PAPER NAME

Generalization of U-Generator and M-Sub generator Related to Categori sigma[M]
 Fitriani Fitriani

AUTHOR

CHARACTER COUNT

17246 Characters

FILE SIZE
62.0KB

REPORT DATE
Aug 19, 2022 10:30 PM GMT+7

- 21% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 17\% Internet database
- Crossref database
- 10\% Submitted Works database
- Excluded from Similarity Report
- Bibliographic material
- Cited material
- Manually excluded sources
- 11\% Publications database
- Crossref Posted Content database
- Quoted material
- Small Matches (Less then 10 words)
- Manually excluded text blocks

Generalization of \mathcal{U}-Generator and M-Subgenerator Related to Category $\sigma[M]$

Fitriani ${ }^{1,2}$, Indah Emilia Wijayanti ${ }^{1}$ \& Budi Surodjo ${ }^{1}$
${ }^{1}$ Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia
${ }^{2}$ Department of Mathematics, Universitas Lampung, Bandar Lampung, Indonesia
Correspondence: Fitriani, Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Received: April 24, 2018 Accepted: May 9, 2018 Online Published: June 28, 2018
doi:10.5539/jmr.v10n4p101 URL: https://doi.org/10.5539/jmr.v10n4p101

Abstract

Let \mathcal{U} be a non-empty set of R-modules. R - ${ }_{5}$ dule N is generated by \mathcal{U} if there is an epimorphism from $\oplus_{\Lambda} U_{\lambda}$ to N, where $U_{\lambda} \in \mathcal{U}$, for every $\lambda \in \Lambda . R$-module A is a subgenerator for N if N is isomorphic to a submodule of an M generated module. In this paper, we introduce a \mathcal{U}_{V}-generator, where V be a submodule of $\oplus_{\Lambda} U_{\lambda}$, as a generalization of \mathcal{U}-generator by using the concept of V-coexact sequence. We also provide a \mathcal{U}_{V}-subgenerator motivated by the concept of M-subgenerator. Furthermore, we give some properties of \mathcal{U}_{V}-generated and \mathcal{U}_{V}-subgenerated modules related to category $\sigma[M]$. We also investigate the existence of pullback and pushout of a pair of morphisms of \mathcal{U}_{V}-subgenerated modules. We prove that the collection of \mathcal{U}_{V}-subgenerated modules is closed under submodules and factor modules.

Keywords: \mathcal{U}-generator, \mathcal{U}_{V}-generator, V-coexact sequences, M-subgenerator, \mathcal{U}_{V}-subgenerator

1. Introduction

concept of exact sequences of R-modules and R-module homomorphisms is a useful tool in the study of modules. A sequence $A \rightarrow B \rightarrow C$ is exact if $\operatorname{Imf}=\operatorname{Kerg}\left(=g^{-1}(0)\right)$. Davvaz and Parnian-Garamaleky (1999) provide the generalization of exact sequences, i.e. quasi-exact sequences. They substitute the submodule $\{0\}$ to any submodule U of C.

Then Anvariyeh dan Davvaz (2005) investigate further results about quasi-exact sequences. They also introduce the generalization of Schanuel's Lerma. Furthermore, Davvaz and ShabaniSolt (2002) give a generalization of some notions in homological algebra. In 2002, Anvariyeh and Davvaz provide U-split sequences. They also establish several connections between U-split sequences and projective modules.

Motivated by the definition of U-exact and V-coexact sequence, Fitriani et al. (2016) provide an X-sub exact sequence, which is a generalization of exact sequence. In 2017, they introduce X-sublinearly independent module by using the concept of X-sub exact sequence.
${ }^{1}$ et \mathcal{U} be a non-empty set of R-modules. An R-module N is generated by \mathcal{U} if there is an epimorphism from $\oplus_{\Lambda} U_{\lambda}$ to N, where $U_{\lambda} \in \mathcal{U}$, for every $\lambda \in \Lambda$. The trace of \mathcal{U} is defined by $\operatorname{Tr}(\mathcal{U}, M)=\sum\{\operatorname{Imh} \mid h: U \rightarrow M$, for some $U \in \mathcal{U}\}$. If $\mathcal{U}=\{U\}$ is a singleton, then $\operatorname{Tr}(U, M)=\sum\left\{\operatorname{Imh} \mid h \in \operatorname{Hom}_{R}(U, M)\right\} . \operatorname{Tr}(\mathcal{U}, M)$ is the unique largest submodule $L{ }_{8}^{\&} M$ generated by \mathcal{U} (Wisbauer, 1991). Clearly, $\operatorname{Tr}(\mathcal{U}, M)=M$ if and only if \mathcal{U} generates M (Anderson \& Fuller, 1992). 8 or an indexed set $\left(M_{\alpha}\right)_{\alpha \in A}$ of modules and class of modules \mathcal{U}, the direct sum of the traces $\operatorname{Tr}(\mathcal{U}, M)$ is contained in $\oplus_{A} M_{\alpha}$. The trace of M in an R-module N is the sum of all M-generated submodules of N (Clark et al., 2006).
Proposition 1 (Wisbauer, 1991) If $\left(M_{\alpha}\right)_{\alpha \in A}$ is an indexed set of modules, then for each module M

