PAPER NAME
Wamiliana_2019_J._Phys._Conf._Ser._1 Aang Nuryaman 338_012043.pdf

WORD COUNT
2556 Words

PAGE COUNT

7 Pages

SUBMISSION DATE

Oct 20, 2022 9:01 AM GMT+7

CHARACTER COUNT
10667 Characters

FILE SIZE
848.3KB

REPORT DATE
Oct 20, 2022 9:02 AM GMT+7

- 15% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 12% Internet database
- Crossref database
- 9\% Submitted Works database
- Excluded from Similarity Report
- Bibliographic material
- Cited material
- Manually excluded sources
- 14\% Publications database
- Crossref Posted Content database
- Quoted material
- Small Matches (Less then 10 words)

PAPER • OPEN ACCESS

Determining the Number of Connected Vertices Labelled Graph of Order Five with Maximum Number of Parallel Edges is Five and Containing No Loops

IOP ebooks"

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

Determining the Number of Connected Vertices Labelled Graph of Order Five with Maximum Number of Parallel Edges is Five and Containing No Loops

Wamiliana ${ }^{1,{ }^{*}}$, A Nuryaman ${ }^{1}$, Amanto 1, A Sutrisno ${ }^{1}$ and N A Prayoga ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Lampung, Indonesia
*Email: wamiliana.1963@fmipa.unila.ac.id

Abstract

A connected graph is a graph where there exists at least a path joining every pair of the vertices in the graph, and a graph is called simple if that graph containing no loops nor parallel edges. Given a graph $G(V, E)$ with n vertices and m edges, there are a lot of graph that can be formed, either connected or disconnected, or simple or not simple. In this paper we will discuss the number of connected vertex labelled graph of order five ($n=5$) and $4 \leq m \leq 10$, with maximum number of parallel edges that connecting different pairs of vertices is five (the parallel edges that connecting the same pair of vertices are counted as one).

1. Introduction

Emerging as a new concept in mathematics after the representation and solution given by Euler in 1736 about the Konigsberg's problem, nowadays graph theory plays an important role especially in representing many real-life problems into the concept of graph. The two terminologies in graph that usually used to represent the real-life problem are vertines and edges. The vertices can be used to represent cities, stations, depots, warehouses, airports, and so on; while the edges can be used to represent roads, train tracks, airline routes, and so on. The nonstructural information that usually assigned to the edges can represent weight/capacity/cost/distance/time, etc. To draw a graph, there is no single correct way [1], and therefore that rule makes it flexible to represent any real-world problem. Because of its flexibility to accommodate diverse applications in daily-life, graph theory grows as one important area in mathematics. A comprehensive applications of graph theory in diverse areas in operations research and optimization including internet congestion control, data structures, algorithms, scheduling and resource allocation, and some combinatorial problems are exposed and discussed in [2]. Some application related with interconnection networks were given comprehensively in [3].

Graph enumeration problem was led by Cayley who interested in counting the isomer of hydrocarbon and found that the problem is related or similar with counting tree problem [4]. Some methods to enumerate and label graphs were given in [5-7]. The formula for counting simple graphs were given in $[4,8]$, and the formula for counting simple labelled graph were given as $\left(\frac{n(n-1)}{2}\right)$, where n is the graph order and e is the number of edges [4], and of course, there are possibilities that the graphs obtained were disconnected or connected, and if the graph were connected then it must be tree, or if disconnected then it must contain circuit, because in that formula $\mathrm{e}=\mathrm{n}-1$.

.
fiven graph $G(V, E)$ of order n and the number of edges m, then there are many possible graphs can be constructed. That is possible that those graphs are simple which means those graphs not containing any loops nor parallel edges; or it also possible that those graphs are connected, or disconnected. For graph with order maximal four, the number of disconnected vertices labelled graphs is investigated [9]. For graph with order five, the number of disconnected vertices labelled graphs without parallel edges is investigated in [10]. This paper is orgarized as follow: Section 1 is Introduction. Graph Construction, Observation, and Patterns Obtained will be given in Section 2. In Section 3 will be given The Results and Discussion, followed by Conclusion in Section 4.

