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Abstract: In recent years, bio-based wood adhesives have gained an increased industrial and research
interest as an environmentally friendly and renewable alternative to the commercial petroleum-based
synthetic adhesives used in the wood-based industry. Due to its renewability, abundance, relatively
low price, and good adhesion properties, starch is a promising natural feedstock for synthesizing
bio-based adhesives for wood-based composites. This review aims to summarize the recent advances
in developing sustainable starch-based wood adhesives for manufacturing non-toxic, low-emission
wood composites with enhanced properties and lower environmental impact. Recent developments
in starch modification, physical, and enzymatic treatments applied to improve the performance of
starch-based wood adhesives, mainly in terms of improving their water resistance and bonding
strength, are also outlined and discussed.

Keywords: amylose; amylopectin; bio-based adhesives; starch; wood adhesives; wood-based panels

1. Introduction

Starch is an abundant natural polymer and the cheapest industrially available carbo-
hydrate. In recent years, it has attracted an increased commercial and research interest for
its potential in a wide range of value-added applications, including papermaking, food
processing, cosmetics, pharmaceutical products, additives, and industrial adhesives, due to
its annual renewability, relatively low price, and good adhesion characteristics [1–4]. Starch
is the mixture of two distinct polysaccharide fractions of amylose and amylopectin, which
both are made out of glucose of various sizes and shapes [5,6]. The proportions of these
components differ according to the starch botanical origin and subsequently affect adhe-
sives properties. The glucan structure of amylose is linear and relatively long, made out of
roughly close to 100% (1→4)- α-linkages and some (1→6)- α-linkages [6,7]. The degree of
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polymerization (DP) of amylose is around 500–5000, with the molecular weight around
105–106 Da. There are about 9–20 branches per molecule in the amylose structure, and each
branch chain has 200–700 units of glucose. Meanwhile, amylopectin is a polysaccharide
that has numerous branches consisting of (1→4)-α-linkages (95%) and (1→6)-α-linkages
(5%–6%). Amylopectin has a DP that varies around 9600–15,900, with a molecular weight
of 107–109 Da. Amylopectin molecular chain is shorter compared to amylose, consisting of
18–25 units of glucose (Figure 1) [6–8].
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Figure 1. Illustration of amylose and amylopectin structures [8].

Morphologically, the starch granule is a combination of amylose and amylopectin,
forming amorphous regions in semi-crystalline regions through hydrogen bonds between
molecules (Figure 2) [9]. The crystalline part hinders the water or any chemical components
from penetrating the starch structure and causes lower reactivity and a higher gelation
temperature [9]. Therefore, some modifications to the starch crystalline part or decreasing
the crystalline size has been recommended. Certain modifications have been propounded to
reduce the crystallinity of starch, including chemical (esterification, oxidation, cationization,
and etherification), physical (heat-moisture treatment, mechanical activation, ultrasonic
degradation, and microwave exposure), and enzymatic treatment [2,10–12].
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Figure 2. Starch structure illustration form to the unit of glucosyl; black lines represent the branched
part and double helices of amylopectin, while green lines represent the single helices of amylose, and
the double helices in an A-type or B-type polymorphic crystal from the top view are indicated by
circles [9].

The objective of this paper is to present a comprehensive review of the recent advances
in the field of starch-based wood adhesives used for manufacturing high-performance,
environmentally friendly wood-based composites. The main challenges and future per-
spectives of using starch as a natural feedstock to develop bio-based wood adhesives have
also been outlined.



Forests 2022, 13, 1614 3 of 24

2. Historical Overview

Starch, a renewable, abundant, and inexpensive biopolymer has always been con-
sidered one of the most valuable materials used in many applications [2,4,13–15]. Early
starch uses can be seen on Egyptian papyrus strips, dated to the pre-dynastic period
(3500–4000 BC) and adhered together using a starch adhesive [16–18]. The historian and
philosopher Gaius Plinius Secundus described documents of 130 BC that were created by
smoothing the surface of papyrus by sizing it with modified wheat starch. Finely milled
wheat flour was used to make the adhesive, then heated with a diluted vinegar solution.
Papyrus strips were coated with adhesive and hammered with a mallet, and additional
strips were laid over the edges to create a wider sheet. Chinese paper documents, dated
about 312 AD, are reported to contain starch [16–18]. Chinese documents were later coated
with high viscosity starch to provide resistance to ink absorption and then topped with
powdered starch to give more weight and thickness. At that time, a starch made from rice,
wheat, and barley was regularly used. Dutch starch was thought to be of great quality
throughout the Middle Ages when wheat starch production in the Netherlands became
a significant industry. In the early fourteenth century, starch was introduced to stiffen
linen in Northern Europe. Coloured and uncoloured starches were used as cosmetics.
Uncoloured starch was used particularly as a hair powder. Before Queen Elizabeth banned
its use in 1596, blue starch was used by the Puritans. Yellow starch was fashionable until
a notorious woman prisoner was publicly executed wearing a bright yellow-starched ruffle.
Red starch cosmetics have stayed in fashion for many years [16].

In addition, in 214 BC, Emperor Qin Shihuang of the Qin Dynasty started to use
a special concoction to construct the Great Wall of China. The concoction was prepared
by boiling a large amount of glutinous rice into a thick soup, mixed with soil, wood, and
other materials and spread layer by layer, thus forming an ancient “concrete” structure.
It is a super-strong mortar made from sticky rice. Markedly, the archaeological evidence
suggests that sticky rice-lime mortar had already reached a mature stage of development by
the time of the South-North Dynasty (386–589 AD). Because of its excellent performance, the
sticky rice-lime mortar was widely used to construct many significant buildings, including
tombs, city walls, and water resource facilities. The resilience of the sticky rice mortar can
be attributed to amylopectin, a polysaccharide typically found in rice and other starchy
foods [19].

As starch became a more significant industrial commodity, extensive research on its
modification was carried out. This included Kirchoff’s great discovery in 1811 that the
acid-catalyzed hydrolysis of potato starch could produce sugars. Then, the torrefaction
methods for producing dextrins, now termed British gums, were accidentally discovered
in 1826 after a fire in a Dublin textile factory that used starch as a size. After the blaze
was extinguished, a worker noted that some of the heated starch was turned dark and
could quickly dissolve in water to create a thick adhesive paste. The new starch was
subjected to another roasting, and the resultant product demonstrated the previously noted
advantageous characteristics. Thus, heat dextrinization became known and later developed
into wider use [20,21].

The first wheat starch plant in America was founded by Gilbert at Utica, New York, in
1807 and later converted into a corn starch-producing factory. In 1842, the shift from wheat
to corn starch began with the development of a manufacturing process in which crude
corn starch was purified by alkaline treatment [16,22]. The manufacture of potato starch
began in 1820 in Hillsborough County, New Hampshire. The utilization of potato starch
increased quickly, and by 1895, there were sixty-four factories in operation, forty-four of
which were located in Maine. During approximately 3 months of operation, they produce
24 million pounds of starch annually. Most of them are sold to the textile industry. Rice
starch manufacture was begun in 1815 using the caustic treatment of rice.