$$
\operatorname{Tr}\left(\mathcal{U}, \oplus_{A} M_{\alpha}\right)=\oplus_{A} \operatorname{Tr}\left(\mathcal{U}, M_{\alpha}\right) .
$$

Furthermore, an M-subgenerated module is defined as follows.
Definition 2 (Wisbauer, 1991) Let M be an R-module. We say that an R-module N is subgenerated by M, or that M is a subgenerator for N, if N is isomorphic to a submodule of an M-generated module.
A subcategory C of $R-M O D$ is said to be subgenerated by M, or M is a subgenerator for C, if every object in C is subgenerated by M. Category $\sigma[M]$ is the full subcategory of $R-M O D$ whose objects are all R-modules subgenerated by M. This category is a category closely connected to M and hence reflecting properties of M.

The properties of $\sigma[M]$ given by the following proposition:
Proposition 3 (Wisbauer, 1991) For an R-module M we have:

1. 1 or N in $\sigma[M]$, all factor modules and submodules of N belong to $\sigma[M]$, i.e. $\sigma[M]$ has kernels and cokernels.
2. The direct sum of a family of modules in $\sigma[M]$ belong to $\sigma[M]$ and is equal to the coproduct of these modules in $\sigma[M]$.
3.

ullback and pushout of morphisms in $\sigma[M]$ belong to $\sigma[M]$.
As a generalization of exact sequence of R-modules, Anvanriyeh and Davvaz (1999) defined U-exact sequences as follows: A sequence 7 f R-modules $A \xrightarrow{f} B \xrightarrow{g} C$ if there exists a submodule U of C such that $\operatorname{Im} f=g^{-1}(U)$. In this case, the sequence is said to be U-exact (at B). If $f(V)=\operatorname{Ker} g$, where V is a submodule of A, then the sequence is said to be V-coexact.
${ }^{2}$ Let \mathcal{U} be a family of R-modules and V be a submodule of $\oplus_{\Lambda} U_{\lambda}$, where $U_{\lambda} \in \mathcal{U}$, for every $\lambda \in \Lambda$. The aim of this paper is to generalize the concept of \mathcal{U}-generator to a \mathcal{U}_{V}-generator, where V is a submodule of $\oplus_{\Lambda} U_{\lambda}$. Furthermore, we provide a \mathcal{U}_{V}-subgenerator as a generalization of M-subgenerator. We also investigate the properties of \mathcal{U}_{V}-generated modules and \mathcal{U}_{V}-subgenerated modules related to the properties of the category $\sigma[M]$.

2. Results

2.1 \mathcal{U}_{V}-Generated Modules

Let \mathcal{U}^{7} ve a ${ }_{2}^{c}$ mily of R-modules. It is possible that an R-module M is not a \mathcal{U}-generated module, i.e. there no epimorphism from $\oplus_{\Lambda} U_{\lambda}{ }^{2}{ }^{\imath} 0 M$, but we can define an epimorphism from a submodule $V \oplus_{\Lambda} U_{\lambda}$ to M. Therefore we can generalize the concept of a \mathcal{U}-generated module to a \mathcal{U}_{V}-generated module by using the definition of V-coexact sequence.
Definition 4^{2} et \mathcal{U} be a non-empty set of R-modules, V be a submodule of $\oplus_{\Lambda} U_{\lambda}$, where $U_{\lambda} \in \mathcal{U}$, for every $\lambda \in \Lambda$. ${ }^{6}$ Ne say that an R-module N is generated by \mathcal{U}_{V} if there exists an epimorphism $V \rightarrow N \rightarrow 0$.
A set $\left\{U_{\lambda}\right\}_{\Lambda}$ is called \mathcal{U}_{V}-generator for N. Furthermore, the set $\left\{U_{\lambda}\right\}_{\Lambda}$ is called minimal \mathcal{U}_{V}-generator for N if

$$
\Lambda=\min \left\{\Lambda_{V} \mid N \text { is } \mathcal{U}_{V}-\text { generated, } V \subseteq \oplus_{\Lambda_{V}} U_{\lambda}\right\}
$$

