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The locating chromatic number of a graph G is defined as the cardinality of a minimum resolving partition of the vertex set V/(G)
such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in G are not contained
in the same partition class. In this case, the coordinate of a vertex v in G is expressed in terms of the distances of v to all partition
classes. This concept is a special case of the graph partition dimension notion. In this paper we investigate the locating chromatic

number for two families of barbell graphs.

1. Introduction

The partition dimension was introduced by Chartrand et al.
[1] as the development of the concept of metric dimension.
The application of metric dimension plays a role in robotic
navigation [2], the optimization of threat detecting sensors
[3], and chemical data classification [4]. The concept of
locating chromatic number is a marriage between the parti-
tion dimension and colorigggof a graph, first introduced by
Chartrand et al in 2002 [5]"#he locating chromatic number
of a graph is a newly interesting topic to study because there
is no general theorem for determining the locating chromatic

nlﬁ)er of any graph.

et G = (V,E) be a connected graph. We ne the
distance as the minimum lggoth of path connectinﬁirtices u
and v in G, denoted by d(1%#). A k-coloring of G is a function
c: V(G) — {1,2,...,k}, where c(u) # c(v) for any two
adjacent vertices u and v in G. Thus, the coloring ¢ induces
a partition IT (G) into k color classes (independent sets)
C,,C,,...,CSWhere Cgis the set of all vertices colored by
the color i for 1 < i < K&#¥he color code ¢;(v) of a vertex v in
G is defined as the k-vector (d(v,C,),d(v,C,),...,d(v,Cy)),
where d(v,C;) = min{d(v,x) : x € C;} for 1 < i < k. The
k-co@ng ¢ of G such that all vertices have different color
codeS®® called a locating coloring of G. The locating chromatic

number of G, denoted by y; (G), is the minimum k such that
G has a locating coloring.

The following theorem is a basic theorem proved by
Chartrand et al. [5]. The neighborhood of vertex u in a
connected graph G, denoted by N(u), is the set of vertices
adjacent to u.

Theorem 1 (see [5]).Qet c be a locating coloring in a connected
graph G. If u and v are distinct vertices of G such that d(u, t) =
dv,t) forallt € V(G)—{u, v}, then c(u) # c(v). In particular, if
u and v are non-adjacent vertices of G such that N(u) = N(v),
then c(u) # c(v).

The following corollary gives the lower bound of the
locating chromatic number for every connected graph G.

Corollary 2 (see [5]). If @ a connected graph and there is a
vertex adjacent to k leaves, then x; (G) = k + 1.

There are some interesting resul&lated to the determi-
nation of the locating chromatic number of some graphs. The
results are obtained by focusing on certain families of graphs.
Chartrand et al. in [5] have determined all graphs of order
n with locating chromatic number #, namely, a complete
multipartite graph of n vertices. Moreover, Chartrand et
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al. [6] have succeeded in constructing tree on n vertices,
n > 5, with locating chromatic numbers varying from 3
to n, except for (n — 1). Then Behtoei and Omoomi [7]
have obtained the locating chromatic number of the Kneser
graphs. Recently, Asmiati et al. [8] obtained the locating
chromatic number of the generalized Petersen graph P(n, 1)
for n > 3. Baskoro and Asmiati [9] have characterized all
trees with locating chromatic number 3. In [10] all trees
of order n with locating chromatic number n — 1 were
characterized, for any integers n and t, where n > t + 3
and 2 < t < n/2. Asmiati et al. in [11] have succeeded in
determining the locating chromatic number of homogeneous
amalgamation of stars and their monotonicity properties and
in [12] for firecracker graphs. Next, Wellyyanti et al. [13]
determined the locating chromatic number for complete n-
ary tre

Th&generalized Petersen graph P(n,m), n > 3 and 1 <
m < |[(n - 1)/2], consists of an outer n-cycle y;, y,,..., ¥,
a set of n spokes y;x;, 1 < i < n, and n edges x;x;,,,
1 < i < n, with indices taken modulo #. The generalized
Petgisen graph was introduced by Watkins in [14]. Lefsus note
thdw®he generalized Petersen graph P(n, 1) is a pris fined
as Cartesian product of a cycle C,, and a path P,.

Next theorems give the locating chromatic numbers for
complete graph K,, and generalized Petersen graph P(n, 1).

