PAPER NAME
On the locating chromatic number of bar bell shadow graph.pdf

AUTHOR

## Asmiati Asmiati

## CHARACTER COUNT

13887 Characters

FILE SIZE
322.6KB

## REPORT DATE

Nov 17, 2022 5:19 PM GMT+7

Nov 17, 2022 5:19 PM GMT+7

## - $21 \%$ Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 13\% Internet database
- Crossref database
- $10 \%$ Submitted Works database
- Excluded from Similarity Report
- Bibliographic material
- Cited material
- Manually excluded sources
- 15\% Publications database
- Crossref Posted Content database
- Quoted material
- Small Matches (Less then 10 words)
- Manually excluded text blocks


## IIt

# On the locating chromatic number of barbell shadow path graphs 

Asmiati ${ }^{\text {a }}$, Maharani Damayanti ${ }^{\text {a }}$, Lyra Yulianti ${ }^{\text {b }}$<br>${ }^{a}$ Departmen ${ }^{8}$ of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Jl. Sumantri Brojonegoro No 1, Bandar Lampung, Indonesia<br>${ }^{b}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus UNAND Limau Manis, Padang, Indonesia

2) 

2 asmiati.1976@fmipa.unila.ac.id


#### Abstract

The locating chromatic number was introduced by Chartrand in 2002. The locating chromatic number of a graph is a combined concept between the coloring and partition dimension of a graph. The locating chromatic number of a graph is defined as the cardinality of the minimum color classes of the graph. In this paper, we discuss about the locating chromatic number of shadow path graphs and barbell graph containing shadow graph.


## 1. Introduction

The locating chromatic number of a graph was introduced by Chatrand et al.[6] by combining two concepts in graph theory, which are vertex coloring and partition dimension of a graph. Let $G=(V, E)$ be a connected graph. A $k$-coloring of $G$ is a function $c: V(G) \longrightarrow\{1,2, \cdots, k\}$, where $c(u) \neq c(v)$ for any two adjacent vertices $u$ and $v$ in $G$. Thus, the coloring $c$ induces a partition $\Pi$ of $V(G)$ into $k$ color classes (independent sets) $C_{1}, C_{2}, \cdots, C_{k}$, where $C_{i}$ is the set of all vertices colored by the color $i$ for $1 \leq i \leq k$. The color code $c_{\Pi}(v)$ of a vertex $v$ in $G$ is defined

10
${ }^{10}$ as the $k$-ordinate $\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right)_{1} \cdots, d\left(v, C_{k}\right)\right)$, where $d\left(v, C_{i}\right)=\min \left\{d(v, x) ; x \in C_{i}\right\}$ for $1 \leq i \leq k$. The $k$-coloring $c$ of $G$ such that all vertices have different color codes is called a locating coloring of $G$. The locating chromatic number of $G$, denoted by $\chi_{L}(G)$, is the minimum $k$ such that $G$ has a locating coloring.

The following two theorems are usefulo determine the lower bound of the locating chromatic of a graph. The set of neighbors of a vertex $q$ in $G$, denoted by $N(q)$.