Nevertheless, the production did not rise considerably and most of the later used
rice starch was imported [16,20]. By 1890, the number of starch plants in America had
risen to eighty; 240 million pounds of starch are produced annually. The National Starch
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Company of New Jersey was established in 1902 due to a merger between the United
Starch Company and the National Starch Manufacturing Company. The Corn Products
Company, which processes 1800 tons per day and accounts for 80% of the corn starch
market, was formed by a union of the National Starch Company of New Jersey, the Illinois
Sugar Refining Company, the Glucose Sugar Refining Company, and the Charles Pope
Glucose Company [16,20–22].

About 77% of the starch utilized globally and 95% in the U.S. comes from corn [22]. In
1995, the United States consumed around 3.6 × 109 kg of corn starch, with a 2% annual
growth rate [7,23]. This amounts to around 3% of the corn produced annually in the United
States. During the past decade, corn starch has averaged 0.2–0.3 USD/kg. However, due
to 1995’s poor weather and the subsequent high export demand, prices were higher in
that year. In the United States, potato starch prices are about 0.65 USD/kg and are mostly
imported from Europe. There are numerous starches produced that have been engineered
by chemical, physical, or genetic methods to suit the needs of various industrial uses better.
The price of starch in 2021 was roughly 0.25 to 2.20 USD/kg [24].

3. Sources of Starch

Most plants synthesize starch, a polysaccharide, to store energy [5,6]. It is kept within
cells as spherical granules that range in size from 2 to 100 µm [16,20]. Most starches sold
in markets come from tubers, such as potatoes, tapioca and cereals, such as corn and
wheat. These grains and tubers have a high starch content, often between 60 and 90% of
their dry weight [16]. The development of commercial techniques for the recovery of corn
starch was naturally prompted by the high starch content of corn, its ability to be stored
from one season to another, and its ready availability at steady and comparatively low
prices. Beginning with the early 19th century, when the recovery of corn starch was first
discovered by crushing soaked grains, the procedure progressively improved into the highly
advanced automated procedure used today, which results in a variety of beneficial culinary
and industrial products. Much of the early expansion of the corn starch industry was
encouraged by mechanical innovation created during full-scale operations [23,25]. Today,
rigorous pilot plant assessments, engineering studies, and research are more frequently
followed by process and product enhancements.

Starch is mostly derived from corn, wheat, sweet potatoes, cassava, and potatoes,
while rice, barley, sorghum, and other grains are minor sources in various regions of the
world [26]. About 98%–99% of the dry weight of starch composition includes amylose and
amylopectin, and the rest includes a small amount of damaged starch, enzymes, lipids,
proteins, ashes, minerals, and phosphorus [6,7,27].

Cassava (Manihot utilissima Pohl) is commonly cultivated in tropical climates, while
potatoes, wheat, and corn are often grown in temperate climates [23]. Manufacturing
plants for cassava starch are located near the root growing areas to minimize transport
costs and get the shortest tuber processing time. The roots delivered to the factory are
stored in concrete or wooden bunkers. Strict supervision of bunker filling and emptying
must be carried out to ensure that the first harvested roots are consumed first. The roots
are typically transported to a washing station by a belt conveyor. After washing, the
outer skin is removed. The cortex is not eliminated because it has some stable starch
in modern processes. Usually, the washer is a U-formed box with paddles that convey
the roots to the peeler. The roots are stripped by the abrasion of one against another
and against the walls and paddles of the machine. All cell walls must be ruptured to
recover the starch. This has been done occasionally by mild fermentation followed by
grinding into a pulp and the starch recovered by screening and washing or centrifugation.
The fermentation process does not produce good starch yields, and the starch quality is
generally inferior [11,14,28–32].

Rice (Oryza sativa L.) is the main diet of South, East, and Southeast Asia, wherein
90% of the rice crop in the world is grown and consumed [16,20]. Because brewer’s rice is
more expensive than other cereals and tubers, its use in the commercial manufacture of
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starches is limited. In the European Economic Community, only 7000 tons of rice starches
are produced annually in Belgium, Germany, The Netherlands, and Italy factories. Factories
in Egypt and Syria also produce rice starch, but it has not been produced in the United
States since 1943 [16,20]. Since most milled rice protein is an alkali-soluble protein known
as glutelin, sodium hydroxide is employed to purify the rice starch [33,34]. Hogan has
documented the commercial production of rice starch, and little has changed since the
1960s [16,20]. The step includes soaking rice in 0.3%–0.5% sodium hydroxide solution,
wet milling, removing cell walls, extracting the protein with sodium hydroxide solution,
washing, and drying. An initial cleaning removes trash and filth. The process of soaking
softens the grain and helps extract the protein. The soaking period is typically 24 h, and the
temperature ranges from ambient to 50 ◦C. Because dry milling causes more severe starch
degradation and causes more starch to dissolve in alkali, wet grinding is preferred.

Starch and gluten are significant and valuable co-products when wheat flour is wet pro-
cessed [25,26,35–37]. These products are moving into a new stage of development, mostly
due to the abundance of value-added goods being offered because of their sustainability.
Large-granule starch, resistant starch, low-moisture starch, cook-up, and pre-gelatinized
forms of untreated starch are the products provided on the wheat starch market for usage
in food and industry [38,39]. There are six common methods for separating wheat starch
and gluten: batter, dough, aqueous dispersion, non-aqueous separation, wet-milling of
kernels, and chemical dispersion [16,20,35,36,40,41]. Due to the low quality of the product,
high running costs, effluent issues, and ineffectiveness, the latter three methods are not
used [20].

The total potato starch production is smaller than the corn starch produced worldwide.
Potato starch production was estimated to be only 2.5 million tons per year, whereas corn
starch reached 45.8 million tons/year in 2005 [16,20,22,42]. Potatoes should have the most
starch possible to produce potato starch effectively. Hence, only specific kinds of industrial
potatoes are employed in current potato starch manufacturers in Europe. These potatoes
are not eaten as food because they are not particularly palatable due to their high starch
content. In Europe, potatoes are collected and processed between August and April; this
time frame is known as the starch campaign. Culled food potatoes are typically not used
because they have a low content of dry matter, and the starch granules are reasonably
small [20], which are more challenging to process. Food potatoes may occasionally be
processed in between European starch campaigns when the food potato price is low, owing
to excess production. On a limited scale, reclaimed potato starch is processed in Europe
and North America from the process waters of other potato processing companies, such as
the manufacturers of French fries, chips/crisps, and potato puree [16,20,22,42].

