PAPER NAME

On the Locating Chromatic Number of Ce Asmiati Asmiati rtain Barbell Graphs.pdf

WORD COUNT
3148 Words

PAGE COUNT

6 Pages

SUBMISSION DATE
Nov 17, 2022 7:41 PM GMT+7

CHARACTER COUNT
13736 Characters

FILE SIZE
1.3MB

REPORT DATE
Nov 17, 2022 7:42 PM GMT+7

- 22% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 15\% Internet database
- Crossref database
- 15% Submitted Works database
- Excluded from Similarity Report
- Bibliographic material
- Cited material
- Manually excluded sources
- 18\% Publications database
- Crossref Posted Content database
- Quoted material
- Small Matches (Less then 10 words)

On the Locating Chromatic Number of Certain Barbell Graphs

Asmiati $\left(\mathbb{C},{ }^{1}\right.$ I. Ketut Sadha Gunce Yana, ${ }^{1}$ and Lyra Yulianti ${ }^{2}$
${ }^{1}$ Mathematics Department, Faculty of Mathematics and Natural Sciences, Lampung University, Jl. Brodjonegoro No. 1 Bandar Lampung, Indonesia
${ }^{2}$ Mathematics Department, Faculty of Mathematics and Natural Sciences, Andalas University, Kampus UNAND Limau Manis, Padang 25163, Indonesia

Correspondence should be addressed to Asmiati; asmiati308@yahoo.com
Received 27 March 2018; Revised 26 June 2018; Accepted 22 July 2018; Published 5 August 2018
Academic Editor: Dalibor Froncek
Copyright © 2018 Asmiati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The locating chromatic number of a graph G is defined as the cardinality of a minimum resolving partition of the vertex set $V(G)$ such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in G are not contained in the same partition class. In this case, the coordinate of a vertex v in G is expressed in terms of the distances of v to all partition classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic number for two families of barbell graphs.

1. Introduction

The partition dimension was introduced by Chartrand et al. [1] as the development of the concept of metric dimension. The application of metric dimension plays a role in robotic navigation [2], the optimization of threat detecting sensors [3], and chemical data classification [4]. The concept of locating chromatic number is a marriage between the partition dimension and colorip of a graph, first introduced by Chartrand et al in 2002 [5 . ${ }^{9}$ he locating chromatic number of a graph is a newly interesting topic to study because there is no general theorem for determining the locating chromatic number of any graph.
et $G=(V, E)$ be a connected graph. We define the distance as the minimum lenoth of path connectin 29 ertices u and v in G, denoted by $d(2,5)$. A k-coloring of G is a function $c: V(G) \longrightarrow\{1,2, \ldots, k\}$, where $c(u) \neq c(v)$ for any two adjacent vertices u and v in G. Thus, the coloring c induces a partition $\Pi 0^{f} V(G)$ into k color classes (independent sets) $C_{1}, C_{2}, \ldots, C_{k}, 2$ here $C 4$ is the set of all vertices colored by the color i for $1 \leq i \leq k$. , G is defined as the k-vector $\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right)$, where $d\left(v, C_{i}\right)=\min \left\{d(v, x): x \in C_{i}\right\}$ for $1 \leq i \leq k$. The k-coloxing c of G such that all vertices have different color code ${ }^{2}$ called a locating coloring of G. The locating chromatic
number of G, denoted by $\chi_{L}(G)$, is the minimum k such that G has a locating coloring.

The following theorem is a basic theorem proved by Chartrand et al. [5]. The neighborhood of vertex u in a connected graph G, denoted by $N(u)$, is the set of vertices adjacent to u.

Theorem 1 (see [5]). ${ }^{1}$ et c be a locating coloring in a connected graph G. If u and v are distinct vertices of G such that $d(u, t)=$ $d(v, t)$ for all $t \in V(G)-\{u, v\}$, then $c(u) \neq c(v)$. In particular, if u and v are non-adjacent vertices of G such that $N(u)=N(v)$, then $c(u) \neq c(v)$.

The following corollary gives the lower bound of the locating chromatic number for every connected graph G.

Corollary 2 (see [5]). If ${ }^{2}$ a connected graph and there is a vertex adjacent to k leaves, then $\chi_{L}(G) \geq k+1$.