If we take $V=\oplus_{\Lambda} U_{\lambda}$, then a \mathcal{U}_{V}-generated module is a \mathcal{U}-generated module. Clearly, every \mathcal{U}-generated module is $\mathcal{U}_{V^{-}}$-generated. But, a \mathcal{U}_{V}-generated module need not be a \mathcal{U}-generated. For example, if we take $\mathcal{U}=\{\mathbb{Q}\}$, then \mathbb{Z} module \mathbb{Z} is a $a_{2} \mathbb{Z}$-generated module. But, we can not define an epimorphism from \mathbb{Q} to \mathbb{Z} and hence \mathbb{Z}-module \mathbb{Z} is not a \mathcal{U}-generateamodule.

Now, we give some examples of \mathcal{U}_{V}-generated modules. Example 1

1. Let \mathcal{U} be the set of all free R-modules and P be projective R-module. Since P is projective, ${ }^{13}$ is a direct summand of a free module F. Hence P is \mathcal{U}_{F}-generated module.
2. Ler ${ }^{2} \mathcal{U}=\left\{\mathbb{Z}_{p} \mid p\right.$ prime $\}$, a family of \mathbb{Z}-modules. \mathbb{Z}-module \mathbb{Z}_{6} is a \mathcal{U}_{V}-generated, where $V=\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$. In general, \mathbb{Z}-module $\mathbb{Z}_{p q}$ is a $\mathcal{U}_{V^{-}}$-generated, where $V=\mathbb{Z}_{p} \oplus \mathbb{Z}_{q}, p$ and q are relative prime.
3. Let $\mathcal{U}=\{\mathbb{Q}\}$. \mathbb{Z}-module $\mathbb{Z}_{n}, n \geq 2$, is \mathcal{U}_{V}-generated, where $V=\mathbb{Z}$.
4. Let R be a commutative ring with unit and $\mathcal{U}=\left\{U_{\lambda}\right\}_{\Lambda}$ be a family of R-modules, where $U_{\lambda}=H o m_{R}\left(R, M_{\lambda}\right)$, for every $\lambda \in \Lambda$.
Based on Adkins \& Weintraub (1992), we can define

$$
\phi: \operatorname{Hom}_{R}(R, M) \rightarrow M,
$$

where $\phi(f):=f(1)$. Then M_{λ} is $\mathcal{U}_{U_{2}}$-generated.
5. Let $\mathcal{U}=\left\{\mathbb{Z}_{n} \mid n \in \mathbb{Z}\right\}$ be a ${ }_{23}$ mily of \mathbb{Z}-modules. Let $M=\mathbb{Z}_{4}^{(\mathbb{N})}$ and $N=\mathbb{Z}_{2} \oplus M$ be \mathbb{Z}-modules. Then M is \mathcal{U}_{N}-generated and N is \mathcal{U}_{M} generated.

If there exists a finite index set $E \subseteq \Lambda$ such that M is \mathcal{U}_{V}-generated and V is a submodule of $\oplus_{E} U_{e}$, then we define a finitely \mathcal{U}_{V}-generated module as follows:

Definition 5^{3} et \mathcal{U} be a non-empty set of R-modules and N be an R-module. If there exists a finite index set $E \subseteq \Lambda$ such that $V \subseteq \oplus_{E} U_{e}$ and M is \mathcal{U}_{V}-generated, then R-module N is said to be finitely \mathcal{U}_{V}-generated.
${ }^{2}$ Xxample 2 Let $\mathcal{U}=\left\{\mathbb{Z}_{p} \mid p\right.$ prime $\}$ be a family of \mathbb{Z}-modules. \mathbb{Z}-module $\mathbb{Z}_{p q}$ is a finitely \mathcal{U}_{V}-generated, where $V=\mathbb{Z}_{p} \oplus \mathbb{Z}_{q}$, p and q are relative prime.
Then, we will give some basic properties of \mathcal{U}_{V}-generated modules. 1 et \mathcal{U} be a non-empty set of R-modules and N be an R-module. We define:

$$
\mathcal{U}(N)=\left\{V \subseteq \oplus_{\Lambda} U_{\lambda}, U_{\lambda} \in \mathcal{U} \mid N \text { is } \mathcal{U}_{V} \text {-generated }\right\}
$$