4. Starch-Based Wood Adhesives

Starch is an inexpensive material with good adhesive and film-forming properties and
represents a promising candidate for developing bio-based wood adhesives [2,3,36,43–45].
As shown in Figure 3, starch-based adhesives are typically composed of four main con-
stituents [1,17,37]. Although starch can be utilized to make bio-based adhesives, its bonding
capacity is based on hydrogen-bonding forces, which are considerably weaker than chemi-
cal bonds. Additionally, starch-based adhesives have a low water resistance due to their
ease in forming hydrogen bonds with water molecules. Hence, starch modification is
required to improve the functionality of starch-based adhesives by enhancing the molec-
ular structure and viscosity of the adhesive [16,33,46–48]. Different starch-based wood
adhesives, such as lignin-starch [4,45,49–51], protein-starch [37,52,53], tannin-starch [54,55],
starch-polyvinyl alcohol (PVOH) [3,56–58], and starch-isocyanate [59–63], have been ex-
plored by several studies. Chemical, physical, and enzymatic treatments are among the
most popular strategies to improve the properties of starch-based adhesives [64,65].
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4.1. Chemical Treatments

The qualities of the starch-based adhesive have been improved recently using a va-
riety of starch modification techniques, such as acid hydrolysis [66–68]; silane coupling
agent [12,69–71]; heat pretreatment [1,16,72]; the addition of nanoparticles, such as nanosil-
ica and nanoclay [73–75]; sodium dodecyl sulfate (SDS) [14,76,77]; and dodecyl succinic
anhydride (DDSA) [2,78–80].

As presented in Table 1, acid hydrolysis is among the most prevalent modification
methods of starch. Acid hydrolysis significantly influences the amylose component of
starch [66,68]. Amylose content greatly affects the structural and functional characteristics
of starch. Amylose consists of linear chains that can form strong inter-chain linkages and,
therefore, play a vital role in bestowing good water resistance to wood-based composites. In
addition, acid hydrolysis could make the modified starch molecules react more readily with
grafting monomers by destroying hydrogen bonds and altering starch’s crystallinity [67].

Further, acid hydrolysis reduced the viscosity of the wood adhesive from corn starch.
Meanwhile, both shear strength in the dry and wet state improved from acid hydrolysis.
However, the shear strength decreased beyond 2 h of acid hydrolysis duration [66–68,81–83].
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Table 1. Effects of various modification methods on the shear strength of starch-based wood adhesives.

Treatment Strength (MPa) Reference

Acid hydrolysis
Dissolved in hydrochloric acid (HCI) and
stirred at 60 ◦C (0, 0.5, 1, 1.5, 2, 2.5, and
3 h)

Tensile shear strength
Dry state—1.21 MPa (0 h) to 6.65 MPa
(2 h)
Wet state (23 ◦C)—0.8 MPa (0 h) to
3.6 MPa (2 h)

[66]

Silane coupling agent
γ-Methacryloxypropyltrimethoxysilane
(KH570) (0%–10%)

Tensile shear strength
Dry state—5.5 MPa (0%) to 6.7 MPa
(6%)
Wet state (30 ◦C)—2.2 MPa (0%) to
2.6 MPa (4%)

[84]

Oxidation
Hydrogen peroxide (3%–15%)
olefin monomer (0%–5%)

Tensile shear strength
Dry state—4.43 MPa (3%) to 7.88 MPa
(9%)
Wet state (30 ◦C)—0.76 MPa (3%) to
4.09 MPa (9%)
Dry state—3.28 MPa (0%) to 7.30 MPa
(3%)
Wet state (30 ◦C)—1.40 MPa (0%) to
4.22 MPa (3%)

[85,86]

Heat pretreatment
70, 80, and 90 ◦C

Tensile shear strength
Dry state—8.63 MPa (control) to
10.17 MPa (90 ◦C)

[87]

Silica nanoparticles (0%–10%)

Tensile shear strength
Dry state—3.41 MPa (1%) to 5.12 MPa
(10%)
Wet state (23 ◦C)—1.62 MPa (1%) to
2.98 MPa (10%)

[88]

Montmorillonite (MMT, 0%–9%)

Tensile shear strength
Dry state—5.60 MPa (0%) to 10.60 MPa
(5%)
Wet state (23 ◦C)—1.7 MPa (0%) to
3.9 MPa (3%)

[89]

Anionic surfactant—Sodium dodecyl
sulfate (SDS, 0%–2%)

Tensile shear strength
Dry state—5.5 MPa (2%) to 6.3 MPa
(0%)

[76]

Esterification and polyisocyanate
pre-polymer crosslinking(0%–20%
prepolymer)

Block shear strength
Dry state—2.3 MPa (0%) to ~12.0 MPa
(10%)
Wet state (30 ◦C) ~0 MPa (0%) to
4.0 MPa (10%)

[13]

Esterification with dodecenyl succinic
anhydride (DDSA, 0%–8%)

Tensile shear strength
Dry state—1.51 MPa (0%) to 2.61 MPa
(2%)
Wet state (63 ◦C)—0.58 MPa (0%) to
1.0 MPa (6%)

[78]

Another alternative way to improve starch properties is by oxidation. Oxidized starch
(OS) can be prepared by treatment with hydrogen peroxide (H2O2) [90–92]. Nevertheless,
the OS-based adhesive has inferior water resistance and bonding strength. Several addi-
tives, such as urea [93], sodium dodecyl sulfate [70], olefin monomer [1], silane coupling
agent [84], and isocyanates [59,94], have been introduced to the OS during the preparation
of wood adhesive. The prepared OS-based adhesive displayed markedly increased water
resistance and bonding strength. The study found that starch-based wood adhesives with
superior water resistance and bonding strength can be developed through graft copoly-
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merization of oxidized starch with an olefin monomer and a coupling agent [70,95]. The
OS-based wood adhesive’s dry and wet shear strength is enhanced with the addition of
olefin monomer, which acts as an oxidant. At 3% oxidant, the highest wood adhesive’s
starch-based shear strength was recorded. However, shear strength reduced as the oxidant
content raised from 3% to 5%. On the other hand, coupling agent content also significantly
affects wood adhesive’s starch-based shear strength. When coupling agent content was
expanded from 3 to 9%, the starch-based adhesive’s dry and wet shear strength increased
considerably but started to drop when more than 9% coupling agent was added [70,95].
A similar study was also made by Chen et al. [84], where the addition of 6% and 4% silane
coupling agent, γ-Methacryloxypropyltrimethoxysilane (KH570), recorded maximum dry
shear strength and wet shear strength, respectively.