There are some interesting result ${ }^{24}$ lated to the determination of the locating chromatic number of some graphs. The results are obtained by focusing on certain families of graphs. Chartrand et al. in [5] have determined all graphs of order n with locating chromatic number n, namely, a complete multipartite graph of n vertices. Moreover, Chartrand et
al. [6] have succeeded in constructing tree on n vertices, $n \geq 5$, with locating chromatic numbers varying from 3 to n, except for $(n-1)$. Then Behtoei and Omoomi [7] have obtained the locating chromatic number of the Kneser graphs. Recently, Asmiati et al. [8] obtained the locating chromatic number of the generalized Petersen graph $P(n, 1)$ for $n \geq 3$. Baskoro and Asmiati [9] have characterized all trees with locating chromatic number 3. In [10] all trees of order n with locating chromatic number $n-1$ were characterized, for any integers n and t, where $n>t+3$ and $2 \leq t<n / 2$. Asmiati et al. in [11] have succeeded in determining the locating chromatic number of homogeneous amalgamation of stars and their monotonicity properties and in [12] for firecracker graphs. Next, Wellyyanti et al. [13] determined the locating chromatic number for complete n ary tree

The ${ }_{0}^{6}$ eneralized Petersen graph $P(n, m), n \geq 3$ and $1 \leq$ $m \leq\lfloor(n-1) / 2\rfloor$, consists of an outer n-cycle $y_{1}, y_{2}, \ldots, y_{n}$, a set of n spokes $y_{i} x_{i}, 1 \leq i \leq n$, and n edges $x_{i} x_{i+m}$, $1 \leq i \leq n$, with indices taken modulo n. The generalized Petersen graph was introduced by Watkins in [14]. Le ${ }^{ \pm}$, 16 note thate generalized Petersen graph $P(n, 1)$ is a prisn ${ }^{16}$ efined as Cartesian product of a cycle C_{n} and a path P_{2}.

Next theorems give the locating chromatic numbers for complete graph K_{n} and generalized Petersen graph $P(n, 1)$.

Theorem 3 (see [6]). Forn ≥ 2, the locating chromatic number of complete graph K_{n} is n.

Theorem 4 (see [8]). The locating chromatic number of eneralized Petersen graph $P(n, 1)$ is 4 for odd $n \geq 3$ or 5 for even $n \geq 4$.

The barbell graph is constructed by connecting two arbitrary connected graphs G and H by a bridge 23 this paper, firstly we discuss the locating chromatic number for barbell graph $B_{m, n}$ for $m, n \geq 3$, where G and H are complete graphs on m and n vertices, respectively. Secondly, we determine the locating chromatic number of barbell graph $B_{P(n, 1)}$ for $n \geq 3$, where G and H are two isomorphic copies of the generalized Petersen graph $P(n, 1)$.

2. Results and Discussion

Next theorem proves the exact value of the locating chromatic number for barbell graph $B_{n, n}$.

Theorem 5. Let $B_{n, n}$ be a barbell graph for $n \geq 3$. Then the locating chromatic number of $B_{n, n}$ is $\chi_{L}\left(B_{n, n}\right)=n+1$.
Proof. Let $B_{n, n}, n \geq 3$, be the barber ${ }^{11}$ raph with the vertex set $V\left(B_{n, n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and the edge set $E\left(B_{n, n}\right)$ $=\bigcup_{i=1}^{n-1}\left\{u_{i} u_{i+j}: 1 \leq j \leq n-i\right\} \cup \bigcup_{i=1}^{n-1}\left\{v_{i} v_{i+j}: 1 \leq j \leq\right.$ $n-i\} \cup\left\{y_{12} v_{n}\right\}$.

First, ${ }^{12}$ e determine the lower bound of the locating chromatic number for barbell graph $B_{n, n}$ for $n \geq 3$. Since the barbell graph $B_{n, n}$ contains two isomorphic copies of a complete graph K_{n}, then with respect to Theorem 3 we have $\chi_{L}\left(B_{n, n}\right) \geq n$. Next, suppose that c is a locating coloring
using n colors. It is easy to see that the barbell graph $B_{n, n}$ contains two vertices with the same color codes, which is a contradiction. Thus, we have that $\chi_{L}\left(B_{n, n}\right) \geq n+1$.