Theorem 1.1. (see [6]). Let $c$ bs a locating coloring in a connected graph $G$. If $x$ and $y$ are distinct vertices of $G$ such that $d(p, w)=d(q, w)$ for all $w \in V(G)-\{p, q\}$, then $c(p) \neq c(q)$. In particular, if $p$ and $q$ are non-adjacent vertices such that $N(p) \neq N(q)$, then $c(p) \neq c(q)$.
Theorem 1.2. (see [6]). 'The locating chromatic number of a cycle graph $C_{n}(n \geq 3)$ is 3 for odd $n$ and 4 for even $n$.
1.he locating chromatic number of a graph is an interesting topic to study because there is no general algorithm for determining the locating chromatic number of any graphs and there are only a few results related to determining of the locating chromatic number of some graphs. Chartrand et al. [6] determined all graphs of order $n$ with locating number $n$, namely a complete multipartite graph $\circ^{f} n$ vertices. Moreover, Chartrand et al.[7] provided a tree construction of $n$ vertices, $n \geq 5$, with locating chromatic number varying from 3 to $n$, except for $(n-1)$. Next, Asmiati et al. [1] obtained the locating chromatic number of amalgamation of stars and non-homogeneous caterpillars and firecracker graphs [2]. In [5] Welyyanti et al. determined the locating chromatic number of complete $n$-ary trees. Next, Sofyan et al. [4] determined the locating chromatic number of homogeneous lobster. Recently, Ghanem et al. [8] found the locating chromatic number of ${ }^{\text {powwers }}{ }_{13}$ of the path and cycles.
${ }^{13}$ et $P_{n}$ be a path with $V\left(P_{n}\right)=\left\{x_{i} \mid 1 \leq i \leq n\right\}$ and $E\left(P_{n}\right)=\left\{x_{i} x_{i+1} \mid 1 \leq i \leq\right.$ $n-1\}$. The shadow path graph $D_{2}\left(P_{n}\right)$ is a graph with the vertex set $\left\{u_{i}, v_{i} \mid 1 \leq i \leq n\right\}$ where $u_{i} u_{j} \in E\left(D_{2}\left(P_{n}\right)\right)$ if and only if $x_{i} x_{j} \in E\left(P_{n}\right)$ and $u_{i} v_{j} \in E\left(D_{2}\left(P_{n}\right)\right)$ if and only if $x_{i} x_{j} \in E\left(P_{n}\right)$. A barbell graph containing shadow path graph, denoted by $B_{D_{2}\left(P_{n}\right)}$ is obtained by copying a shadow path graph (namely, $D_{2}^{\prime}\left(P_{n}\right)$ ) and connecting the two graphs with a bridge. We assume that $\left\{u_{i}^{\prime}, v_{i}^{\prime} \mid 1 \leq i \leq n\right\}$ is a vertex set of $D_{2}^{\prime}\left(P_{n}\right)$ and a bridge in $B_{D_{2}\left(P_{n}\right)}$ connecting $\left\{u_{\frac{n+1}{\prime}}^{2} \frac{v_{n+1}}{2}\right\}$ for odd $n$ and $\left\{u_{\frac{n}{2}}^{\prime} v_{n}^{2}\right\}$ for even $n$.

Motivated by the result of Asmiati et al. [3] about the determination of the locating chromatic number of certain barbell graphs, in this paper we determine the locating chromatic number of shadow path graphs and barbell graph containing shadow path for $n \geq 3$.

## Main Results

The following theorem gives the locating chromatic number for shadow path graph $D_{2}\left(P_{n}\right)$ for $n \geq 3$.

Lemma 2.1. Let c be a locating-chromatic number for shadow path graph $D_{2}\left(P_{n}\right)$, with $u_{i} \in P_{i}^{1}$ and $v_{i} \in P_{i}^{2}$. Then $c\left(u_{i}\right) \neq c\left(v_{i}\right)$.

Proof. On the shadow path graph $D_{2}\left(P_{n}\right)$, we can see that $d\left(u_{i}, x\right)=d\left(v_{i}, x\right), i \in[1, n-1]$ for every $x \in\left(\left(D_{2}\left(P_{n}\right)\right) \backslash\left\{u_{i}, v_{i}\right\}\right)$. By Theorem 1.1, we have $c\left(u_{i}\right) \neq c\left(v_{i}\right)$.

Theorem 2.1. The locating chromatic number of a shadow path graph for $n \geq 3, D_{2}\left(P_{n}\right)$ is 6 .
Proof. rirst, we determine the lower bound for the locating-chromatic number of shadow path graph $D_{2}\left(P_{n}\right)$ for $n \geq 3$. The Shadow path graph $D_{2}\left(P_{n}\right)$ for $n \geq 3$ consists of minimal two cycles $C_{4}$. Pick the first cycle $C_{4}$, then by Theorem 1.2 , we could assign 4 colors, $\{1,2,3,4\}$ to the first cycle's vertices. Next, in the second $C_{4}$, we have two vertices, which intersect with two vertices in the first $C_{4}$. By Lemma 2.1, we must assign two different colors to the remaining vertices of the second $C_{4}$. Therefore, we have $\chi_{L}(G) \geq 6$.