A series of works have been done to enhance the performance of starch-based wood
adhesives. Ammonium persulfate was employed as an initiator in the preparation of
starch-based wood adhesive using vinyl acetate grafted starch [14,96]. Unfortunately, the
produced adhesive has inferior performance due to its poor mobility and storage stability
due to starch retrogradation. On that account, a surfactant, such as sodium dodecyl sulfate
(SDS), was added to inhibit starch retrogradation [3,58,76]. Adding SDS improved the
adhesive’s storage stability and mobility (Figure 4). However, the shear strength of the
starch-based adhesive was adversely impacted, where the shear strength dropped from
6.3 MPa to 5.5 MPa when 2% SDS was added [76]. Therefore, nanoclay, montmorillonite
(MMT), has been added to compensate for the negative effects of SDS on the starch-based
wood adhesive [3,89]. The findings proved the addition of MMT promising, as the dry shear
strength of starch-based adhesive almost doubled when 5% MMT was added. Owing to
the strengthening effects of nanoparticles on the molecular structure of starch adhesive, the
incorporation of nanoparticles has been widely adopted to improve the performance of the
starch-based wood adhesive. Silica nanoparticles have been used as a reinforcing agent for
vinyl acetate (VAc) grafted starch in the production of starch-based wood adhesive [97]. The
results revealed that adding 10% silica nanoparticles has increased the dry shear strength
and wet shear strength of starch-based wood adhesive by 50% and 84%, respectively.
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Better water resistance and higher bonding strength of starch-based wood adhesives
can be achieved by combining starch with other components, e.g., PVOH [3,56–58], iso-
cyanates [61–63,98], formaldehyde [12,60,99,100], and tannins [54,101,102]. According to
several research works, vinyl acetate was grafted onto starch using ammonium persul-
fate as an initiator to create starch-based adhesives [14,96,97]. The studies demonstrated
that graft efficiency significantly affected the bonding performance of the starch-based
adhesive. Markedly, a high amylose content starch-based wood adhesive is identified by
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improved mechanical and water-resistance properties, which are necessary for bonding
wood composites in actual applications [103,104].

The hydroxyl groups on C2, C3, and C6 positions in each glucose unit of starch can
form hydrogen bonding. The main techniques applied for the chemical modification of
starch are presented in Figure 5 [8,83,105,106]. To increase the hydrophobicity of starch,
a common chemical modification called esterification transforms hydroxyl groups into
esters. The degree of esterification (DS) and the chain length of the esterification agent
determine the esterified starch’s water absorptivity and solubility. As depicted in Figure 6,
maleic anhydride (MA) was used to react maize starch to create esterified corn starch, which
was subsequently cross-linked using a poly-isocyanate pre-polymer [13,21]. Synthetic
polymer grafting copolymerization onto the starch backbone improved the starch bonding
properties. The authors reported that the optimal pre-polymer level was 10 wt%, which
produced 12 MPa of dry and 4 MPa of wet shear strength values. Another piece of research
described the addition of blocked pMDI (B-pMDI) and an auxiliary chemical to a starch-
based adhesive. When the mixture ratio of starch and the blocked isocyanate was 100/25
and 100/20, respectively, the wet and dry bonding strength peaked [59]. In addition,
attaching the isocyanate to the starch-based adhesive might make it less viscous. Bentonite
could be added to the adhesive to thicken it and increase its water resistance [61].
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Another study described the grafting of vinyl acetate monomer onto corn starch and
crosslinking polymerization, using N-methylol acrylamide to produce an environmentally
friendly starch-based wood adhesive for producing wood-based composites [44,107]. The
authors concluded that developing a complex network structure and greater crosslinking
density was responsible for the starch-based adhesive’s improved performance.



Forests 2022, 13, 1614 10 of 24

Starch-based adhesives may also be crosslinked using epoxy resin. Combining epoxy
resins with polyvinyl acetate grafted starch adhesives has been tested as a method of
attaching veneers. According to the authors, epoxy groups can form three-dimensional
networks with good shear strength values in dry and humid environments [108–111].

Regarding the chemical modification of starch, an oxidation process forms a more
reactive wood adhesive. The peroxide oxidation splits H2O2 into two OH radicals by Cu2+,
which acts as a catalyst. The radical OH groups and catalyst then oxidized the OH of the
starch into aldehyde groups and released H2O. Further, the remaining H2O2 converted
the aldehyde groups into carboxyl groups [90–92]. Therefore, greater H2O2/starch mole
ratios led to a greater DO due to the greater amount of H2O2 in the system. B-pMDI
and citric acid (CA) have been used as cross-linker to enhance the performance of OS-
based adhesives [56,58]. The OS reacted with the isocyanate groups from the B-pMDI to
form amide linkages (Figure 7a), while it formed ester linkages by reacting with the CA
(Figure 7b).
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Figure 7. Possible cross-linking reactions of (a) B-pMDI/OS and (b) CA/OS [56]. 
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An oxidation-gelatinization technique was used to synthesize a cornstarch adhesive,
after which its rheological characteristics were determined [112,113]. The apparent viscosity
was determined by shear rate, starch-to-water ratio, and temperature. It was found that
apparent viscosity reaches a peak value at 10 ◦C, and then decreases at higher temperatures,
increasing shear rate from 6–60 RPM, causing a slight decrease in viscosity. The starch
adhesive has fluid-like, pseudo-plastic characteristics. Oxidized starches typically react
responsively to heat, turning yellow or brown when subjected to high temperatures. The
aldehyde content has been linked to this drying tendency to turn yellow. The oxidized
starch in storage turns yellower with increasing aldehyde content. The yellowing of
oxidized starch dispersed in water by cooking or alkali is also related to aldehyde content.

Innovative formulations of starch-based adhesives are made with the addition of
a silane cross-linker (CH2=CH–Si(OC2H5)3), hydrogen peroxide, as well as vinyl and butyl
acetate [69,70,84]. They reported that when an oxidizing agent was present, the starch
hydroxyl groups changed into aldehyde and carboxyl groups. The graft copolymerization
enhanced the adhesive’s bonding strength, water resistance, and thermal stability. Accord-
ing to the optimization method, adding 3 wt% of oxidant agents and 9 wt% of coupling
agent produced a modified starch-based adhesive with wet and dry bonding strengths of
around 4.09 and 7.88 MPa, respectively.

Oxidation also affected the solids content, viscosity, and gelation time of OS-based
adhesives [56]. OS’s solids content and viscosity decreased as the H2O2/starch mole ratio
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increased while gelation time increased (Table 2). This meant that a higher H2O2/starch
mole ratio decreased the reactivity of the OS adhesive. The excess of H2O2 at a higher mole
ratio probably remained in the OS, which decreased the solids content and viscosity of OS
and eventually increased the gelation time. The lower viscosity of the adhesive generally
increased the gelation time due to the adhesive system needing a longer time to evaporate
water and solvent. This phenomenon happened to OS adhesives, with a higher degree of
H2O2/starch mole ratio, which has a greater amount of H2O2 in the system. The molecular
weight distributions of OS for different H2O2/starch mole ratios, such as Mw, Mn, and PDI,
of OS decreased as the H2O2/starch mole ratio increased. The Mw of native starch has been
reported to be around 800,000 g/mole [16,20,47], and the Mw decreased by a hundred times
after oxidation. It was obvious that the oxidation de-polymerized starch macromolecules
into smaller molecules, eventually lowering the molecular weight.