To show that $n+{ }^{22}$ an upper bound for the locating chromatic number of barbell graph $B_{n, n}$ it suffices to prove the existence of an optimal locating coloring $c: V\left(B_{n, n}\right) \longrightarrow$ $\{1,2, \ldots, n+1\}$. For $n \geq 3$ we construct the function c in the following way:

$$
\begin{align*}
& c\left(u_{i}\right)=i, \quad 1 \leq i \leq n \\
& c\left(v_{i}\right)= \begin{cases}n, & \text { for } i=1 \\
i, & \text { for } 2 \leq i \leq n-1 \\
n+1, & \text { otherwise }\end{cases} \tag{1}
\end{align*}
$$

By using ${ }^{15}$ ne coloring c, we obtain the color codes of $V\left(B_{n, n}\right)$ as follows:

$$
\begin{align*}
& c_{\Pi}\left(u_{i}\right) \\
& = \begin{cases}0, & \text { for } i^{t h} \text { component, } 1 \leq i \leq n \\
2, & \text { for }(n+1)^{\text {th }} \text { component, } 1 \leq i \leq n-1 \\
1, & \text { otherwise, }\end{cases} \\
& c_{\Pi}\left(v_{i}\right)= \begin{cases}0, & \text { for } i^{t h} \text { component, } 2 \leq i \leq n-1 \\
\text { for } n^{\text {th }} \text { component, } i=1, \text { and } \\
3, & \text { for }(n+1)^{\text {th }} \text { component, } i=n, \\
2, & \text { for } 1^{s t} \text { componenent, } i=n \\
1, & \text { otherwise. }\end{cases} \tag{2}
\end{align*}
$$

Sinca ${ }^{7}$ d vertices in $V\left(B_{n, n}\right)$ have distinct color codes, then the coloring c is desired locating coloring. Thus, $\chi_{L}\left(B_{n, n}\right)=$ $n+1$.

Corollary 6. For $n, m \geq 3$, and $m \neq n$, the locating chromatic number of barbell graph $B_{m, n}$ is

$$
\begin{equation*}
\chi_{L}\left(B_{m, n}\right)=\max \{m, n\} \tag{3}
\end{equation*}
$$

Next theorem provides the exact value of the locating chromatic number for barbell graph $B_{P(n, 1)}$.

Theorem 7. Let $B_{P(n, 1)}$ be a barlapll graph for $n \geq 3$. Then the locating chromatic number of $B_{P(n, 1)}^{19}$ is

$$
\chi_{L}\left(B_{P(n, 1)}\right)= \begin{cases}4, & \text { for odd } n \tag{4}\\ 5, & \text { for even } n\end{cases}
$$

Proof. Let $B_{P(n, 1)}, n \geq 3,{ }^{18}$ e the barbell graph with the vertex set $V\left(B_{P(n, 1)}\right)=\left\{u_{i}, u_{n+i}, w_{i}, w_{n+i}: 1 \leq i \leq n\right\}$ and the edge set $E\left(B_{P(n, 1)}\right)=\left\{u_{i} u_{i+1}, u_{n+i} u_{n+i+1}, w_{i} w_{i+1}, w_{n+i} w_{n+i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{u_{n} u_{1}, u_{2 n} u_{n+1}, w_{n} w_{1}, w_{2 n} w_{n+1}\right\} \cup\left\{u_{i} u_{n+i}, w_{i} w_{n+i}: 1 \leq\right.$ $i \leq n\} \cup\left\{u_{n} w_{n}\right\}$.

Let us distinguish two cases.
Case 1 (n odd). According to Theorem 4 for n odd we have $\chi_{L}\left(B_{P(n, 1)}\right) \geq 4$. To show that 4 is ${ }^{28}$ upper bound for the locating chromatic number of the barbell graph $B_{P(n, 1)}$ we describe an locating coloring c using 4 colors as follows:

$$
\begin{gather*}
c\left(u_{i}\right)= \begin{cases}1, & \text { for } i=1 \\
3, & \text { for even } i, i \geq 2 \\
4, & \text { for odd } i, i \geq 3 .\end{cases} \\
c\left(u_{n+i}\right)= \begin{cases}2, & \text { for } i=1 \\
3, & \text { for odd } i, i \geq 3 \\
4, & \text { for even } i, i \geq 2 .\end{cases} \\
c\left(w_{i}\right)= \begin{cases}1, & \text { for odd } i, 14 \leq n-2 \\
2, & \text { for even } i, i \leq n-1 \\
3, & \text { for } i=n .\end{cases} \tag{5}\\
c\left(w_{n+i}\right)= \begin{cases}1, & \text { for even } i, 13 \leq n-1 \\
2, & \text { for odd } i, i \leq n-2 \\
4, & \text { for } i=n .\end{cases}
\end{gather*}
$$