Theorem 3 (see [6]). Forn > 2, the locating chromatic number
of complete graph K,, is n.

eorem 4 (see [8]). The locating chromatic number of
neralized Petersen graph P(n, 1) is 4 for odd n > 3 or 5 for
evenn 2 4.

The barbell graph is constructed by commecting two
arbitrary connected graphs G and H by a bridgé®#h this paper,
firstly we discuss the locating chromatic number for barbell
graph B, for m,n > 3, where G and H are complete graphs
on m and n vertices, respectively. Secondly, we determine the
locating chromatic number of barbell graph Bp, ) for n > 3,
where G and H are two isomorphic copies of the generalized
Petersen graph P(n, 1).

2. Results and Discussion

Next theorem proves the exact value of the locating chromatic
number for barbell graph B,, .

Theorem 5. Let B, , be a barbell graph for n > 3. Then the
locating chromatic number of B, ,, is x;(B,,) = n+ 1.

Proof. Let B, ,, n > 3, be the barbe@raph with the vertex
set V(B,,) = {u;,v; : 1 < i < n} and the edge set E(B,,,)
= U:':—ll{u,-uﬂj cl<j<n-itu U::ll{vivﬂj 1 <j<
n—ifu )

First,@e determine the lower bound of the locating
chromatic number for barbell graph B, , for n > 3. Since
the barbell graph B, , contains two isomorphic copies of a
complete graph K,,, then with respect to Theorem 3 we have
Xr(B,,) = n. Next, suppose that ¢ is a locating coloring

using n colors. It is easy to see that the barbell graph B, ,
contains two vertices with the same color codes, which is a
contradiction. Thus, wedgave that x; (B, ,,) = n + 1.

To show that n + an upper bound for the locating
chromatic number of barbell graph B, , it suffices to prove
the existence of an optimal locating coloring ¢ : V(B,,) —
{1,2,...,n+ 1}. For n > 3 we construct the function ¢ in the
following way:

n, fori=1
(1)

for2<i<n-1

n+1, otherwise.

By usinﬁe coloring ¢, we obtain the color codes of V(B
as follows:

n,n)

o (u;)
.th .
0, fori" component, 1 <i<n

, for (n+1)™ component, 1<i<n-1

Il
— Do

, otherwise,

(0, for i" component, 2<i<n-—1 2)

h

for " component, i = 1, and

for (n+1)™ component, i = n,

ar (vi) st )
3, for I component, 1 <i<n-1

t .
2, for 1* component, i =n

|1, otherwise.

Sincﬂl vertices in V(B,,) have distinct color codes, then
the coloring c is desired locating coloring. Thus, x;(B,,) =
n+1.

Corollary 6. Forn,m > 3, and m # n, the locating chromatic
number of barbell graph B,,, , is

XL (Bm,n) = max {m) i’l} . (3)

Next theorem provides the exact value of the locating
chromatic number for barbell graph Bp,, ;).

Theorem 7. Let Bp, ) be a baghgll graph for n > 3. Then the
locating chromatic number of B, is
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4, for odd n

Xr (Bpuny) = (4)
LD 5, for even n.

Proof. Let Bp(,, 1y, 1 2 ge the barbell graph with the vertex
set V(Bp, 1)) = {tj 4o Wy W,y 0 1 < i < n}and the edge set
E(Bpn1y) = {thithi 1 Unyithygin) Wil 1 WyyiWyaipy © 1 S
n- 1} U {unul’ UppUpyi1> WyWp» wann+1} U {uiunﬂ" WiWy,; 1
i<npU{u,w,}.

Let us distinguish two cases.

<
<

Case I (n odd). According to The 4 for n odd we have
XL(Bp,1)) = 4. To show that 4 ﬁ‘l upper bound for the
locating chromatic number of the barbell graph By, ;) we
describe an locating coloring ¢ using 4 colors as follows:

'1, fori=1
for even i, i >2

4, for odd i, i > 3.

(2, fori=1
c(thyy;) =143, foroddi, i>3
4, for eveni, i>2.
(5)
1, for odd i,@g n-2
c(w;)=142, foreveni,i<n-1

3, fori=n.

i 1, for even i,@s n-—1

c(wy;) =142, foroddi, i<n-2

4, fori=n.

For n odd the color codes of V(Bpy, ) are

o (u;)
n+1
i, for 2" component, i < 5
. n+1
i—1, for 1 component, i < 5
. .. on+1l
n—i+1, for 1¥ component, i > 5
=3 . . n+l
n—i+2, for2™ component, i > >
0, for 3" component, i even, i > 2
for 4" component, i odd, i >3
| L otherwise.