Table 2. Properties of oxidized starch adhesive at different H2O2/starch mole ratios [56].

H2O2/Starch
Mole Ratio

Solids Content
(%)

Viscosity
(mPa·s)

Gelation Time
(s)

Mw
(g/mole)

Mn
(g/mole)

Polydispersity
Index (PDI)

0.5 48.43 107.7 532 11,882 9881 1.19
1.0 41.82 76.0 547 11,000 9547 1.15
1.5 37.94 60.7 560 9835 8890 1.11
2.0 31.20 45.3 587 8010 7657 1.05

Other researchers have used urea-formaldehyde (UF) resin to create wood-based com-
posite adhesives by mixing it with varying ratios of starch [114], esterified starch [115,116],
and oxidized starch [45,93]. It was reported that a new adhesive system made of starch
and UF resin had improved water resistance and reduced formaldehyde emission and
brittleness. The UF resin adhesive with oxidized starch blending can be utilized in wood
adhesive applications because it has strong chemical stability, insulating qualities, tempera-
ture resistance, and aging resistance [93,117,118]. Good oil resistance and mildew resistance
are also features of oxidized starch-blend UF resin [99].

4.2. Physical Treatments

One of the physical methods of modifying starch that results in its depolymerization
is treatment with ultrasounds, using sound waves at or above the range of frequency of
15–20 kHz [119,120]. This procedure is considered more environmentally friendly than
chemical processes because it uses fewer chemicals and produces less waste and energy.
Without using p-toluene sulphonic acid, ultrasonication reduced the time required to
achieve octenyl-succinylated carboxymethylated (OC-CMS) potato starch from as long
as 24 h when done traditionally, to as short as a few minutes [8,121]. Numerous reports
suggest that ultrasounds physically degrade granules, leaving apparent fissures and pores
on the surface, but that the size and shape of the granules remain the same [119,122].
Additionally, the prolonged application of the high-energy ultrasound to polysaccharide
solutions results in an apparent decrease in viscosity brought on by the disintegration of
macromolecular chains.

Changes in granular structure, swelling power and solubility, gelatinization tran-
sition temperature, syneresis, and pasting properties were seen after ultrasonic treat-
ment [119,123]. As depicted in Figure 8, linear amylose was easier to attack by ultrasonic
treatment than highly branching amylopectin molecules and it degraded the amorphous
portions preferentially [38]. The number of modifications brought about by ultrasonic
treatment varied depending on the amylose content and the crystal structure of the starch.
It is also demonstrated that physical treatments made it possible to manufacture OS-CMS
derivatives, utilizing the microwave or ultrasonic irradiation, reducing the time needed for
esterification from the previously described conventional heating method of 24 h to only
a few minutes [120].



Forests 2022, 13, 1614 12 of 24

Forests 2022, 13, 1614 12 of 25 
 

 

relatively poor clarity [119,120]. For rice, wheat, and corn starches, sonication in ethanol 
resulted in a slight reduction in paste clarity but had no effect on paste clarity for potato 
and corn starches. Water modifications greatly impacted the potato starch paste’s clarity, 
increasing it, but they had no discernible impact on the other starches. The disruption of 
swelling granules during the sonication process increased the clarity of starch pastes. 
However, there is a lack of knowledge regarding this determination for granulated 
starches that have been sonicated [119,120,122]. 

 
Figure 8. An illustration of the starch granule swelling, gelatinization, and depolymerization 
process [38]. Reprinted/adapted with permission from Ref. [38]. 2008, Elsevier, License Number 
5400560644122. 

4.3. Enzymatic Treatments 
The modification of starch, utilizing the enzyme porcine pancreatic (alpha-amylase), 

has been investigated, revealing that heat causes the inter- and intra-molecular hydrogen 
bonds between starch chains to break, which causes water-dissolved starch granules to 
enlarge and subsequently disintegrate [124]. As gelatinization progresses, more starch 
chains become available to the digestive enzymes. However, the partially gelatinized 
starch samples revealed variations in enzymatic action, primarily in the early stages of 
digestion but less at the full extent. Native and pre-gelatinized starch samples displayed 
maximum hydrolysis values, comparable but somewhat (by 5%) less than those of 
gelatinized starch. This suggests that similar levels of enzyme-resistant starch residues 
existed in native and partially gelatinized samples. 

By putting physical restrictions on the accessibility of the enzymes, the remaining 
crystallites may potentially have an impact on the enzymatic digestibility. Additionally, 
the crystalline morphology led to variations in the pattern of enzymatic hydrolysis. 
However, the leftover crystallites’ impacts may alter the enzymatic hydrolysis pattern 
(digestion), particularly in the late and intermediate phases. The formation of the 
amorphous matrix, which in these studies was exclusively made up of amylopectin, 
significantly influenced the different digesting behaviors among the partially gelatinized 
and retrograded waxy rice starch samples, as shown by the hydrolysis patterns [49,124]. 

The effect of enzymatic hydrolysis by debranching enzymes, such as pullulanase, on 
the properties of cassava starch-based wood adhesive was investigated by Wang et al. 
[125]. In contrast to alpha-amylase, which hydrolyzes starch at α-1,4-glucosidic bonds, 
pullulanase hydrolyzes α-1,6-glucosidic bonds to branch off the starch and produce linear 
chains of amylose, maltose, or glucose. Markedly, the industrial significance of this 
debranching enzyme is growing worldwide due to its potential for regulating the existing 
methods of starch processing [126,127]. The authors reported that moderate enzymatic 
hydrolysis for 2 h of starch molecule improved the properties of the starch-based wood 
adhesive, resulting in enhanced bonding strength in both dry and wet states and 

Figure 8. An illustration of the starch granule swelling, gelatinization, and depolymerization pro-
cess [38]. Reprinted/adapted with permission from Ref. [38]. 2008, Elsevier, License Number
5400560644122.

The associative bonds between the starch in the granule determine the clarity of the
starch paste. Waxy or modified starches are typically utilized to avoid opacity if it is
an undesirable product attribute. Except for potato starch, native starch pastes exhibit
relatively poor clarity [119,120]. For rice, wheat, and corn starches, sonication in ethanol
resulted in a slight reduction in paste clarity but had no effect on paste clarity for potato
and corn starches. Water modifications greatly impacted the potato starch paste’s clarity,
increasing it, but they had no discernible impact on the other starches. The disruption
of swelling granules during the sonication process increased the clarity of starch pastes.
However, there is a lack of knowledge regarding this determination for granulated starches
that have been sonicated [119,120,122].