For n odd the color codes of $V\left(B_{P(n, 1)}\right)$ are

$$
\begin{aligned}
& c_{\Pi}\left(u_{i}\right) \\
& = \begin{cases}i, & \text { for } 2^{n d} \text { component, } i \leq \frac{n+1}{2} \\
i-1, & \text { for } 1^{\text {st }} \text { component, } i \leq \frac{n+1}{2} \\
n-i+1, & \text { for } 1^{\text {st }} \text { component, } i>\frac{n+1}{2} \\
n-i+2, & \text { for } 2^{n d} \text { component, } i>\frac{n+1}{2} \\
0, & \text { for } 3^{\text {th }} \text { component, } i \text { even, } i \geq 2 \\
1, & \text { for } 4^{\text {th }} \text { component, } i \text { odd, } i \geq 3\end{cases} \\
& \text { otherwise. }
\end{aligned}
$$

$$
\begin{align*}
& c_{\Pi}\left(u_{n+i}\right) \\
& \text { } i, \quad \text { for } 1^{\text {st }} \text { component, } i \leq \frac{n+1}{2} \\
& \begin{array}{l}
\text { for } 2^{\text {nd }} \text { component, } i \leq \frac{n+1}{n 30} \\
\text { for } 2^{\text {nd }} \text { component, } i>\frac{n-2}{2}
\end{array} \\
& =\left\{\begin{array}{l}
n-i+2, \text { for } 1^{s t} \text { component, } i>\frac{n+1}{2}
\end{array}\right. \\
& 0 \text {, for } 4^{\text {th }} \text { component, } i \text { even, } i \geq 2 \\
& \text { for } 3^{\text {th }} \text { component, } i \text { odd, } i \geq 3 \\
& \text { 1, otherwise. } \\
& c_{\Pi}\left(w_{i}\right) \\
& = \begin{cases}i, & \text { for } 3^{\text {th }} \text { component, } i \leq \frac{n-1}{2} \\
i+1, & \text { for } 4^{\text {th }} \text { component, } i \leq \frac{n-1}{2} \\
n-i, & \text { for } 3^{\text {th }} \text { component, } i \geq \frac{n+1}{2} \\
n-i+1, & \text { for } 4^{\text {th }} \text { component, } i \geq \frac{n+1}{2} \\
0 & \text { for } 2^{\text {nd }} \text { component, } i \text { en } i\end{cases} \\
& \begin{array}{l}
0 \\
1,
\end{array} \\
& c_{\Pi}\left(w_{n+i}\right) \\
& = \begin{cases}i, & \text { for } 4^{\text {th }} \text { component, } i \leq \frac{n-1}{2} \\
i+1, & \text { for } 3^{\text {th }} \text { component, } i \leq \frac{n-1}{2} \\
n-i, & \text { for } 4^{\text {th }} \text { component, } i \geq \frac{n+1}{2} \\
n-i+1, & \text { for } 3^{\text {th }} \text { component, } i \geq \frac{n+1}{2} \\
0, & \text { for } 1^{\text {st }} \text { component, } i \text { even, } i \leq n-1 \\
& \text { for } 2^{\text {nd }} \text { component, } i \text { odd, } i \leq n-2 \\
1, & \text { otherwise. }\end{cases} \tag{6}
\end{align*}
$$

Since all vertices in $B_{P(n, 1)}$ have distinct color codes, then the coloring c with 4 colors is an optimal locating coloring and it proves that $\chi_{L}\left(B_{P(n, 1)}\right) \leq 4$.