Next, we determine the upper bound of the locating chromatic number of the shadow path graph for $n \geq 3$. Let $c$ be a coloring using 6 colors as follow:

$$
\begin{aligned}
& c\left(u_{i}\right)= \begin{cases}1, & \text { for } i=1 \\
2, & \text { for } i=2 n, n \geq 1 \\
3, & \text { for } i=2 n+1, n \geq 1\end{cases} \\
& c\left(v_{i}\right)= \begin{cases}4, & \text { for } i=1 \\
5, & \text { for } i=2 n, n \geq 1 \\
6, & \text { for } i=2 n+1, n \geq 1\end{cases}
\end{aligned}
$$

The color codes of $D_{2}\left(P_{n}\right)$ are :

Since all vertices in $D_{2}\left(P_{n}\right)$ for $n \geq 3$ nave distinct color codes, then $c$ is a locating coloring using 6 colors. As a result $\chi_{L} D_{2}\left(P_{n}\right) \leq 6$. Thus $\chi_{L} D_{2}\left(P_{n}\right)=6$.


Figure 1. A minimum locating coloring of $D_{2}\left(P_{7}\right)$.

Theorem 2.2. The locating chromatic number of a barbell graph containing shadow path for $n \geq 3$ is 6 .
24,
${ }^{24}$ roof. First, we determine the lower bound of $\chi_{L} B_{D_{2}\left(P_{n}\right)}$ for $n \geq 3$. Since the barbell graph $B_{D_{2}\left(P_{n}\right)}$ containing $D_{2}\left(P_{n}\right)$, then by Theorem 2.3 we have $\chi_{L}\left(B_{D_{2}\left(P_{n}\right)}\right) \geq 6$. To prove the upper bound, consider the following three cases.
CASE $1(n=3)$. 4t $c$ be a locating coloring using 6 colors as follows :

$$
\begin{aligned}
& c\left(u_{i}\right)= \begin{cases}1, & \text { for } i=2, \\
2, & \text { for } i=1, \\
3, & \text { for } i=3,\end{cases} \\
& c\left(u_{i}^{\prime}\right)= \begin{cases}4, & \text { for } i=2, \\
5, & \text { for } i=1, \\
6, & \text { for } i=3,\end{cases} \\
& c\left(v_{i}\right)= \begin{cases}1, & \text { for } i=1, \\
4, & \text { for } i=3, \\
6, & \text { for } i=2,\end{cases} \\
& c\left(v_{i}^{\prime}\right)= \begin{cases}2, & \text { for } i=1, \\
3, & \text { for } i=3, \\
4, & \text { for } i=2 .\end{cases}
\end{aligned}
$$

The color codes of $B_{D_{2}\left(P_{3}\right)}$ are

$$
c_{\pi}\left(u_{i}\right)= \begin{cases}0, & \text { for } 1^{\text {st }} \text { ordinate, } i=2 \\ & \text { for } 2^{n d} \text { ordinate, } i=1 \\ \text { for } 3^{\text {rd }} \text { ordinate, } i=3 \\ 2, & \text { for } 3^{\text {th }} \text { ordinate, } i=1 \\ \text { for } 4^{t h} \text { ordinate, } i=2 \\ \text { for } 2^{\text {nd }} \text { ordinate, } i=3 \\ \text { for } 5^{\text {th }} \text { and } 6^{\text {th }} \text { ordinate, } i=1 \text { and } 3, \\ 1, & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
0, \\
\text { for } \\
5
\end{array}{ }^{\text {th }} \text { ordinate, } i=1,\right. \\
& \text { for } 4^{\text {th }} \text { ordinate, } i=2 \text {, } \\
& \text { for } 6^{\text {th }} \text { ordinate, } i=3 \text {, } \\
& c_{\pi}\left(u_{i}^{\prime}\right)=\left\{\begin{aligned}
2, & \text { for } 6^{\text {th }} \text { ordinate, } i=1, \\
& \text { for } 1^{\text {nd }} \text { ordinate }, i=2, \\
& \text { for } 5^{\text {th }} \text { ordinate, } i=3,
\end{aligned}\right. \\
& \text { for } 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { ordinate, } i=1 \text { and } 3 \text {, } \\
& \text { 1, otherwise, } \\
& c_{\pi}\left(v_{i}\right)= \begin{cases}0, & \text { for } 1^{\text {st }} \text { ordinate, } i=1, \\
\text { for } 6^{\text {th }} \text { ordinate, } i=2, \\
\text { for } 5^{\text {th }} \text { ordinate, } i=3, \\
2, & \text { for } 5^{\text {th }} \text { ordinate, } i=1, \\
\text { for } 1^{\text {st }} \text { ordinate, } i=3, \\
\text { for } 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { ordinate, } i=1 \text { and } 3, \\
1, & \text { otherwise },\end{cases}
\end{aligned}
$$

