretation of data and drafting the article.

4. Ethics (Please provide ethical issues that may arise after the publication of your paper)

This article is original and contains unpublished material. The corresponding author confirms that the author have read and approved the manuscript and no ethical issues involved.

Name of the Journal:

International Journal of GEOMATE

A Scientific International Journal on Geotechnique, Construction Materials and Environment

I hereby assign the copyright to my paper entitled,

THE CHALLENGE OF DEVELOPING HIGH-SPEED RAIL PROJECTS: RECENT EVIDENCE FROM DEVELOPING COUNTRIES

+note - if the paper is rejected, this assignment is null and void

Name of author: Aleksander Purba

lex pile

Signature:

Date: 26 November 2019

Please send this form duly filled and signed together with your manuscript to:

Dr. Zakaria Hossain, Editor-in-Chief Professor, Division of Environmental Science and Technology Graduate School of Bioresources, Mie University 1577 Kurima Machiya-cho Tsu-city, Mie 514-8507, Japan E-mail: zakaria@bio.mie-u.ac.jp Tel: +81-59-231-9578 Fax: +81-59-231-9578