2. Graph Construction, Observation and Patterns Obtained

4iven a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ with $|\mathrm{V}|=\mathrm{n}=5$, and Let: $|\mathrm{E}|=\mathrm{m}, 4 \leq \mathrm{m} \leq 10$. Let $\mathrm{g}=\mathrm{p}_{0}=$ the number of non parallel edges, $\mathrm{p}_{\mathrm{i}}=\mathrm{i}$-parallel edges $; \mathrm{i} \geq 2$, and $\mathrm{j}_{\mathrm{i}}=$ the number of i-parallel edges, then $\mathrm{m}=$ $\mathrm{p}_{0}+\sum_{\mathrm{i}=2} \mathrm{j}_{\mathrm{i}} \cdot \mathrm{p}_{\mathrm{i}}$

Figure 1. Example of a graph with 3-parallel and 5-parallel edges.
From Figure $1 \mathrm{n}=5 ; \mathrm{m}=12, \mathrm{p}_{0}=\mathrm{g}=4, \mathrm{p}_{3}=1, \mathrm{p}_{5}=1, \mathrm{j}_{3}=1, \mathrm{j}_{5}=1$
$\mathrm{m}=\mathrm{p}_{0}+\sum_{\mathrm{i}=2} \mathrm{j}_{\mathrm{i}} \cdot \mathrm{p}_{\mathrm{i}}$
$m=p_{0}+j 3 \cdot p_{3}+j_{5} \cdot p_{5}+p_{0}$
$\mathrm{m}=4+(1 \times 3)+(1 \times 5)=12$
Table 1. The number of graphs for $\mathrm{m}=4, \mathrm{~g}=4$
Table 2. The number of graphs for $\mathrm{m}=5, \mathrm{~g}=5$
Pattern \quad The number of graphs
The number of graphs

IOP Conf. Series: Journal of Physics: Conf. Series 1338 (2019) 012043 doi:10.1088/1742-6596/1338/1/012043

The following tables 1 and table 2 show some graph patterns and the number of graphs obtained. However, due to the space limitation, not all patterns will be given.

There are many more connected graphs constructed, however, because of the space limitation, the patterns are not exposed here. The following table shows the results:

Table 3. The number of graphs for $n=5,4 \leq m \leq 10$

No	The number of iparallel edges	The numbers of connected graphs						
		m						
		4	5	6	7	8	9	10
1	p_{0}	125	222	205	110	45	10	1
2	$p_{2}=1$		500	1110	1230	770	360	90
3	$p_{2}=2$			750	2220	3075	2310	1260
4	$p_{3}=1$			500	1110	1230	770	360
5	$p_{2}=3$				500	2220	4100	3850
6	$p_{2}=1, p_{3}=1$				1500	4440	6150	4620
7	$p_{4}=1$				500	1110	1230	770
8	$p_{2}=4$					125	1110	3075
9	$p_{3}=2$					750	2220	3075
10	$p_{2}=2, p_{3}=1$					1500	6660	12300
11	$p_{2}=1, p_{4}=1$					1500	4440	6150
12	$p_{5}=1$					500	1110	1230
13	$p_{1}=1, p_{3}=2$						1500	6660
14	$p_{2}=1, p_{5}=1$						1500	4440
15	$p_{2}=2, p_{4}=1$						1500	6660
16	$p_{2}=3, p_{3}=1$						500	4440
17	$p_{3}=1, p_{4}=1$						1500	4440
18	$p_{6}=1$						500	1110
19	$p_{2}=5$							222
20	$p_{2}=1, p_{3}=1, p_{4}=1$							3000
21	$p_{2}=2, p_{3}=2$							750
22	$p_{2}=2, p_{5}=1$							1500
23	$p_{2}=3, p_{4}=1$							500
24	$p_{1}=1, p_{5}=1$							1500
25	$p_{3}=3$							500
26	$p_{4}=2$							750
27	$p_{6}=1, p_{2}=1$							1500
28	$p_{7}=1$							500

After grouping the graphs on Table 3 using ${ }_{2}^{8}$ ne number of non parallel edges, and m, the number of edges in the graphs, the number of graphs onr able 3 above can also be represented as follow:

Table 4. The number of graphs for $\mathrm{n}=5,4 \leq \mathrm{m} \leq 10$, and $4 \leq \mathrm{g} \leq 10$

		The number of graphs								
No.	m	g								
		4	5	6	7	8	9	10		
1	4	125								
2	5	500	222							
3	6	1250	1110	205						
4	7	2500	3330	1230	110					
5	8	4375	7770	4305	770	45				
6	9	7000	15540	11480	3080	360	10			
7	10	10500	27972	25830	9240	1620	90	1		

By looking at the value of every column in Table 4, we can derive Table 5 as an alternative for presenting Table $4 \stackrel{9}{\mathrm{a}}$ S follows:

Table 5. The alternative representation of Table 4

No	m	The number of connected graphs						
		g						
		4	5	6	7	8	9	10
1	4	1x125						
2	5	4×125	1x222					
3	6	10x125	5x222	1x205				
4	7	20x125	15x222	6x205	1x110			
5	8	35x125	35x222	21x205	7x110	1x45		
6	9	56x125	70×222	56x205	28x 110	8x45	1x10	
7	10	84x125	126x222	126x205	84×110	36x45	9x10	1x1

3. Results and Discussion

Notate the $\mathrm{G}_{5, \mathrm{~m}, \mathrm{~g}}$ as the connected vertex labelled graph without loops of order 5 with m edges, g non parallel edges, and maximum parallel edges is five, $4 \leq \mathrm{m} \leq 10$.
$N\left(G_{5, \mathrm{~m}, \mathrm{~g}}\right)=\left|\mathrm{G}_{5, \mathrm{~m}, \mathrm{~g}}\right|=$ the number of $\mathrm{G}_{5, \mathrm{~m}, \mathrm{~g}}$.
Result 1: For $4 \leq m \leq 10$ and $g=4, N\left(G_{5, \mathrm{~m}, 4}\right)=125 \times \mathrm{C}_{3}^{(\mathrm{m}-1)}$
Proof:
From the first column of Table 5 with $g=4$ we found a sequence of numbers occurs which are 1,4 , $10,20,35,56$, and 84 .

Since the fixed difference occurs on the third level, then that sequence related with the arithmetic polynomial of order three $a_{m}=\alpha_{1} m^{3}+\alpha_{2} m^{2}+\alpha_{3} m+\alpha_{4}$, where $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} are the constants need to be determined. By setting $\mathrm{m}=1,2,3$ and 4 we get the following system of equations:

$$
\begin{align*}
& 125=64 \alpha_{1}+16 \alpha_{2}+4 \alpha_{3}+\alpha_{4} \tag{1}\\
& 500=125 \alpha_{1}+25 \alpha_{2}+5 \alpha_{3}+\alpha_{4} \tag{2}\\
& 1250=216 \alpha_{1}+36 \alpha_{2}+6 \alpha_{3}+\alpha_{4} \tag{3}\\
& 2500=343 \alpha_{1}+49 \alpha_{2}+7 \alpha_{3}+\alpha_{4} \tag{4}
\end{align*}
$$

Solving this system of equations we get $a_{m}=\frac{125}{6} m^{3}-\frac{750}{6} m^{2}+\frac{1375}{6} m-\frac{750}{6}$ and by doing some mathematical calculation we get $a_{m}=125 \times \mathrm{C}_{3}^{(\mathrm{m}-1)}$. Therefore $\mathrm{N}\left(\mathrm{G}_{5, \mathrm{~m}, 4}\right)=125 \times \mathrm{C}_{3}^{(\mathrm{m}-1)}$

Result 2: For $4 \leq m \leq 10$ and $g=5, N\left(G_{5, m, 5}\right)=222 \times C_{4}^{(m-1)}$
Proof:
From Table 5, we can see that the numbers in column with $g=5$ formed a sequence of number which are $1,5,15,35,70,126$. This sequence is related with arithmetic polynomial of the fourth order.