Since all vertices in $B_{D_{2}\left(P_{3}\right)}$ have distinct color codes, then $c$ is a locating coloring using 6 colors. As a result $\chi_{L} B_{D_{2}\left(P_{3}\right)} \leq 6$. Thus $\chi_{L} B_{D_{2}\left(P_{3}\right)}=6$.


Figure 2. A minimum locating coloring of $B_{D_{2}\left(P_{3}\right)}$.



The color codes of $P_{12)^{\left(P_{n}\right)}}$ are

$$
\begin{aligned}
& \binom{\left(\frac{12}{\left(P_{n}\right)}\right.}{2}-i, \quad \text { for } 1^{s t} \text { ordinate }, i \leq \frac{n+1}{2}, \\
& \text { for } 4^{\text {th }} \text { ordinate, } i<\frac{n+1}{2} \text {, } \\
& i-\left(\frac{n+1}{2}\right), \quad \text { for } 1^{\text {st }} \text { ordinate, } i>\frac{n+1}{2} \text {, } \\
& \text { for } 4^{\text {th }} \text { ordinate, } i>\frac{n+1}{2} \text {, } \\
& \text { for } 2^{\text {nd }} \text { ordinate, odd i, } i<\frac{n+1}{2} \text {, } \\
& \text { for } 3^{r d} \text { ordinate, even i, } i<\frac{n+1}{2} \text {, } \\
& \text { for } 2^{\text {th }} \text { ordinate, even i }, i>\frac{n+1}{2} \text {, } \\
& \text { for } 3^{\text {rd }} \text { ordinate, odd i, } i>\frac{n+1}{2} \text {, } \\
& \text { 2, for } 5^{t h} \text { ordinate, odd i }, i<\frac{n+1}{2} \text {, } \\
& \text { for } 5^{\text {th }} \text { ordinate, even i }, i>\frac{n+1}{2} \text {, } \\
& \text { for } 6^{\text {th }} \text { ordinate, odd i, } i<\frac{n+1}{2} \text {, } \\
& \text { for } 6^{t h} \text { ordinate, even i }, i>\frac{n+1}{2} \text {, } \\
& \text { for } 4^{\text {th }} \text { ordinate, } i=\frac{n+1}{2} \text {, } \\
& \text { otherwise, } \\
& \left(\begin{array}{ll}
\left(\frac{n+1}{2}\right)-i, & \text { for } 1^{\text {st }} \text { ordinate }, i<\frac{n+1}{2}, \\
& \text { for } 4^{t h} \text { ordinate } i<\frac{n+1}{2}
\end{array}\right. \\
& c_{\pi}\left(u_{i}^{\prime}\right)= \begin{cases}i-\left(\frac{n+1}{2}\right), & \text { for } 1^{\text {st }} \text { ordinate }, i>\frac{n+1}{2}, \\
& \text { for } 4^{\text {th }} \text { ordinate }, i>\frac{n+1}{2}, \\
0, & \text { for } 5^{\text {th }} \text { ordinate, odd } \mathrm{i}, i<\frac{n+1}{2}, \\
& \text { for } 5^{\text {th }} \text { ordinate, even } \mathrm{i}, i>\frac{n+1}{2}, \\
& \text { for } 6^{\text {th }} \text { ordinate, odd i }, i>\frac{n+1}{2}, \\
& \text { for } 6^{\text {th }} \text { ordinate, even } \mathrm{i}, i<\frac{n+1}{2}, \\
& \text { for } 2^{\text {nd }} \text { ordinate, odd } \mathrm{i}, i<\frac{n+1}{2},\end{cases} \\
& \text { for } 2^{\text {nd }} \text { ordinate, even i, } i>\frac{n+1}{2} \text {, } \\
& \text { for } 3^{\text {rd }} \text { ordinate, odd i, } i>\frac{n+1}{2} \text {, } \\
& \text { for } 3^{r d} \text { ordinate, even i, } i<\frac{n+1}{2} \text {, } \\
& \text { for } 1^{s t} \text { ordinate, } i=\frac{n+1}{2} \text {, } \\
& \text { otherwise, }
\end{aligned}
$$