In this set, we collect all submodules V of $\oplus_{\Lambda} U_{\lambda}$ such that N is a \mathcal{U}_{V}-generated module. In the following proposition, we prove that if $V_{\lambda} \in \mathcal{U}\left(N_{\lambda}\right)$ for every $\lambda \in \Lambda$, then $\oplus_{\Lambda} V_{\lambda} \in \mathcal{U}\left(\oplus_{\Lambda} N_{\lambda}\right)$.
Proposition $6{ }^{2}$ eet \mathcal{U} be a non-empty set of R-modules, V_{λ} be a submodule of $\oplus_{\Lambda} U_{\lambda}$, where $U_{\lambda} \in \Lambda$ for every $\lambda \in \Lambda$. If N_{λ} is $\mathcal{U}_{V_{\lambda}}$-generated, for every $\lambda \in \Lambda$, then $\oplus_{\Lambda} N_{\lambda}$ is $\mathcal{U}_{\oplus_{\Lambda} V_{\lambda} \text {-generated. }}$
Proof. Since N_{λ} is $\mathcal{U}_{V_{\lambda}}$-generated, for every $\lambda \in \Lambda$, the sequences $V_{\lambda} \rightarrow N_{\lambda} \rightarrow 0$ is exact for every $\lambda \in \Lambda$. Therefore, the sequence

$$
\oplus_{\Lambda} V_{\lambda} \rightarrow \oplus_{\Lambda} N_{\lambda} \rightarrow 0
$$

is exact. Hence, $\oplus_{\Lambda} N_{\lambda}$ is $\mathcal{U}_{\oplus_{\Lambda} V_{\lambda}}$-generated. So, we can say that if $V_{\lambda} \in \mathcal{U}\left(N_{\lambda}\right)$ for every $\lambda \in \Lambda$, then $\oplus_{\Lambda} V_{\lambda} \in \mathcal{U}\left(\oplus_{\Lambda} N_{\lambda}\right)$.
As a corollary of Proposition 6, we obtain:
Corollary $7{ }^{1}$ Let \mathcal{U} be a non-empty set of R-modules. If R-module N_{i} is $\mathcal{U}_{V_{i}}$-generated for every $i=1,2, \ldots, n$, then $\oplus_{i=1}^{n} X_{i}$

In the following proposition, we will show that if $V \in \mathcal{U}(N)$, for an R-module N, then V is in $\mathcal{U}\left(N^{\prime}\right)$, for every homomorphic image N^{\prime} of N.
 every homomorphic image N^{\prime} of N.
Proof. If R-module N is \mathcal{U}_{V}-generated, then the sequence

$$
\oplus_{\Lambda} U_{\lambda} \xrightarrow{f} N \rightarrow 0
$$

is V-coexact. Let N^{\prime} be homomorphic image of N, then there is an epimorphism $p: N \rightarrow N^{\prime}$. Hence, $g=p \circ f$ is a homomorphism from V to N^{\prime}. Since f and p are epimorphisms, then g is an epimorphism. So, N^{\prime} is \mathcal{U}_{V}-generated.