Case 2 (n even). In view of the lower bound from Theorem 7 it suffices to prove the existence of a locating coloring c : $V\left(B_{P(n, 1)}\right) \longrightarrow\{1,2, \ldots, 5\}$ such that all vertices in $B_{P(n, 1)}$ have distinct color codes. For n even, $n \geq 4$, we describe the locating coloring in the following way:

$$
c\left(u_{i}\right)= \begin{cases}1, & \text { for } i=1 \\ 3, & \text { for even } i, 2 \leq i \leq n-2 \\ 4, & \text { for odd } i, 3 \leq i \leq n-1 \\ 5, & \text { for } i=n\end{cases}
$$

$$
\begin{align*}
& c\left(u_{n+i}\right)= \begin{cases}2, & \text { for } i=1 \\
3, & \text { for odd } i, i \geq 3 \\
4, & 7 \text { or even } i, i \geq 2\end{cases} \\
& c\left(w_{i}\right)= \begin{cases}1, & \text { for odd } i, i \leq n-3 \\
2, & \text { for even } i, i \leq n-2 \\
3, & \text { for } i=n-1 \\
4, & \text { for } i=n .\end{cases} \\
& c\left(w_{n+i}\right)= \begin{cases}1, & \text { for even } i, 27 \leq n-2 \\
2, & \text { for odd } i, i \leq n-1 \\
5, & \text { for } i=n .\end{cases} \tag{7}
\end{align*}
$$

In fact, our locating coloring of $B_{P(n, 1)}, n$ even, has been chosen in such a way that the color codes are

$$
\begin{aligned}
& c_{\Pi}\left(u_{i}\right) \\
& = \begin{cases}i, & \text { for } 2^{\text {nd }} \text { and } 5^{\text {th }} \text { components, } i \leq \frac{n}{2} \\
i-1, & \text { for } 1^{\text {st }} \text { component, } i \leq \frac{n}{2} \\
n-i, & \text { for } 5^{\text {th }} \text { component, } i>\frac{n}{2} \\
n-i+1, & \text { for } 1^{\text {st }} \text { component, } 10 \frac{n}{2} \\
n-i+2, & \text { for } 2^{\text {nd }} \text { component, } i>\frac{n}{2} \\
0, & \text { for } 3^{\text {th }} \text { component, } i \text { even, } 2 \leq i \leq n-2 \\
\text { for } 4^{\text {th }} \text { component, } i \text { odd, } 3 \leq i \leq n-1 \\
2, & \text { for } 4^{\text {th }} \text { component, } i=1 \\
1, & \text { for } 3^{\text {th }} \text { component, } i=n\end{cases} \\
& \text { otherwise. }
\end{aligned}
$$

$$
c_{\Pi}\left(u_{n+i}\right)
$$

$$
= \begin{cases}i, & \text { for } 1^{\text {st }} \text { component, } i \leq \frac{n}{2} \\ i-1, & \text { for } 2^{\text {nd }} \text { component, } i \leq \frac{n}{2} \\ n+i, & \text { for } 5^{\text {th }} \text { component, } i \leq \frac{n}{2} \\ n-i+1, & \text { for } 2^{\text {nd }} \text { and } 5^{\text {th }} \text { components, } i>\frac{n}{2} \\ n-i+2, & \text { for } 1^{\text {th }} \text { component, } i>\frac{n}{2} \\ 0, & \text { for } 3^{\text {th }} \text { component, } i \text { odd, } 3 \leq i \leq n-1 \\ & \text { for } 4^{\text {th }} \text { component, } i \text { even, } 2 \leq i \leq n \\ 2, & \text { for } 3^{\text {th }} \text { component, } i=1 \\ 1, & \text { otherwise. }\end{cases}
$$