$$
\begin{aligned}
& c_{\pi}\left(v_{i}\right)= \begin{cases}\frac{\left(\frac{n+1}{2}\right)-i,}{}, & \text { for } 4^{\text {th }} \text { ordinate, } i<\frac{n+1}{2}, \\
& \text { for } 6^{\text {th }} \text { ordinate, } i \leq \frac{n+1}{2}, \\
i-\left(\frac{n+1}{2}\right), & \text { for } 4^{\text {th }} \text { ordinate, } i>\frac{n+1}{2}, \\
& \text { for } 6^{\text {th }} \text { ordinate, } i>\frac{n+1}{2}, \\
0, & \text { for } 1^{\text {st }} \text { ordinate, odd i }, i<\frac{n+1}{2}, \\
\text { for } 1^{\text {st }} \text { ordinate, even } \mathrm{i}, i>\frac{n+1}{2}, \\
& \text { for } 5^{\text {th }} \text { ordinate, odd } \mathrm{i}, i>\frac{n+1}{2}, \\
\text { for } 5^{\text {th }} \text { ordinate, even } \mathrm{i}, i<\frac{n+1}{2}, \\
2, & \text { for } 2^{\text {nd }} \text { ordinate, odd } \mathrm{i}, i<\frac{n+1}{2}, \\
\text { for } 2^{\text {nd }} \text { ordinate, even } \mathrm{i}, i>\frac{n+1}{2}, \\
\text { for } 3^{\text {rd }} \text { ordinate, odd } \mathrm{i}, i>\frac{n+1}{2}, \\
\text { for } 3^{\text {rd }} \text { ordinate, even } \mathrm{i}, i<\frac{n+1}{2}, \\
\text { for } 1^{\text {st }} \text { ordinate, } i=\frac{n+1}{2}, \\
\text { otherwise },\end{cases} \\
& c_{\pi}\left(v_{i}^{\prime}\right)= \begin{cases}\left(\frac{n+1}{2}\right)-i, & \text { for } 4^{\text {th }} \text { ordinate, } i \leq \frac{n+1}{2}, \\
& \text { for } 6^{\text {th }} \text { ordinate, } i>\frac{n+1}{2}, \\
i-\left(\frac{n+1}{2}\right), & \text { for } 4^{\text {th }} \text { ordinate, } i>\frac{n+1}{2}, \\
& \text { for } 6^{\text {th }} \text { ordinate, } i>\frac{n+1}{2}, \\
& \text { for } 2^{\text {nd }} \text { ordinate, odd } \mathrm{i}, i<\frac{n+1}{2}, \\
& \text { for } 2^{\text {nd }} \text { ordinate, even } \mathrm{i}, i>\frac{n+1}{2}, \\
& \text { for } 3^{\text {rd }} \text { ordinate, odd } \mathrm{i}, i>\frac{n+1}{2}, \\
& \text { for } 3^{\text {rd }} \text { ordinate, even } \mathrm{i}, i<\frac{n+1}{2}, \\
2, & \text { for } 1^{\text {st }} \text { ordinate, odd } \mathrm{i}, i<\frac{n+1}{2}, \\
\text { for } 1^{\text {st }} \text { ordinate, even } \mathrm{i}, i>\frac{n+1}{2}, \\
& \text { for } 5^{\text {th }} \text { ordinate, odd } \mathrm{i}, i>\frac{n+1}{2}, \\
\text { for } 5^{\text {th }} \text { ordinate, even } \mathrm{i}, i<\frac{n+1}{2}, \\
\text { for } 6^{\text {th }} \mathrm{o} \text { nate, } i=\frac{n+1}{2}, \\
\text { otherwise. }\end{cases}
\end{aligned}
$$

Since all vertices in $B_{D_{2}\left(P_{n}\right)}, n>3$ for odd $n$ have distinct color codes, then $c$ is a locating coloring using 6 colors. As a result $\chi_{L} B_{D_{2}\left(P_{n}\right)} \leq 6$. Thus $\chi_{L} B_{D_{2}\left(P_{n}\right)}=6$.