3
et (Usi)
. . n+1
i for 1** component, i < 5
. n+1l
i—-1, for 2" component, i <
. nd . n @
n—i+1, for2"™ component, i > 5
= . ..o n+1
n—i+2, for1® component, i > 5
0, for 4”’ component, i even, i > 2
for 3" component, i odd, i >3
|1, otherwise.
ar (wl
. Yy n-1
i, for 3" component, i < ——
; . n-1
i+1, for 4" component, i < 5
. ._n+1
n-i, for 3" component, i > 5
= < . th . n+1
n—i+1, for 4" component, i> -
0, for 2" component, i even, i <n-—1
for 1 component, i odd, i <n-2
| L otherwise.
a1 (W)
(. . _n-1
i, for 4™ component, i < ——
. ., n-—1
i+1, for 3" component, i < 5
. th . n+ 1
n—i, for 4" component, i > >
= . ._n+1
1n-i+1, for 3™ component, i > 5
0, for 1 component, i even, i <n—1
for 2" component, i odd, i <n -2
L1, otherwise.
(6)

Since all vertices in By, ;) have distinct color codes, then the
coloring ¢ with 4 colors is an optimal locating coloring and it
proves that x; (Bp, ) < 4.

Case 2 (n even). In view of the lower bound from Theorem 7
it suffices to prove the existence of a locating coloring ¢ :
V(Bp(,1)) — {1,2,...,5} such that all vertices in Bp, ;)
have distinct color codes. For n even, n > 4, we describe the
locating coloring in the following way:

1, fori=1
, foreveni, 2<i<n-2
c(u) =

3
4, foroddi, 3<i<n-1

for i = n.

v
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2, fori=1 o (w;)
c(u,,;)=143, foroddi, i>3 i, for 4™ component, i < 3
|4 Qr even i, 1> 2. i+1, for 5" component, i < g
(1, foroddi, i<n-3 for 3" component, i < g -1
(w) 2, foreveni, i<n-2 n—i, for 4™ component, i > g
clw.) = <
l 3, fori=n-1 i " > -
s n—i+1, for 5" component, i> 5
; - n
(4, fori=n. “1n-i-1, for 3" component, Egisn—l
1, for even i,@S n-2 0, for 1 component, i odd, i <n-3
c(wy;) =12, foroddi, isn-1 for 2" component, i even, i <n—2
5 fori=n. 2, for 1% component, i = n— 1
(7) for 2" component, i =n
1, otherwise.
In fact, our locating coloring of Bp, ), n even, has been
chosen in such a way that the color codes are arr (Wysi)
n
o (1) i, for 5" component, i < 3
1 \U;
n
i+1, for 4 component @< —
] n
i, for 2 and 5" components, i < — . th . 31
2 i+2 for 3™ component, i < 5" 1
n
i-1 for 1* component, i < 2 n—i for 3t component i<n-1
, 5 Sis
n
n—i, for 5 component, i > g - for 5" component, i > g
. st @ n . th n
n—i+1, for 1¥ component, 3 n-i+1, for 4™ component, B
0, for 1% t, ieven, i<n-2
_Jn-i+2, for 2 component, i > g Of Imcomponerts, [geven, : = B
N for 2" component, i odd, i <n-1
0, for 3" component, i even, 2 <i<n-2 N
2, for 1 and 3" components, i =n
for 4™ component, i odd, 3<i<n-1 I otherwise
2, for 4™ component, i =1 (8)
for 3" component, i =n
1, otherwise. Since for n even all vertices of Bp,, ;) have distinct color codes
then our locating coloring has the required properties and
o (t4,4;) X1(Bp(,1)) < 5. This concludes the proof. O
. n
i, for 1* component, i < — Q
2n ata Availability
i-1, for 2" component, i < —
2 The data used to support the findings of this study are
n+i, for 5 component, i < g avaijlable from the corresponding author upon request.
n
n—i+1, for 2™ and 5 components, i > —
2 Conlflicts of Interest
= . th ._h
n—i+2, for 1" component,i> 2
" ) ) The authors declare that they have no conflicts of interest.
0, for 3" component, i odd, 3<i<n-1
for 4™ component, i even, 2<i<n
P Acknowledgments
2, for 3t component, i =1 L
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