Mississippi State University Scholars Junction

Theses and Dissertations

Theses and Dissertations

8-11-2007

Continuous simulation of groundwater use and effluent discharge in catfish (Ictalurus punctatus) ponds at five locations in the Southeast U.S

Sugeng Triyono

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation

Triyono, Sugeng, "Continuous simulation of groundwater use and effluent discharge in catfish (Ictalurus punctatus) ponds at five locations in the Southeast U.S" (2007). *Theses and Dissertations*. 1172. https://scholarsjunction.msstate.edu/td/1172

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

CONTINUOUS SIMULATION OF GROUNDWATER USE AND EFFLUENT DISCHARGE IN CATFISH (*ICTALURUS PUNCTATUS*) PONDS AT FIVE LOCATIONS IN THE SOUTHEAST U.S.

By

Sugeng Triyono

A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Engineering in the Department of Agricultural and Biological Engineering

Mississippi State, Mississippi

August 2007

Copyright By

Sugeng Triyono

2007

CONTINUOUS SIMULATION OF GROUNDWATER USE AND EFFLUENT DISCHARGE IN CATFISH (*ICTALURUS PUNCTATUS*) PONDS AT FIVE LOCATIONS IN THE SOUTHEASTERN U.S.

By

Sugeng Triyono

Approved:

Thomas P. Cathcart Professor of Biological and Agricultural Engineering (Director of Dissertation) Jonathan W. Pote Professor of Biological and Agricultural Engineering (Committee Member)

Charles L. Wax Professor of Geosciences (Committee Member) Janice DuBien Associate Professor of Statistics (Committee Member)

Sandun Fernando Graduate Coordinator of the Department of Agricultural and Biological Engineering Glenn Steele Dean, Bagley College of Engineering Name: Sugeng Triyono

Date of Degree: August 11, 2007

Institution: Mississippi State University

Major Field: Biological Engineering

Major Professor: Dr. Thomas P. Cathcart

Title of Study:CONTINUOUS SIMULATION OF GROUNDWATER USE AND
EFFLUENT DISCHARGE IN CATFISH (ICTALURUS PUNCTATUS)
PONDS AT FIVE LOCATIONS IN THE SOUTHEAST U.S.

Pages in Study: 146

Candidate for Degree of Doctor of Philosophy

Long-term climatological data were used to evaluate the effectiveness of a drop/add management strategy to reduce groundwater use and effluent discharge in catfish ponds in the southeast U.S.. A drop/add approach is based on the creation of a storage volume in the pond for rainfall collection. The storage volume is created by allowing water level in the pond to decrease until some minimum level is reached. When the minimum level is reached, the pond is partly refilled, leaving the remaining volume available to capture incident precipitation. In this way, the role of precipitation in the water budget is increased. In the process, groundwater use and effluent release both become smaller.

The data consisted of 45 year precipitation and evaporation records from Fairhope, AL; Clemson, SC; Stoneville, MS, Stuttgart, AR; and Thomsons, TX. The data were used in a water balance levee pond model that included precipitation, evaporation, infiltration, overflow, groundwater pumping, and draining. The model appeared to

indicate that the drop/add management scheme is an effective strategy to reduce groundwater use and effluent discharge.

The simulated results showed that variation of climate in the southeast U.S. was an important determinant of performance of the drop/add management scheme. At locations with positive P-0.8E, zero groundwater use could be achieved with low drop depths. At location with negative P-0.8E, zero groundwater use could be achieved for about 50% of the 45 simulated years. The model also indicated that effluent discharge cannot be avoided at most locations except at location with very low (negative) P-0.8E. The model also indicated that 65 to 100% of annual precipitation (depending on the P-0.8E's of the locations) can be captured and used in the ponds. Rainwater contribution to the total water budget ranged from 90 to 100%.

The sensitivity analysis showed that model sensitivity to pan coefficient and infiltration rate was affected by infiltration rate and pond water storage capacity (drop depth). The model was more sensitive to pan coefficient rather than to infiltration rate at lower infiltration rates and *vice-versa*. Both sensitivities of the model, however, increased when pond water deeper storage capacity was used.

Key words: aquaculture, pond, model, drop/add scheme

DEDICATION

I would like to dedicate this research to my parents Harinto Samad and Seruni, and my wife Sri hartatik, my son Afid Fitro Setiawan, and my daughter Vina Dwiayu Wardhani.