$$
\begin{align*}
& c_{\Pi}\left(w_{i}\right) \\
& \begin{cases}i, & \text { for } 4^{\text {th }} \text { component, } i \leq \frac{n}{2} \\
i+1, & \text { for } 5^{\text {th }} \text { component, } i \leq \frac{n}{2}\end{cases} \\
& \text { for } 3^{\text {th }} \text { component, } i \leq \frac{n}{2}-1 \\
& \text { for } 4^{\text {th }} \text { component, } i>\frac{n}{2} \\
& \text { for } 5^{\text {th }} \text { component, } i>\frac{n}{2} \\
& \begin{array}{l}
\text { for } 3^{\text {th }} \text { component, } \frac{n}{2} \leq i \leq n-1 \\
\text { for } 1^{\text {st }} \text { component, } i \text { odd, } i \leq n-3
\end{array} \\
& \text { for } 2^{\text {nd }} \text { component, } i \text { even, } i \leq n-2 \\
& \text { for } 1^{\text {st }} \text { component, } i=n-1 \\
& \text { for } 2^{\text {nd }} \text { component, } i=n \\
& \text { 1, otherwise. } \\
& c_{\Pi}\left(w_{n+i}\right) \\
& = \begin{cases}i, & \text { for } 5^{\text {th }} \text { component, } i \leq \frac{n}{2} \\
i+1, & \text { for } 4^{\text {th }} \text { component, }, \quad \leq \frac{n}{2} \\
i+2 & \text { for } 3^{\text {th }} \text { component, } i \leq \frac{n}{2}-1 \\
n-i, & \text { for } 3^{\text {th }} \text { component, } \frac{n}{2} \leq i \leq n-1 \\
& \text { for } 5^{\text {th }} \text { component, } i>\frac{n}{2} \\
n-i+1, & \text { for } 4^{\text {th }} \text { component, } 10 \frac{n}{2} \\
0, & \text { for } 1^{\text {st }} \text { component, } i \text { even, } i \leq n-2 \\
& \text { for } 2^{\text {nd }} \text { component, } i \text { odd, } i \leq n-1 \\
2, & \text { for } 1^{\text {st }} \text { and } 3^{\text {th }} \text { components, } i=n \\
1, & \text { otherwise. }\end{cases} \tag{8}
\end{align*}
$$

Since for n even all vertices of $B_{P(n, 1)}$ have distinct color codes then our locating coloring has the required properties and $\chi_{L}\left(B_{P(n, 1)}\right) \leq 5$. This concludes the proof.

3 Jata Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are thankful to DRPM Dikti for the Fundamental Grant 2018.

References

[1] G. Chartrand, P. Zhang, and E. Salehi, "On the partition dimension of a graph," Congressus Numerantium, vol. 130, pp. 157-168, 1998.
[2] V. Saenpholphat and P. Zhang, "Conditional resolvability: a survey," International Journal of Mathematics and Mathematical Sciences, vol. 38, pp. 1997-2017, 2004.
[3] M. Johnson, "Structure-activity maps for visualizing the graph variables arising in drug design," Journal of Biopharmaceutical Statistics, vol. 3, no. 2, pp. 203-236, 1993.
[4] G. Chartrand and P. Zhang, "THE theory and applications of resolvability in graphs. A survey," vol. 160, pp. 47-68.
[5] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, "The locating-chromatic number of a graph," Bulletin of the Institute of Combinatorics and Its Applications, vol. 36, pp. 89-101, 2002.
[6] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, "Graphs of order n-1," Discrete Mathematics, vol. 269, no. 1-3, pp. 65-79, 2003.
[7] A. Behtoei and B. Omoomi, "On the locating chromatic number of Kneser graphs," Discrete Applied Mathematics: The Journal of Combinatorial Algorithms, Informatics and Computational Sciences, vol. 159, no. 18, pp. 2214-2221, 2011.
[8] Asmiati, Wamiliana, Devriyadi, and L. Yulianti, "On some petersen graphs having locating chromatic number four or five," Far East Journal of Mathematical Sciences, vol. 102, no. 4, pp. 769-778, 2017.
[9] E. T. Baskoro and Asmiati, "Characterizing all trees with locating-chromatic number 3," Electronic Journal of Graph Theory and Applications. EJGTA, vol. 1, no. 2, pp. 109-117, 2013.
[10] D. K. Syofyan, E. T. Baskoro, and H. Assiyatun, "Trees with certain locating-chromatic number," Journal of Mathematical and Fundamental Sciences, vol. 48, no. 1, pp. 39-47, 2016.
[11] Asmiati, H. Assiyatun, and E. T. Baskoro, "Locating-chromatic number of amalgamation of stars," ITB Journal of Science, vol. 43A, no. 1, pp. 1-8, 2011.
[12] Asmiati, H. Assiyatun, E. T. Baskoro, D. Suprijanto, R. Simanjuntak, and S. Uttunggadewa, "The locating-chromatic number of firecracker graphs," Far East Journal of Mathematical Sciences (FJMS), vol. 63, no. 1, pp. 11-23, 2012.
[13] D. Welyyanti, E. T. Baskoro, R. Simanjuntak, and S. Uttunggadewa, "On locating-chromatic number of complete n-ary tree," AKCE International Journal of Graphs and Combinatorics, vol. 10, no. 3, pp. 309-315, 2013.
[14] M. E. Watkins, "A theorem on tait colorings with an application to the generalized Petersen graphs," Journal of Combinatorial Theory, vol. 6, no. 2, pp. 152-164, 1969.