In the next proposition, we will prove that $\mathcal{U}_{V}(N)$ is closed under direct sum, i.e. if V_{λ} is in $\mathcal{U}(N)$ for every $\lambda \in \Lambda$, then $\oplus_{\lambda \in \Lambda} V_{\lambda}$ is in $\mathcal{U}(N)$.
Proposition $9{ }^{1}$ et \mathcal{U} be a non-empty set of R-modules and V_{α} be submodules of $\oplus_{\Lambda} U_{\lambda}, U_{\lambda} \in \mathcal{U}$ for every $\lambda \in \Lambda$. If R-module M is $\mathcal{U}_{V_{\alpha}}$-generated, for every $\alpha \in A$, then M is $\mathcal{U}_{\oplus_{\alpha \in A} V_{\alpha}}$-generated.
Proof. Since R-module M is $\mathcal{U}_{V_{\alpha}}$-generated for every $\alpha \in A$, there is an epimorphism f_{α} such that the sequence: $V_{\alpha} \xrightarrow{f_{\alpha}} M \rightarrow 0$ is exact for every $\alpha \in A$. We can define $f: \oplus_{\alpha \in A} V_{\alpha} \rightarrow M$, where $f\left(\left(v_{\alpha}\right)_{A}\right)=f_{\alpha_{i}}\left(v_{\alpha_{i}}\right), \alpha_{i} \in A$. From this, we have f is an epimorphism from $\oplus_{\alpha \in A}$ to M. Hence, M is $\mathcal{U}_{\oplus_{a \in A} V_{\alpha}}$-generated.
As a corollary of Proposition 9, we obtain:
Proposition $10{ }^{1}$ et \mathcal{U} be a non-empty set of R-modules. If R-module M is $\mathcal{U}_{V_{i}}$-generated for every $i=1,2, \ldots, n$, then M is $\mathcal{U}_{\oplus_{i=1}^{n} V_{i}}$-generated, where V_{i} be submodule of $\oplus_{\Lambda} U_{\lambda}$ for every $i=1,2, \ldots, n$.
If $V_{2} \in \mathcal{U}(N)$ and $V_{1} \in \mathcal{U}\left(V_{2}\right)$ i.e. N is $\mathcal{U}_{V_{1}}$-generated and V_{2} is $\mathcal{U}_{V_{1}}$-generated, with modules V_{1} and V_{2} are submodules of $\oplus_{\Lambda} U_{\lambda}, U_{\lambda} \in \mathcal{U}$, then we will show that $V_{1} \in \mathcal{U}(N)$, i.e. N is $\mathcal{U}_{V_{1}}$-generated module.
Proposition $11{ }^{1}$ Let \mathcal{U} be a non-empty set of R-modules. If R-module N is $\mathcal{U}_{V_{2}}$-generated and V_{2} is $\mathcal{U}_{V_{1}}$-generated, then N is $\mathcal{U}_{V_{1}}$-generated, where V_{1}, V_{2} be submodules of $\oplus_{\Lambda} U_{\lambda}, U_{\lambda} \in \Lambda$, for every $\lambda \in \Lambda$.
Proof. Since N is $\mathcal{U}_{V_{2}}$-generated and V_{2} is $\mathcal{U}_{V_{1}}$-generated, there exists epimorphisms $\alpha: V_{2} \rightarrow N$ and $\beta: V_{1} \rightarrow V_{2}$. So, we can define $g=\alpha \circ \beta: V_{1} \rightarrow N$. Since α and β are epimorphisms, g is an epimorphism. Finally, N is $\mathcal{U}_{V_{1}}$-generated.
As a corollary we obtain:
Corollary $12{ }^{1}$ Let \mathcal{U} be a non-empty set of R-modules. If R-module N is \mathcal{U}_{V}-generated and V is \mathcal{U}-generated, then N is \mathcal{U}-generated, where V be submodule of $\oplus_{\Lambda} U_{\lambda}, U_{\lambda} \in \Lambda$, for every $\lambda \in \Lambda$.

Proof. Since R-module N is \mathcal{U}_{V}-generated and V is \mathcal{U}-generated, by Proposition 11, we have N is $\mathcal{U}_{\oplus_{\Lambda} U_{\lambda}}$-generated. In other words, N is \mathcal{U}-generated.
Corollary $12{ }^{3}$ Let \mathcal{U} be a non-empty set of R-modules and $V \subset \oplus_{\Lambda} U_{\lambda}$, with modules $U_{\lambda} \in \mathcal{U}$. If R-module M is \mathcal{U}_{V}-subgenerated and V is a \mathcal{U}-generated module, then the sequence

$$
\oplus_{\Lambda} U_{\lambda} \rightarrow M \rightarrow 0
$$

is V-coexact.
Proof. Since R-module M is $\mathcal{U}_{V^{-}}$-subgenerated, there is an epimorphism $\alpha: V \rightarrow M$. By asumption, V is a \mathcal{U}-generated module. So, there is an epimorphism $\pi: \oplus_{\Lambda} U_{\lambda} \rightarrow V$. Hence, $g=\alpha \circ \pi$ is an epimorphism from $\oplus_{\Lambda} U_{\lambda}$ to M such that $\left.g\right|_{V}=\alpha$. We have the sequence

$$
\oplus_{\Lambda} U_{\lambda} \xrightarrow{g} M \rightarrow 0
$$

is V-coexact.
Corollary $13{ }^{1}$ Let \mathcal{U} be a non-empty set of semisimple R-modules. If R-module M is \mathcal{U}_{V}-generated, then M is \mathcal{U} generated, where V is a submodule of $\oplus_{\Lambda} U_{\lambda}$.
Proof. We assume that R-module M is a \mathcal{U}_{V}-generated. Since ${ }^{18}{ }^{18}$ very submodule of semisimple module $\oplus_{\Lambda} U_{\lambda}$ is a direct summand, M is \mathcal{U}-generated by using Proposition 11 .