ACKNOWLEDGMENTS

The author expresses his sincere gratitude to Dr. Thomas P. Cathcart, as the major professor, for his magnanimity in expending energy and time to guide and assist me throughout this research and dissertation process with patience. Expressed appreciation is also due to the other members of my dissertation committee, Dr. Jonathan W. Pote, Dr. Charles L. Wax, and Dr. Janice DuBien for the invaluable aid and direction.

TABLE OF CONTENTS

DEDIC	ATION	ii
ACKN(OWLEDGMENTS	iii
LIST O	F TABLES	vii
LIST O	F FIGURES	ix
СНАРТ	TER	
I.	INTRODUCTION	1
II.	LITERATURE REVIEW	8
	 2.1 Problems of Groundwater Overexploitation 2.2 Impacts of Eutrophication 2.3 Water Quality of Embankment Catfish Ponds 2.4 Drop-Add Management Strategy 2.5 Simulation Modeling in Aquaculture Ponds 	
III.	METHODOLOGY	
	3.4.6 Linked Pond System	42

IV.	RES	SULTS AND DISCUSSION	43
	4.1	Climate Characteristics	
	4.2.	Pond Performances4.2.1 Effect of Climate on Pond Performance4.2.2 Seasonal Evaluation4.2.3 Effect of Infiltration Rates4.2.4 Summary	61 61 66 71 80
	4.3	Effect of Deeper Fill Depths	
	4.4	Sensitivity Analysis	84
	4.5	Effect of Intentional Harvest Discharge	93
	4.6	Mass Discharge of Water Constituents	100
	4.7	Linked Pond System	
V.	CON	NCLUSION	115
REFERE	ENCE	S	118

APPENDIX

A.	SAS OUTPUTS OF ONE WAY CLASSIFICATION ANALYSIS OF VARIANCE AND LSD MULTIPLE COMPARISONS FOR ANNUAL PRECIPITATION AMONG LOCATIONS	127
B.	SAS OUTPUTS OF ONE WAY CLASSIFICATION ANALYSIS OF VARIANCE AND LSD MULTIPLE COMPARISONS FOR ANNUAL P-0.8E AMONG LOCATIONS	130
C.	SAS OUTPUTS OF TWO-WAY CLASSIFICATION ANALYSIS OF VARIANCE AND LSD MULTIPLE COMPARISONS FOR SEASONAL PRECIPITATION	133

D.	SAS OUTPUTS OF TWO-WAY CLASSIFICATION ANALYSIS OF	
	VARIANCE AND LSD MULTIPLE COMPARISONS FOR	
	SEASONAL P-0.8E	138
E.	SAS OUTPUT OF THREE-WAY CLASSIFICATION ANALYSIS OF	
	VARIANCE FOR P-0.8E'S OF 15-YEAR BLOCKS	143

LIST OF TABLES

TABI	LE	Page
1.	World Availability of Water Resources	9
2.	Annual Precipitation	43
3.	Annual Accumulation of P-0.8E	46
4.	Seasonal Average of 45 Year Precipitations	49
5.	Seasonal Average of 45 Year P-0.8E	50
6.	Seasonal Accumulation of P-0.8E's among 15-Year Blocks at Fairhope	57
7.	Seasonal Accumulation of P-0.8E's among 15-Year Blocks at Clemson	57
8.	Seasonal Accumulation of P-0.8E's among 15-Year Blocks at Stoneville	57
9.	Seasonal Accumulation of P-0.8E's among 15-Year Blocks at Stuttgart	58
10.	Seasonal Accumulation of P-0.8E's among 15-Year Blocks at Thomsons	58
11.	Annual P-0.8E's among 15-Year Blocks at Each Location	58
12.	Groundwater Use and Effluent Discharge of 15/7.5 and 45/7.5 Management Schemes Using Pan Coefficient=0.8 at 0.1 cm/day and 0.4 cm/day Infiltration Rates, as Base Sets for Sensitivity Analysis	85
13.	Relative Sensitivity of Groundwater Use to Pan Coefficient	89
14.	Relative Sensitivity of Effluent Discharge to Pan Coefficient	89
15.	Relative Sensitivity of Groundwater Use to Infiltration	92
16.	Relative Sensitivity of Effluent Discharge to Infiltration	92