Advances in
Operations Research
$=$

Decision Sciences
Journal of
Applied Mathematics
$=$

The Scientific World Journal

Journal of
Probability and Statistics

- 22% Overall Similarity

Top sources found in the following databases:

- 15\% Internet database
- 18\% Publications database
- Crossref database
- Crossref Posted Content database
- 15% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 \qquad
Internet

2
repo.unand.ac.id
Internet

3
University of Bridgeport on 2022-10-24
Submitted works

4
cyberleninka.org
Internet

5

6
Higher Education Commission Pakistan on 2010-01-06
Submitted works

7
talenta.usu.ac.id 1%
Internet
mafiadoc.com
8
Internet

Nakada, H., K. Suda, and M. Motohashi. "Optical emission measureme... Crossref

Higher Education Commission Pakistan on 2016-01-18
Submitted works
Azeem Haider, Ali N.A. Koam, Ali Ahmad. "Radio Labeling Associated < 1% Crossref

Higher Education Commission Pakistan on 2013-11-25
Submitted works
prr.hec.gov.pk
Internet
ejgta.org<1\%
Internet

Higher Education Commission Pakistan on 2012-07-19
Submitted works

17 Higher Education Commission Pakistan on 2012-10-17
Submitted works

Martin Bača, Mirka Miller, Oudone Phanalasy, Andrea Semaničová-Feň... < 1% Crossref

Universitas Jember on 2019-10-17
Submitted works

[^0] Crossref

```
researchspace.ukzn.ac.za <1\%
Internet
```

University of Cambridge on 2022-05-10
Submitted works

```
matematika.fmipa.unp.ac.id<1\%
```

Internet
"Graph Theory", Springer Nature, 2018 < 1%
CrossrefInternet< 1%Subritted worksHigher Education Commission Pakistan on 2013-09-02Submitted worksMartin Bača, Mirka Miller, Joe Ryan, Andrea Semaničová-Feňovčíková. ... <1\%Crossref
María Teresa Signes Pont, Juan Manuel García Chamizo, Higinio Mora < 1%Crossref
Purwasih, Ira Apni, Edy Tri Baskoro, Hilda Assiyatun, and Djoko Suprija... < 1%CrossrefZehui Shao, S. M. Sheikholeslami, Pu Wu, Jia-Biao Liu. "The Metric Dim... < $\%$Crossref
faculty.kashanu.ac.irInternet<1\%

- Excluded from Similarity Report
- Bibliographic material
- Quoted material
- Cited material
- Small Matches (Less then 10 words)
- Manually excluded sources

EXCLUDED SOURCES

repository.lppm.unila.ac.iddownloads.hindawi.com 60\%Internet
Asmiati, I. Ketut Sadha Gunce Yana, Lyra Yulianti. "On the Locating Chromatic 57\%
Crossref
hindawi.com 27\%
Internet
ijc.or.id 21\%
Internet
ijc.or.id20\%
Internet
mdpi-res.com 19\%
Internet
A Irawan, Asmiati, S Suharsono, K Muludi. "The Locating-Chromatic Number 19\%
Crossref
Agus Irawan, Asmiati Asmiati, La Zakaria, Kurnia Muludi. "The Locating-Chro... 18\%
Crossref
pasca.unila.ac.id 17\%
Internet
K Prawinasti, M Ansori, Asmiati, Notiragayu, AR G N Rofi. "The Locating Chro... 13\%
Crossref
paper.ijcsns.org
Internet
journals.itb.ac.id 9\%
Internet
journal.itb.ac.id 7\%
Internet
Universiti Putra Malaysia on 2016-02-17 6\%Submitted works
proceedings.itb.ac.id 6\%
Internet
School of Business and Management ITB on 2015-07-21 5\%
Submitted works
M Damayanti, Asmiati, Fitriani, M Ansori, A Faradilla. "The Locating Chromati... 5\%
Crossref
mililink.com 4\%
Internet
Higher Education Commission Pakistan on 2010-04-063\%
Submitted works

[^0]: Yanhong A. Liu, Scott D. Stoller, Tim Teitelbaum. "Static caching for in...