4.3. Enzymatic Treatments

The modification of starch, utilizing the enzyme porcine pancreatic (alpha-amylase),
has been investigated, revealing that heat causes the inter- and intra-molecular hydrogen
bonds between starch chains to break, which causes water-dissolved starch granules to
enlarge and subsequently disintegrate [124]. As gelatinization progresses, more starch
chains become available to the digestive enzymes. However, the partially gelatinized starch
samples revealed variations in enzymatic action, primarily in the early stages of digestion
but less at the full extent. Native and pre-gelatinized starch samples displayed maximum
hydrolysis values, comparable but somewhat (by 5%) less than those of gelatinized starch.
This suggests that similar levels of enzyme-resistant starch residues existed in native and
partially gelatinized samples.

By putting physical restrictions on the accessibility of the enzymes, the remaining
crystallites may potentially have an impact on the enzymatic digestibility. Additionally, the
crystalline morphology led to variations in the pattern of enzymatic hydrolysis. However,
the leftover crystallites’ impacts may alter the enzymatic hydrolysis pattern (digestion),
particularly in the late and intermediate phases. The formation of the amorphous matrix,
which in these studies was exclusively made up of amylopectin, significantly influenced
the different digesting behaviors among the partially gelatinized and retrograded waxy
rice starch samples, as shown by the hydrolysis patterns [49,124].

The effect of enzymatic hydrolysis by debranching enzymes, such as pullulanase, on
the properties of cassava starch-based wood adhesive was investigated by Wang et al. [125].
In contrast to alpha-amylase, which hydrolyzes starch at α-1,4-glucosidic bonds, pullu-
lanase hydrolyzes α-1,6-glucosidic bonds to branch off the starch and produce linear chains
of amylose, maltose, or glucose. Markedly, the industrial significance of this debranching
enzyme is growing worldwide due to its potential for regulating the existing methods
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of starch processing [126,127]. The authors reported that moderate enzymatic hydrolysis
for 2 h of starch molecule improved the properties of the starch-based wood adhesive,
resulting in enhanced bonding strength in both dry and wet states and significantly de-
creased viscosity of the adhesive, allowing its better workability and penetration in the
wood substrate. The higher amylose content produced by this enzyme treatment results in
starch with better water resistance and is very useful for several applications, such as adhe-
sives. Starch with pullulanase enzyme pretreatment is more adhesive with lower viscosity
than without treatment, resulting in better contact with the substrate. This treatment also
provides more grafting sites on the starch, thereby increasing the adhesive formulation’s
performance and bonding strength. However, it also causes a higher tendency of starch
retrogradation [126,127].

In vivo plasma glucose and insulin responses are favorably associated with the degree
of gelatinization [124,128]. The amount of native or partially gelatinized starch in foods is
particularly significant from a nutritional standpoint because some processed products con-
tain starches that are not fully gelatinized. Because they have health-promoting properties,
native or minimally processed cereal products are increasingly being consumed in Korea
and other Asian nations in place of traditional meals [16,20]. Enzymatic digestion of starch
is substantially slowed down by incomplete gelatinization. The digesting rate decreased
as the melting enthalpy rose. The relative melting enthalpy of the retrograded or partially
gelatinized starch samples is strongly linked with the percentages of slowly soluble and
resistant starch.

5. Starch-Bonded Wood-Based Composites
5.1. Plywood

Wood composites, including plywood, make use of synthetic formaldehyde-based ad-
hesives, such as UF, melamine-formaldehyde (MF), melamine-urea-formaldehyde (MUF),
and phenol-formaldehyde (PF), as frequently used resins [129,130]. Environmental and
health issues have also prompted efforts to use more friendly adhesives, such as latex [131],
soy protein [132], lignin [133,134], and tannin [135,136]. Several studies have also modified
conventional adhesives using starch to reduce formaldehyde emissions in plywood prod-
ucts or using starch as a base. Substitution of 20% PF adhesive with cornstarch-quebracho
tannin-based adhesive in plywood production can reduce formaldehyde emissions by 26%
and improve the water-resistance of the panels [54,137]. The optimal replacement values
were 15% cornstarch and 5% quebracho tannin. Markedly, the plywood produced had
better mechanical properties and bond quality than 100% PF-bonded plywood. Another
study also reported a decrease in plywood formaldehyde emissions, which was propor-
tional to the addition of starch [138]. They reported that adding OS-based adhesives to UF
adhesives up to 10% based on resin’s solid content could reduce formaldehyde emissions
and significantly improve the mechanical properties of plywood.

The dry tensile shear strength (TSS) values of plywood bonded with OS-based adhe-
sives at different H2O2/starch mole ratios and different contents and types of cross-linkers
are presented in Table 3 [56]. As a control, pure OS without a cross-linker was used to
prepare plywood panels, but the TSS value was only approximately 0.61 MPa, which did
not meet the minimum plywood requirement of 0.70 MPa. After adding a cross-linker,
the plywood’s TSS increased with increasing cross-linker content and met the minimum
plywood requirement. This result showed that the addition of a cross-linker significantly
improved the OS adhesive’s performance by increasing the cross-linking density and form-
ing a bigger network than without the cross-linker. However, the results also showed that
TSS values decreased as the H2O2/starch mole ratio increased. The results suggested that
an H2O2/starch mole ratio of 0.5 was optimal for B-pMDI/OS, and an H2O2/starch mole
ratio of 1.0 was selected for CA/OS.
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Table 3. Tensile shear strength (MPa) of plywood bonded with OS adhesive at different H2O2/starch
mole ratios, contents, and cross-linkers [56].

H2O2/Starch
Mole Ratio

B-pMDI Level (wt%) CA Level (wt%)

5 7.5 10 5 7.5 10

Control 0.61 (0.06) 0.61 (0.06)

0.5 0.95 (0.08) 1.13 (0.07) 1.35 (0.10) 0.92 (0.07) 0.96 (0.07) 0.98 (0.05)

1.0 0.96 (0.05) 0.97 (0.07) 0.99 (0.06) 1.01 (0.07) 1.05 (0.08) 1.18 (0.07)

1.5 0.94 (0.10) 0.96 (0.04) 0.98 (0.04) 1.00 (0.08) 1.04 (0.09) 1.08 (0.05)

2.0 0.85 (0.12) 0.92 (0.12) 0.96 (0.12) 0.90 (0.11) 0.92 (0.10) 0.94 (0.10)

Furthermore, formaldehyde-free cornstarch-tannin (10:1) adhesive with hexamine as
a hardener could produce interior-grade plywood with mechanical properties comparable
to PF-bonded plywood [54,137]. This indicates that starch and tannin can be used as
interior plywood adhesives. Adding additives to starch-based wood adhesives could
improve the water resistance, while a small amount of isocyanate can significantly improve
plywood’s bonding strength and water resistance [13,59]. The reaction of isocyanates with
the hydroxyl groups of wood and starch is the key to this improvement. In addition,
esterified starch using blocked isocyanate could increase the strength of plywood. The
optimal ratios for plywood dry and wet strength from the adhesive system were 100:20
and 100:25, respectively [61]. The authors also suggested an optimum ratio of additives
to starch adhesives varying from 4 to 6%. In addition to isocyanate, dodecyl succinic
anhydride (DDSA) can also be used as a modifier of starch adhesive for plywood [76,78].
The crosslinking structure from the polar -NCO groups and the hydroxyl group in starch
can prevent water penetration into the adhesive layer, resulting in plywood with better
bonding strength and water resistance.