$$
15540=12
$$

Solving this system of equations we get $\mathrm{a}_{\mathrm{m}}=\frac{222}{24} \mathrm{~m}^{4}-\frac{2220}{24} \mathrm{~m}^{3}+\frac{7770}{24} \mathrm{~m}^{2}-\frac{11100}{24} \mathrm{~m}+\frac{5328}{24}$ and by doing some mathematical calculation we get $\mathrm{a}_{\mathrm{m}}=222 \times \mathrm{C}_{4}^{(\mathrm{m}-1)}$.
Therefore $N\left(G_{5, m, 5}\right)=222 \times C_{4}^{(m-1)}$
Result 3 : For $4 \leq m \leq 10$ and $g=6, \quad N\left(G_{5, m, 6}\right)=205 \times C_{5}^{(m-1)}$
Proof:
From Table 5, we can see that the numbers in column with $g=6$ formed a sequence of numbers which are $1,6,21,56,126,252$. This sequence is related with arithmetic polynomial of fifth order $a_{m}=\alpha_{1} m^{5}+\alpha_{2} m^{4}+\alpha_{3} m^{3}+\alpha_{4} m^{2}+\alpha_{5} m+\alpha_{6}$

Therefore, we get:

$$
\begin{gather*}
205=7776 \alpha_{1}+1296 \alpha_{2}+216 \alpha_{3}+36 \alpha_{4}+6 \alpha_{5}+\alpha_{6} \tag{10}\\
1230=16807 \alpha_{1}+2401 \alpha_{2}+343 \alpha_{3}+49 \alpha_{4}+7 \alpha_{5}+\alpha_{6} \tag{11}\\
4305=32768 \alpha_{1}+4096 \alpha_{2}+512 \alpha_{3}+64 \alpha_{4}+8 \alpha_{5}+\alpha_{6} \tag{12}\\
11480=59049 \alpha_{1}+6561 \alpha_{2}+729 \alpha_{3}+81 \alpha_{4}+9 \alpha_{5}+\alpha_{6} \tag{13}\\
25830=100000 \alpha_{1}+10000 \alpha_{2}+1000 \alpha_{3}+100 \alpha_{4}+10 \alpha_{5}+\alpha_{6} \tag{14}\\
516600=161051 \alpha_{1}+14641 \alpha_{2}+1331 \alpha_{3}+121 \alpha_{4}+11 \alpha_{5}+\alpha_{6} \tag{15}
\end{gather*}
$$

Solving this system of equations we get $\mathrm{a}_{\mathrm{m}}=\frac{205}{120} \mathrm{~m}^{5}-\frac{3075}{120} \mathrm{~m}^{4}+\frac{17425}{120} \mathrm{~m}^{3}-\frac{46125}{120} \mathrm{~m}^{2}+\frac{56170}{120} \mathrm{~m}-$ $\frac{24600}{120}$, and by doing some mathematical calculation we get $\mathrm{a}_{\mathrm{m}}=222 \times \mathrm{C}_{4}^{(\mathrm{m}-1)}$.
Therefore $N\left(G_{5, m, 6}\right)=222 \times C_{5}^{(m-1)}$.

From the results 1,2 , and 3 we can see that the formulas obtained make a pattern which is a multiplication of a constant with combinations of (m-1) and (g-1) : $125 \times \mathrm{C}_{3}^{(\mathrm{m}-1)}, 222 \times \mathrm{C}_{4}^{(\mathrm{m}-1)}$, and $205 \times \mathrm{C}_{5}^{(\mathrm{m}-1)}$. Therefore, we can derive the following results:
Result 4: For $4 \leq m \leq 10$ and $g=7, N\left(G_{5, m, 7}\right)=110 \times C_{6}^{(m-1)}$
Result 5: For $4 \leq m \leq 10$ and $g=8, N\left(G_{5, m, 8}\right)=45 \times C_{7}^{(m-1)}$
Result 6: For $4 \leq m \leq 10$ and $g=9, N\left(G_{5, m, 9}\right)=10 \times C_{8}^{(m-1)}$
Result 7 : For $4 \leq m \leq 10$ and $g=10, N\left(G_{5, m, 10}\right)=1 \times C_{9}^{(m-1)}$