Figure 3. A minimum locating coloring of $B_{D_{2}\left(P_{7}\right)}$

CASE 3 ( $n$ even). Let $c$ be a locating coloring using 6 colors as follows:

$$
\begin{aligned}
& c\left(u_{i}\right)= \begin{cases}1, & \text { for } i=\frac{n}{2}, \\
2, & \text { for odd } \mathrm{i} ; i<\frac{n}{2}, n=4 j, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j+2, j \geq 1, \\
& \text { for even } \mathrm{i} ; i<\frac{n}{2}, n=4 j+2, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j, j \geq 1, \\
3, & \text { for odd } \mathrm{i} ; i<\frac{n}{2}, n=4 j+2, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j, j \geq 1, \\
& \text { for even } \mathrm{i} ; i<\frac{n}{2}, n=4 j, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j+2, j \geq 1,\end{cases} \\
& c\left(u_{i}^{\prime}\right)= \begin{cases}4, & \text { for } i=\frac{n}{2}, \\
5, & \text { for odd } \mathrm{i} ; i<\frac{n}{2}, n=4 j, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j+2, j \geq 1, \\
& \text { for even } \mathrm{i} ; i<\frac{n}{2}, n=4 j+2, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j, j \geq 1, \\
6, & \text { for odd } \mathrm{i} ; i<\frac{n}{2}, n=4 j+2, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j, j \geq 1,\end{cases} \\
& \text { for even } \mathrm{i} ; i<\frac{n}{2}, n=4 j, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j+2, j \geq 1 \text {, } \\
& c\left(v_{i}\right)= \begin{cases}1, & \text { for odd } \mathrm{i} ; i<\frac{n}{2}, n=4 j, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j+2, j \geq 1, \\
& \text { for even } \mathrm{i} ; i<\frac{n}{2}, n=4 j+2, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j, j \geq 1, \\
5, & \text { for odd } \mathrm{i} ; i<\frac{n}{2}, n=4 j+2, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j, j \geq 1, \\
& \text { for even } \mathrm{i} ; i<\frac{n}{2}, n=4 j, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j+2, j \geq 1, \\
6, & \text { for } i=\frac{n}{2},\end{cases} \\
& c\left(v_{i}^{\prime}\right)= \begin{cases}2, & \text { for odd } \mathrm{i} ; i<\frac{n}{2}, n=4 j, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j+2, j \geq 1, \\
& \text { for even } \mathrm{i} ; i<\frac{n}{2}, n=4 j+2, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j, j \geq 1, \\
3, & \text { for odd } \mathrm{i} ; i<\frac{n}{2}, n=4 j+2, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j, j \geq 1, \\
& \text { for even } \mathrm{i} ; i<\frac{n}{2}, n=4 j, j \geq 1 \text { and } i>\frac{n}{2}, n=4 j+2, j \geq 1, \\
4, & \text { for } i=\frac{n}{2} .\end{cases}
\end{aligned}
$$