Plywood has also been prepared using OS-based adhesive, modified with pristine-
bentonite (P-BNT) and transition metal ion modified-bentonite (TMI-P-BNT) nanoclays
to produce a free formaldehyde emission panel [3]. They reported that the modification
using 5% TMI-P-BNT nanoclay increased the bonding strength with higher values than
the UF-bonded plywood. Recently, cassava starch grafted with glycidyl methacrylate
(GMA) and then crosslinked with sodium trimetaphosphate (STMP) has been utilized
for the manufacture of plywood [139,140]. As depicted in Figure 9, before the plywood
manufacturing process, polyarylpolymethylene isocyanate (PAPI) was mixed as a chain-
extending agent [140]. GMA grafting increased the hydrophobicity and shear strength of
starch adhesives. The wet shear strength of the grafted starch adhesive increased by 163%,
compared to the unmodified starch adhesive. GMA grafted starch particles become smaller,
making the resulting adhesive easier to penetrate the plywood bonding interface.

Hellmayr et al. investigated the feasibility of using an aqueous mixture of equal quan-
tities of corn starch and sodium lignosulfonate for bonding beech veneers [4]. The authors
reported that the developed adhesive mixture exhibited excellent bonding characteristics
comparable with industrial UF adhesives. The presence of sodium lignosulfonate in the
adhesive mixture was crucial for its plasticizing, dispersing, and water-retarding properties.

Xi et al. fabricated three-layer plywood panels bonded with chitosan-oxidized starch
wood adhesive [141]. They found that utilizing 10% sodium periodate on the weight of the
starch to oxidize it led to the best chitosan-oxidized starch adhesive, which was produced
by treating a mixture of 8% oxidized starch and chitosan at room temperature. Zhang
et al. developed a renewable starch-furanic adhesive with good water resistance using
crosslinkers derived from agricultural sources, such as furfural and furfuryl alcohol [142].
Compared to starch, starch-furfural, and phenol-formaldehyde adhesives, the water resis-
tance of the starch-furfural-furfuryl alcohol adhesive was further improved when it was
crosslinked with 9% epoxy resin.
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5.2. Particleboard

Conventionally, formaldehyde-based adhesives are commonly used in particleboard
production. PF resin is usually used because it provides better water resistance and
mechanical properties to the panels [143], while UF adhesives are used for interior-grade
particleboards due to their poor resistance in a humid environment [144]. Various bio-
based, formaldehyde-free adhesives have also been developed for bonding particleboards,
particularly starch-based adhesives. The mechanical characteristics of rubberwood (Hevea
brasiliensis) particleboards bonded, utilizing oil palm starch, wheat starch, and UF resin
were found to meet the relevant Japanese industrial standards (JIS) [145]. Oil palm starch-
based particleboards had greater mechanical qualities but inferior dimensional stability
than panels bound with wheat starch. Both starch-based adhesive particleboards exhibited
lower dimensional stability than the UF-bonded particleboards due to the hydrophilic
nature of starch [146].

Sulaiman et al. reported that rubberwood particleboards fabricated using rice starch-
based wood adhesive had mechanical properties comparable with the applicable JIS [147].
Modifying rice starch using epichlorohydrin resulted in higher particleboard properties,
and further improvement was obtained by adding a small amount of UF resin. Similar
results were also reported by epichlorohydrin-modified oil palm starch adhesives [147].
However, a significant drawback of the developed composites was the deteriorated dimen-
sional stability. Selamat et al. made particleboards using carboxymethyl starch adhesive,
produced from modified oil palm starch using phosphoryl chloride [148]. The mechani-
cal properties of particleboards bonded using carboxymethyl starch met the JIS for type
8 particleboard except for the modulus of rupture (MOR) value. The addition of 2% UF
resin was required to fulfill the standard requirement. Lamaming et al. reported that
adding polyvinyl alcohol to carboxymethyl starch adhesive resulted in better mechanical
properties and dimensional stability of particleboards than the addition of 2% UF resin
reported in previous studies [149]. However, its dimensional stability still did not meet the
standard requirements. Furthermore, particleboards bonded with a mixture of oil palm
starch, PVA, and nano-silicon dioxide (70:30:3) have better dimensional stability, MOE, and
MOR than particleboard bonded with UF [150].

Islam et al. fabricated jute stick-based particleboards bonded with a bio-adhesive,
composed of natural rubber latex, combined with starch and formic acid at different
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blending proportions, i.e., 6:1:1, 2:1:1, and 2:3:3 [15]. The optimal results were obtained
using the formula 2:3:3 (natural rubber latex/starch/formic acid). The particleboard’s
physical and mechanical properties fulfilled the standard’s requirements. Markedly, the
laboratory-fabricated particleboard panels exhibited satisfactory thermal performance, with
thermal decomposition of samples occurring within the range of 265 to 399 ◦C.

Recently, the development of a fully bio-based wood adhesive for manufacturing
three-layer laboratory-scale particleboard panels composed of corn starch, Mimosa tannin,
citric acid, and sugar [93,151,152]. The composites were fabricated with the developed
bio-based adhesive composition with 20% and 25% resin solid by weight for the surface
layers and core layer, respectively. The panels bonded with the bio-based wood adhesive
exhibited good physical and mechanical properties, fulfilling the P2-type particleboards
(interior grade) requirements according to the EN 312 standard [153]. The same authors
developed a green binder formulation for wood-based panel manufacturing that includes
oxidized corn starch and urea. The adhesive structure was made stronger by the use of
titanium dioxide nanoparticles. The findings demonstrated that the proposed adhesive
could be employed in a hybrid adhesive system with MUF resin to produce particleboards
with little formaldehyde concentration [55,93].

The feasibility of using agro-forest residues as alternative raw materials for parti-
cleboard manufacturing using cassava starch and UF resin as adhesives was evaluated
by Mensah et al. [154]. Based on the results obtained for the physical and mechanical
properties of the fabricated composites, the authors concluded that the boards could be
used in indoor applications for general purposes. Another study investigated the feasibil-
ity of manufacturing particleboards from the combinations of insect rearing residue and
rice husks bonded with citric acid/tapioca starch-based bio-adhesive [155]. The authors
reported that only the laboratory board, composed of 50 wt% rice husk, 20 wt% insect
rearing residue, and 30 wt% bio-based adhesives, fulfilled JIS standard requirements for
type 8 particleboard.