2.2 \mathcal{U}_{V}-Subgenerated Modules

${ }^{1}$ We already know that an M-subgenerated module is a generalization of a \mathcal{U}-generated module. In the similar way, we can obtain a \mathcal{U}_{V}-subgenerated module as a generalization of $\mathcal{U}_{V^{-}}$-generated module.
Definition $14{ }^{2}$ et \mathcal{U} be a non-empty set of R-modules, V be a submodule of $\oplus_{\Lambda} U_{\lambda}$. ${ }^{4}$ We say that an R-module N is subgenerated by \mathcal{U}_{V} if N isomorphic to a submodule of a $\mathcal{U}_{V^{-}}$-generated module.
M-subgenerated module is a special case of \mathcal{U}_{V}-subgenerated modules by takip ${ }_{14} \mathcal{U}=\{M\}$ and $V=M^{(\Lambda)}$. By Definition 14 , every \mathcal{U}_{V}-generated module is a \mathcal{U}_{V}-subgenerated module. But the converse need not be true. For example, let \mathcal{U} the set of all \mathbb{Z}-modules. \mathbb{Z}-module \mathbb{Z} is $\mathcal{U}_{\mathbb{Q}}$-subgenerated. But, \mathbb{Z}-module \mathbb{Z} is not $\mathcal{U}_{\mathbb{Q}}$-generated.
Proposition $15{ }^{2}$ et \mathcal{U} be a non-empty set of R-modules and V be a submodule of $\oplus_{\Lambda} U_{\lambda}$. If ${ }^{4}$-module N is $\mathcal{U}_{V^{-}}$ subgenerated and N is a direct summand of a $\mathcal{U}_{V^{-}}$-generated module, then N is $\mathcal{U}_{V^{-}}$-generated module.
${ }^{3}$ Let \mathcal{U} be a non-empty set of R-modules and N be an R-module. In $\sigma[M]$, Wisbauer (1991) collect all R-modules subgenerated by M. In the similar way, we will collect all R-modules subgenerated by \mathcal{U}_{V}, we denote it by $\sigma_{V}(\mathcal{U})$:

$$
\sigma_{V}(\mathcal{U})=\left\{N \mid N \text { is } \mathcal{U}_{V} \text {-subgenerated }\right\} .
$$

The full subcategory $\sigma[M]$ of $R-M O D$ is a special case of $\sigma_{V}(\mathcal{U})$ by taking $\mathcal{U}=\{M\}$ and $V=M^{(\Lambda)}$. Next, we will show that $\sigma_{V}(\mathcal{U})$ is closed under submodules and factor modules.
Proposition $16{ }^{2}, \mathcal{U}$ be a non-empty set of R-modules and V be a submodule of $\oplus_{\Lambda} U_{\lambda}$. If R-module N is $\mathcal{U}_{V^{-}}$ subgenerated, then ${ }^{\prime}$ is a \mathcal{U}_{V}-subgenerated module, for every submodule N^{\prime} of N.
Proof. Since N is a \mathcal{U}_{V}-subgenerated, then N somorphic to a submodule of a \mathcal{U}_{V}-generated module. So, there is an epimorphism:

$$
V \xrightarrow{f} K \rightarrow 0
$$

and N is isomorphic to a submodule orn. Let N^{\prime} be a submodule of N. We have N^{\prime} is somorphic to a submodule of K and N^{\prime} is a \mathcal{U}_{V}-subgenerated module.
Proposition $17{ }^{2}$ Let \mathcal{U} be a non-empty set of R-modules and V be a submodule of $\oplus_{\Lambda} U_{\lambda}$. If R-module N is $\mathcal{U}_{V^{-}}$ subgenerated, then N / L is \mathcal{U}_{V}-subgenerated module, for every factor module N / L of N.
Proof. Since N is a \mathcal{U}_{V}-subgenerated, there is a \mathcal{U}_{V}-generated module K and an epimorphism:

$$
V \xrightarrow{f} K \rightarrow 0
$$

${ }^{24}$ and N is isomorphic to a submodule of K. Let $\stackrel{10}{L}$ e a submodule of N. We have L is isomorphic to a submodule of K and hence N / L is is isomorphic to a submodule of K / L^{\prime}, where $L \cong L^{\prime}$. Since K / L^{\prime} is a $\mathcal{U}_{V^{V}}$-generated module, we get N / L is a \mathcal{U}_{V}-subgenerated module.