17.	Concentrations of Selected Water Quality Variables (Means and Ranges) in Potential Overflow Effluents from 20 Commercial Channel Catfish Ponds in Northwest Mississippi Sampled over 2 Years. TSS = Total	
	Suspended Solids; TN = Total Nitrogen; TP = Total Phosphorus; BOD5 = 5 Day Biochemical Oxygen Demand	100
18.	Mass Discharge (kg/ha/year) of Selected Water Quality Variables Using Schemes 15/7.5 and 45/7.5 at Infiltration Rate of 0.1 cm/day at Fairhope	101
19.	Mass Discharge of Selected Water Quality Variables Using Schemes 15/7.5 and 45/7.5 at Infiltration Rate of 0.1 cm/day at Clemson	102
20.	Mass Discharge of Selected Water Quality Variables Using Schemes 15/7.5 and 45/7.5 at Infiltration Rate of 0.1 cm/day at Stoneville	102
21.	Mass Discharge of Selected Water Quality Variables Using Schemes 15/7.5 and 45/7.5 at Infiltration Rate of 0.1 cm/day at Stuttgart	103
22.	Mass Discharge of Selected Water Quality Variables Using 15/7.5 and 45/7.5 Schemes at Infiltration Rate of 0.1 cm/day at Thomsons	104

LIST OF FIGURES

FIGURE		Page
1.	Locations and P-0.8E values for the locations used in this study	31
2.	Histogram of Annual Precipitation at Each Location	45
3.	Histogram of Annual P-0.8E at Each Location	48
4.	Histogram of Seasonal P-0.8E at Each Location	52
5.	Monthly Precipitation and Pond Evaporation at Each Location	54
6.	Cumulative P-0.8E's in One Year Cycle for Each of 15-Year Blocks	60
7.	Pond Performance of Schemes with Various Drop Depths and 7.5 cm Fill Depth at Zero Infiltration	65
8.	Seasonal Groundwater Use of Schemes with Various Drop Depths and 7.5 cm Fill Depth at Zero Infiltration	68
9.	Seasonal Effluent Discharge of Schemes with Various Drop Depths and 7.5 cm Fill Depth at Zero Infiltration	69
10.	Average of Pond Water Level for a 45/7.5 Management Scheme at Zero Infiltration	70
11.	Effect of Infiltration Rates on Pond Performance of Schemes with Various Drop Depths and 7.5 cm Fill Depth at Fairhope	73
12.	Effect of Infiltration Rates on Pond Performance of Schemes with Various Drop Depths and 7.5 cm Fill Depth at Clemson	75
13.	Effect of Infiltration Rates on Pond Performance of Schemes with Various Drop Depths and 7.5 cm Fill Depth at Stoneville	76
14.	Effect of Infiltration Rates on Pond Performance of Schemes with Various Drop Depths and 7.5 cm Fill Depth at Stuttgart	77

15.	Effect of Infiltration Rates on Pond Performance of Schemes with Various Drop Depths and 7.5 cm Fill Depth Thomsons	79
16.	Pond Water Level for a 45/7.5 Scheme and 0.1 cm/day Infiltration Rate	81
17.	Groundwater Use and Effluent Discharge of Schemes with a 45 cm Drop Depth and Various Fill Depths from 2.5 to 45 cm at Each Location	83
18.	Increase of Effluent Discharge from One Time Harvest per Year of a 45/7.5 Management Scheme at 0.1 cm/day Infiltration	95
19.	Increase of Effluent Discharge from Two Time Harvests per Year of a 45/7.5 Management Scheme at 0.1 cm/day Infiltration	96
20.	Increases of Effluent Discharge from One Time Harvest per Year of a 45/7.5 Management Scheme at 0.1 cm/day Infiltration if Water is Transferred to Adjacent Pond	99
21.	Effect of Infiltration Rate on Groundwater Use of Production/Storage Ponds with Various Drop Depths and a 7.5 cm Fill Depth	108
22.	Effect of Infiltration Rate on Effluent Discharge of Production/Storage Ponds with Various Drop Depths and a 7.5 cm Fill Depth	110
23.	Effect of Infiltration Rate on Rainwater Stored of Production/Storage Ponds with Various Drop Depths and a 7.5 cm Fill Depth	112
24.	Pond Water Level of Production/Storage Pond at 0.1 cm/day Infiltration Rate at Each Location	114