The color codes of $B_{D_{2}\left(P_{n}\right)}$ are

$$
\begin{aligned}
& c_{\pi}\left(u_{i}\right)= \begin{cases}\left(\frac{n}{2}\right)-i, & \text { for } 1^{s t} \text { ordinate, } i \leq \frac{n}{2}, \\
& \text { for } 4^{t h} \text { ordinate, } i<\frac{n}{2} ; \\
i-\left(\frac{n}{2}\right), & \text { for } 1^{\text {st }} \text { ordinate }, i>\frac{n}{2}, \\
& \text { for } 4^{t h} \text { ordinate, } i>\frac{n}{2} ; \\
0, & \text { for } 2^{n d} \text { ordinate, odd } \mathrm{i}, i<\frac{n}{2}, \\
& \text { for } 3^{r d} \text { ordinate, even } \mathrm{i}, i<\frac{n}{2}, \\
& \text { for } 2^{\text {th }} \text { ordinate, even } \mathrm{i}, i>\frac{n}{2}, \\
& \text { for } 3^{r d} \text { ordinate, odd } \mathrm{i}, i>\frac{n}{2}, \\
2, & \text { for } 5^{t h} \text { ordinate, odd } \mathrm{i}, i<\frac{n}{2},\end{cases} \\
& \text { for } 5^{\text {th }} \text { ordinate, even i, } i>\frac{n}{2} \text {, } \\
& \text { for } 6^{\text {th }} \text { ordinate, odd i, } i<\frac{n}{2} \text {, } \\
& \text { for } 6^{t h} \text { ordinate, even } \mathrm{i}, i>\frac{n}{2} \text {, } \\
& \text { for } 4^{t h} \text { ordinate, } i=\frac{n}{2} \text {, } \\
& \text { otherwise, } \\
& c_{\pi}\left(u_{i}^{\prime}\right)= \begin{cases}\left(\frac{n}{2}\right)-i, & \text { for } 1^{\text {st }} \text { ordinate }, i<\frac{n}{2}, \\
& \text { for } 4^{\text {th }} \text { ordinate, } i \leq \frac{n}{2}, \\
i-\left(\frac{n}{2}\right), & \text { for } 1^{\text {st }} \text { ordinate, } i>\frac{n}{2}, \\
& \text { for } 4^{t h} \text { ordinate }, i>\frac{n}{2}, \\
0, & \text { for } 5^{\text {th }} \text { ordinate, odd } \mathrm{i}, i<\frac{n}{2}, \\
& \text { for } 5^{\text {th }} \text { ordinate, even } \mathrm{i}, i>\frac{n}{2}, \\
& \text { for } 6^{\text {th }} \text { ordinate, odd } \mathrm{i}, i>\frac{n}{2}, \\
& \text { for } 6^{\text {th }} \text { ordinate, even } \mathrm{i}, i<\frac{n}{2}, \\
2, & \text { for } 2^{\text {nd }} \text { ordinate, odd } \mathrm{i}, i<\frac{n}{2}, \\
& \text { for } 2^{\text {nd }} \text { ordinate, even } \mathrm{i}, i>\frac{n}{2},\end{cases} \\
& \text { for } 3^{r d} \text { ordinate, odd } \mathrm{i}, i>\frac{n}{2} \text {, } \\
& \text { for } 3^{r d} \text { ordinate, even i, } i<\frac{n}{2} \text {, } \\
& \text { for } 1^{s t} \text { ordinate, } i=\frac{n}{2} \text {, } \\
& \text { 1, otherwise, }
\end{aligned}
$$

Since all vertices in $B_{D_{2}\left(P_{n}\right)}, n \geq 3$ for even $n$ have distinct color codes, then $c$ is a locating coloring using 6 colors. As a result $\chi_{L} B_{D_{2}\left(P_{n}\right)} \leq 6$. Thus $\chi_{L} B_{D_{2}\left(P_{n}\right)}=6$.

## 3. Concluding Remarks

The locating chromatic number of a shadow path graphs and the barbell graph containing a shadow path graph is similar, which is 6 .

On the locating chromatic number of barbell shadow ...


Figure 4. A minimum locating coloring of $B_{D_{2}\left(P_{6}\right)}$

## References

[1] Asmiati, H. Assiyatun and E.T. Baskoro, Locating-chromatic number of amalgamation of stars, ITB J. of Sci. 43(1) (2011), 1-8.
[2] Asmiati, On the locating-chromatic number of non-homogeneous caterpillars and firecracker graphs, Far East J. Math. Sci. 100(8) (2016), 1305-1316.
[3] Asmiati, I. Ketut S. G. Y. and L. Yulianti, On the locating chromatic number of certain barbell graphs, Int. J. Math. Math. Sci. 2018 (2018), 1-5.
[4] D. K. Sofyan, E. T. Baskoro, and H. Assiyatun, On the locating chromatic number of homogeneous lobster, AKCE Int. J. Graphs Comb. 10(3) (2013), 245-252.
[5] D. Welyyanti, E. T. Baskoro, R. Simanjuntak and S. Uttunggadewa, On the locating chromatic number of complete n-ary tree, AKCE Int. J. Graphs Comb. 10(3) (2013), 309-315.
[6] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, The locating-chromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002), 89-101.
[7] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, Graphs of order $n-1$, Discrete Math. 269(1-3) (2003), 65-79.
[8] M. Ghanem, H. Al-Ezeh, A. Dabour, Locating chromatic number of powers of path and cycles, Symmetry 11(389) (2019), 2-8, https://doi.org/10.3390/sym11030389