As a corolarry of Proposition 16 and 17, we obtain:
Corollary $18{ }^{2}$ Let \mathcal{U} be a non-empty set of R-modules, V be a submodule of $\oplus_{\Lambda} U_{\lambda}$ and

$$
\stackrel{15}{ } \rightarrow K \rightarrow L \rightarrow M \rightarrow 0
$$

be an exact sequence of R-modules. If L is a \mathcal{U}_{V}-subgenerated module, then K and M are \mathcal{U}_{V}-subgenerated modules.
If R-module N_{1} and N_{2} are \mathcal{U}_{V}-subgenerated ${ }_{12}$ en we have two exact sequences: $V \rightarrow M_{1} \rightarrow 0$ and $V \rightarrow M_{1} \rightarrow$ 0 . Furthermore, N_{1} and N_{2} are isomorphic to submodules of M_{1} and M_{2}, respectively. Hence $\operatorname{Tr}\left(V, M_{1}\right)=M_{1}$ and $\operatorname{Tr}\left(V, M_{2}\right)=M_{2}$. By Proposition 1, we have $\operatorname{Tr}\left(V, M_{1} \oplus M_{2}\right)=\operatorname{Tr}\left(V, M_{1}\right) \oplus \operatorname{Tr}\left(V, M_{2}\right)=M_{1} \oplus M_{2}$. But, $N_{1} \oplus N_{2}$ need not be a \mathcal{U}_{V}-subgenerated module. By Proposition 6, we have $N_{1} \oplus N_{2}$ is a $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated module.
In the following proposition, we will show the existence of pullback and pushout of a pair of morphisms of $\mathcal{U}_{V^{-}}$ subgenerated modules.
Proposition $19{ }^{3}$ et \mathcal{U} be a non-empty set of R-modules. If N_{1} is $\mathcal{U}_{V_{1}}$-subgenerated and N_{2} is $\mathcal{U}_{V_{2}}$-subgenerated, then pullback of $f_{1}: N_{1} \rightarrow N$ and $f_{2}: N_{2} \rightarrow N$ is $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated module, where V_{1}, V_{2} are submodules of $\oplus_{\Lambda} U_{\lambda}$.
Proof. Since N_{1} is $\mathcal{U}_{V_{1}}$-subgenerated and N_{2} is $\mathcal{U}_{V_{2}}$-subgenerated, N_{1} and N_{2} are $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated. Let $f_{1}: N_{1} \rightarrow M$, $f_{2}: N_{2} \rightarrow M$ be a pair of morphisms of $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated modules. We have $N_{1} \oplus N_{2}$ is $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated module. Based on Wisbauer (1991), pullback of $\left(f_{1}, f_{2}\right)$ is a submodule of $N_{1} \oplus N_{2}$. Since every submodule of $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated module is a $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated, the pullback of $\left(f_{1}, f_{2}\right)$ is a $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated module.
Proposition $20{ }^{3}$ et \mathcal{U} be a non-empty set of R-modules. If N_{1} is $\mathcal{U}_{V_{1}}$-subgenerated and N_{2} is $\mathcal{U}_{V_{2}}$-subgenerated, then pushout of $g_{1}: X \rightarrow N_{1}$ and $g_{2}: X \rightarrow N_{2}$ is $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated module, where V_{1}, V_{2} are submodules of $\oplus_{\Lambda} U_{\lambda}$.
Proof. Since N_{1} is $\mathcal{U}_{V_{1}}$-subgenerated and N_{2} is $\mathcal{U}_{V_{2}}$-subgenerated, N_{1} and N_{2} are $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated. Let $g_{1}: X \rightarrow N_{1}$, $g_{2}: X \rightarrow N_{2}$ be a pair of morphisms of $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated module. We have $N_{1} \oplus N_{2}$ is $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated modules. Based on Wisbauer (1991), pushout of $\left(g_{1}, g_{2}\right)$ is a factor module of $N_{1} \oplus N_{2}$. Since every factor module of $\mathcal{U}_{V_{1} \oplus V_{2}}-$ subgenerated module is a $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated, the pushout of $\left(g_{1}, g_{2}\right)$ is a $\mathcal{U}_{V_{1} \oplus V_{2}}$-subgenerated module.
A submodule N of R-module M is called fully invariant if $f(N)$ is contained in N for every R-endomorphism f of M. M is called a duo module provided every submodule of M is fully invariant (Özcan et al., 2006).
The following theorem shows that the properties of R-modules in $\sigma_{V} \mathcal{U}$ are reflecting the properties of V.
Theorem $21{ }^{2}$ Let \mathcal{U} be a non-empty set of R-modules and V be a submodule of $\oplus_{\Lambda} U_{\lambda}, U_{\lambda} \in \mathcal{U}$, for every $\lambda \in \Lambda$.