Chotikhun et al. studied the mechanical characteristics and formaldehyde release of
particleboards made from Eastern red cedar (Juniperus virginiana) utilizing SiO2 nanopar-
ticles mixed with modified starch as a bio-based adhesive [156]. The authors fabricated
nine different types of boards at three target densities of 600, 700, and 800 kg/m3 and
nanoparticle contents of 0%, 1%, and 3%. The composites were characterized by a very low
formaldehyde content of 0.07 ppm.

5.3. Medium-Density Fiberboard (MDF)

The most commonly used synthetic formaldehyde-based resins for manufacturing
MDF are UF or PF resins, and these thermosetting wood adhesives have received most of
the research and industrial attention due to widespread use of the composites [157,158].
However, their use is associated with serious threats to the environment and human health,
related to the number of dust particles generated during processing and the emission of
free formaldehyde and other volatile organic compounds, particularly indoors [159,160].

Different bio-based wood adhesives, based on starch [114,161], modified condensed
and hydrolyzed tannins [162], soy protein [163], lignin [164], polysaccharides [165,166],
and mycelium [167] have been used to partially replace UF or PF resins in the manufacture
of MDF to create sustainable, ‘green’ solutions to formaldehyde-based adhesives. Other
alternative examples include binderless fiberboards, which must undergo rigorous chemical
and physical processes that result in large volumes of concentrated wastewater [168,169].
An alternative to the above approaches could be the application of thermoplastic starch
as a bio-based adhesive. Small polar organic chemicals, such as glycerol, water, urea,
formamide, and ethanolamine, can plasticize starch by breaking the internal hydrogen
bonds between the anhydro-glucose monomers. The crystalline sections are disrupted,
making the structure more amorphous [170]. A study attempted to fabricate MDF from
starch using extrusion, where a Prism TSE-24-TC co-rotating twin screw extruder (20 L/D)
was used for extrusion together with air swept face-cut pelletizing system and a Prism
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volumetric feeder [161]. The extruder has five temperature-controlled areas; the first was
kept at 80 ◦C, while the other four were kept at 120 ◦C.

Recent research reported the modification of starch using oxidation with H2O2 and
reinforcing it with different levels of B-pMDI [56,58]. The preliminary results showed that
MDF could be fabricated with oxidized starch/B-pMDI, and the panels were characterized
by a close-to-zero formaldehyde content (∼0.025 mg/L) which probably originated from
wood fiber. However, the laboratory-fabricated MDF panels exhibited poor physical and
mechanical properties, vastly inferior to the UF-bonded panels. Therefore, further and
comprehensive study is needed to understand the modification of starch as an adhesive in
MDF manufacturing. Our group attempted to reinforce oxidized starch with 3% PVOH and
decrease the level of B-pMDI added to oxidized starch. The MDF bonded with this oxidized
starch is expected to overcome the low physical and mechanical properties and compete
with MDF bonded with UF resins. The main advantage of using starch as a bio-based wood
adhesive is the low formaldehyde release from the panels and their easier recyclability.
However, MDF panels bonded with oxidized starch-based adhesives were more susceptible
to surface-inhabiting molds than the control UF-bonded panels [57].

5.4. Laminated Veneer Lumber

A type of engineered wood known as laminated veneer lumber (LVL) is produced
by stacking multiple wooden layers along the grain direction of wood veneers [171].
Although the production of LVL has increased significantly in recent years, owing to
its versatility in many fields, the use of bio-based adhesive has not yet progressed to
widespread practical use. Literature reports on applying starch-based adhesive as a binder
for LVL manufacturing are scarce. One of the studies reported the application of natural
starch modified by sodium hypochlorite (NaOCl) and sulfuric acid (H2SO4) as a filler for
UF resin, aiming to reduce the formaldehyde emission of LVL [172]. The research indicates
that when the modified oxidized starch concentration in the UF resin grew, the strength of
the LVL also increased.

Aiming to enhance bio-based adhesive’s practicality and utilization rate, Xiong et al.
produced LVL, bonded with cornstarch-based adhesive [171]. Despite showing good
cohesive and film-forming properties, the cornstarch emulsion prepared by the authors
failed to meet the requirements for LVL’s water endurance bonding strength and pre-
formability. To solve the problem, the authors incorporated a tackifier, reinforcing agent,
and filler into the cornstarch emulsion. Wheat flour was utilized as a filler, PVOH as
a tackifier, and pMDI pre-polymer as a reinforcing agent. Engineered wood flooring
bonded with the modified cornstarch adhesive displayed satisfactory properties, such as
high mechanical properties, good adhesion properties, and very low formaldehyde.

Laminates were produced from delignified Norway spruce (Picea abies) veneers,
bonded with modified corn starch adhesive [173]. The densified wood–starch laminates
displayed superior performances, i.e., a relatively low density of 1100 kg/m3, compared to
other matrix-containing composites with comparable mechanical properties. The wood–
starch laminates showed better specific tensile properties when compared with jute- or
paper-based materials and bio-based flax composites and were very close to that of glass
fiber-reinforced epoxy composites. The findings demonstrated a feasible process for pro-
ducing high-performance, all-bio-based composite laminates, using starch as an adhesive.

Besides plywood, particleboard, fiberboard, and LVL, starch-based adhesives have
also been used to produce other types of wood-based panels. Xiong et al. produced
a strawboard substrate veneer bonded with a cornstarch-based adhesive, combined with
a polyvinyl alcohol solution, flour, and poly-isocyanate pre-polymer [174]. The results
showed that the physical and mechanical properties of the mattress board veneer decorative
cover surpassed the Chinese national standard for decorative veneer (GB/T 15104-2006).
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6. Conclusions

Petrochemical resources have been in short supply since the turn of the century. Society
has vigorously advocated for sustainable development, and the global market of wood-
based composites has become increasingly strict with formaldehyde emission standards.
In this situation, it is vital to use environmentally safe, renewable, and biodegradable
resources, such as tannin, starch, lignin, and vegetable protein, to develop wood adhesives.
Bio-based adhesives represent a sustainable and eco-friendly alternative to the conventional
synthetic adhesive systems widely used in the wood-based panel industry. This review
demonstrated that starch, an abundant, renewable, and inexpensive natural raw material,
can be efficiently utilized in bio-based adhesives formulation to manufacturing eco-friendly
wood-based panels with acceptable properties. This can significantly lower the negative
environmental footprint of wood-based panels, stimulate the industry’s transition to a low-
carbon, circular bio-economy, and reduce its dependence on fossil-derived constituents.
However, it should be noted that most of the starch-based wood adhesives presented in this
work have only been tested at a laboratory scale and are not commonly adopted in industrial
practice. There are still major drawbacks to the wider commercial utilization of starch-
based wood adhesives, mainly due to their relatively low water resistance, low bonding
strength, and natural variations, which is a result of the growing conditions of starch
sources. Future research should be focused on starch modification and optimization of
production parameters to develop starch-based wood adhesives with optimal performance.
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