## - $21 \%$ Overall Similarity

Top sources found in the following databases:

- 13\% Internet database
- Crossref database
- $10 \%$ Submitted Works database
- 15\% Publications database
- Crossref Posted Content database


## TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1
hindawi.com
Internet

2
irep.iium.edu.my
Internet

3
mililink.com
Internet
mdpi-res.com $2 \%$
Internet

5
Jiangbin Gong, Paul Brumer. "Directed anomalous diffusion without a ...

Universitas Jember on 2019-06-29
Submitted works

Asmiati, L Yulianti, Aldino, Aristoteles, A Junaidi. "The Locating Chro...

A Irawan, Asmiati, Suharsono, K Muludi. " The Locating-Chromatic Nu... < $1 \%$ Crossref

10
coek.info
Internet
ece.uvic.ca
11
Internet

# Higher Education Commission Pakistan on 2010-01-06 <br> Submitted works 

Higher Education Commission Pakistan on 2015-04-08
Submitted works
(14) cyberleninka.org

Internet
digilib.unila.ac.id
Internet

16
Agus Irawan, Asmiati. "The locating-chromatic number of subdivision ... <1\% Crossref

Hiroyuki KIMURA. "Free vibration analysis of a string with vibration sup... <1\% Crossref

Eiji Kurozumi. "THE LIMITING PROPERTIES OF THE CANOVA AND HAN... Crossref
Gary Chartrand, David Erwin, Michael A. Henning, Peter J. Slater, Ping ... $<1 \%$Crossref

María Teresa Signes Pont, Juan Manuel García Chamizo, Higinio Mora ... < $1 \%$ Crossrefrinosimanjuntak.files.wordpress.com<1\%
Internet
XUELIAN LI, YUPU HU, JUNTAO GAO. "LOWER BOUNDS ON THE SECO...
Crossref
"Computer Aided Engineering Design", Springer Science and Business .. ..... <1\%
Crossref
Universiti Putra Malaysia on 2016-02-17 ..... <1\%
Submitted works
VIT University on 2013-10-09Submitted works<1\%eprints.gla.ac.uk<1\%Internet
mdpi.com ..... <1\%
Internet

- Excluded from Similarity Report
- Bibliographic material
- Quoted material
- Cited material
- Small Matches (Less then 10 words)
- Manually excluded sources
- Manually excluded text blocks


## EXCLUDED SOURCES

ijc.or.id
ijc.or.id
Internet
repository.lppm.unila.ac.id $26 \%$
Internet
pasca.unila.ac.id $14 \%$
Internet

A Irawan, Asmiati, S Suharsono, K Muludi. "The Locating-Chromatic Number ... $12 \%$
Crossref
downloads.hindawi.com
12\%
Internet
Asmiati, I. Ketut Sadha Gunce Yana, Lyra Yulianti. "On the Locating Chromatic ..... 11\%
Crossref
M Damayanti, Asmiati, Fitriani, M Ansori, A Faradilla. "The Locating Chromati... ..... 9\%
ejgta.org ..... 7\%
Internet
K Prawinasti, M Ansori, Asmiati, Notiragayu, AR G N Rofi. "The Locating Chro... ..... 6\%
Crossref
School of Business and Management ITB on 2015-07-21 ..... 5\%
Submitted works
discovery.researcher.life ..... 3\%
Internet
Universitas Jember on 2018-12-20 ..... 2\%
Submitted worksUniversitas Jember on 2018-12-202\%Submitted works
EXCLUDED TEXT BLOCKS
The set of neighbors of a vertex
Universiti Putra Malaysia on 2016-02-17