4. Conclusion

From discussion above we can complude that given $\mathrm{n}=5, \mathrm{~m}$ edges, $4 \leq \mathrm{m} \leq 10$, then the number of connected vertices labelled graphs with maximum number of parallel edges is five and containing no loops can be determined by its g , where g is the number of non parallel edges, which are:
a. For $4 \leq m \leq 10$ and $g=4, N\left(G_{n, m, 4}\right)=125 \times C_{3}^{(m-1)}$
b. For $4 \leq m \leq 10$ and $g=5, N\left(G_{n, m, 5}\right)=222 \times C_{4}^{(m-1)}$
c. For $4 \leq m \leq 10$ and $g=6, N\left(G_{n, m, 6}\right)=205 \times C_{5}^{(m-1)}$
d. For $4 \leq m \leq 10$ and $g=7, N\left(G_{n, m, 7}\right)=110 \times C_{6}^{(m-1)}$
e. For $4 \leq m \leq 10$ and $g=8, N\left(G_{n, m, 8}\right)=45 \times C_{7}^{(m-1)}$
f. For $4 \leq m \leq 10$ and $g=9, N\left(G_{n, m, 9}\right)=10 \times C_{8}^{(m-1)}$
g. For $4 \leq m \leq 10$ and $g=10, N\left(G_{n, m, 10}\right)=C_{9}^{(m-1)}$

References

[1] Bondy J A and U S R Murty 2000 Graph Theory Graduate Text in Mathematics (Berlin: Springer)
[2] Golumbic M C and Hartman I B 2005 Graph Theory, Combinatorics and Algorithms, Interdisciplinary Application (Berlin: Springer)
[3] Hsu L H and Lin C K 2009 Graph Theory and Interconnection Network (New York: Taylor and Francis Group, LLC)
[4] Vasudev C 2006 Graph Theory with Application (New Delhi: New Age International Limited)
[5] Harary F and E M Palmer 1973 Graphical Enumeration (New York: Academic Press)
[6] Stanley R P 1997 Enumerative Combinatorics 249 of Cambridge Studies in Advanced Mathematics (New York: Cambridge University Press)
[7] Stanley R P 1999 Enumerative Combinatorics 262 of Cambridge Studies in Advanced Mathematics (New York: Cambridge University Press)
[8] Agnarsson G and R D Greenlaw 2007 Graph Theory Modelling, Application, and Algorithms (New Jersey: Pearson/Prentice Education, Inc.)
[9] Amanto, Wamiliana, M Usman and Reni Permata Sari 2017 Counting the number of disconnected vertex labelled graphs of order maximal four Science International (Lahore) 296 pp 1181-1186
[10] Wamiliana, Amanto and G T Nagari 2016 Counting the number of disconnected labelled graphs of order five without parallel edges International Series on Interdisciplinary Science and Technology (INSIST) 11 pp 1-6

- 15\% Overall Similarity

Top sources found in the following databases:

- 12\% Internet database
- 14\% Publications database
- Crossref database
- Crossref Posted Content database
- 9% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1
Sriwijaya University on 2019-10-26
Submitted works

2
D Putri, Wamiliana, Fitriani, A Faisol, K S Dewi. "Determining the Numb...
Crossref

3 Pasca.unila.ac.id
Internet
iopscience.iop.org 1%
Internet

5
D Darwis, A Junaidi, Wamiliana. "A New Approach of Steganography U... < $\%$ Crossref

Wamiliana, Mustofa Usman, Warsono, Warsito. "Computational Aspec... <1\% Crossref

7
F A Pertiwi, Amanto, Wamiliana, Asmiati, Notiragayu. "Calculating th... Crossref

8
Amanto, Notiragayu, F C Puri, Y Antoni, Wamiliana. "Counting the num... $<1 \%$ Crossref

9 F C Puri, Wamiliana, M Usman, Amanto, M Ansori, Y Antoni. "The For... Crossref

- Excluded from Similarity Report

- Bibliographic material
- Cited material
- Manually excluded sources
- Quoted material
- Small Matches (Less then 10 words)

Wamiliana, A Nuryaman, Amanto, A Sutrisno, N A Prayoga. "Determining the
repository.lppm.unila.ac.id 14\%
Internet