1. If R-module U is V-injective (${ }^{21}$ projective), then U is N-injective (N-projective), for every $N \in \sigma_{V}(\mathcal{U})$.
2. If V is semisimple, then every module in $\sigma_{V}(\mathcal{U})$ is semisimple.
3. If V is Noetherian (Artinian), then N is Noetherian (Artinian), for every $N \in \sigma_{V}(\mathcal{U})$.
4. If V is a duo module, quasi-injective and quasi-projective, then N is a duo module, V-projective and V-injective, for every $N \in \sigma_{V}(\mathcal{U})$.

Proof.

1. Let $N \in \sigma_{V} \mathcal{U}$. Then ${ }^{17}{ }^{17}$ isomorphic to a submodule of \mathcal{U}_{V}-generated module, say M. We have the following exact sequence:

$$
0 \rightarrow \operatorname{Ker} f \rightarrow V \xrightarrow{f} M \rightarrow 0
$$

Based on Wisbauer (1991), if U is V-injective, then U is M-injective. Therefore by Wisbauer (1991) $16.3, U$ is N -injective.
2 and 3 can be shown in a similar way to 1 .
4 Based on Özcan et. al. (2006), if V is a duo module anaquasi-injective, then every submodule of V is a duo module. Futhermore, if V is a duo module and quasi-projective, then every homomorphic image of V is a duo module. From 1, we have N is V-projective and V-injective, for every N in $\sigma_{V}(\mathcal{U})$.

3. Conclusions

A \mathcal{U}_{V}-generator is a generalization of \mathcal{U}-generator. If an R-module N is \mathcal{U}_{V}-generated, then every homomorphic image of N is also \mathcal{U}_{V}-generated. Furthermore, direct sums of $\mathcal{U}_{V^{-}}$-generated R-modules are $\mathcal{U}_{V^{\prime}}$-generated, for some submodules V^{\prime} of $\oplus_{\Lambda} U_{\lambda}$. In the set $\mathcal{U}(N)$, we collect all submodules V of $\oplus_{\Lambda} U_{\lambda}$ such that N is a \mathcal{U}_{V}-generated module and we have $\mathcal{U}(N)$ is closed under direct sums.
In the set $\sigma_{V}(\mathcal{U})$, we collect ${ }^{5}$ all R-modules subgenerated by \mathcal{U}_{V}. The full subcategory $\sigma[M]$ of $R-M O D$ is a special case of $\sigma_{V}(\mathcal{U})$ by taking $\mathcal{U}=\{M\}$ and $V=M^{(\Lambda)}$. The set $\sigma_{V}(\mathcal{U})$ is closed under submodules and factor modules. Furthermore, the properties of R-modules in $\sigma_{V}(\mathcal{U})$ are reflecting the properties of V.

Acknowledgements

The authors nank the Ministry of Research, Technology and the Higher Education Republic of Indonesia, due to the fund${ }_{25}{ }^{\text {ng }}$ of this work through the scheme of Research of Doctoral Dissertation with contract number 385/UN26.21/PN/2018. The authors also thank the referees for useful comments and suggestions.

References

Adkins, W. A., \& Weintraub S. H. (1992). Algebra "An Approach via Module Theory". New York : Springer-Verlag. https://doi.org/10.1007/978-1-4612-0923-2
Anderson, F. W., \& Fuller, K. R. (1992). Rings and categories of Modules. New York: Springer-Verlag. https://doi.org/10.1007/978-1-4612-4418-9
Anvariyeh, S. M., \& Davvaz, B. (2005). On Quasi-Exact Sequences. Bull. Korean Math. Soc., 42(1), 149-155. https://doi.org/10.4134/BKMS.2005.42.1.149
Anvariyeh, S. M., \& Davvaz, B. (2002). U-Split-Exact Sequences. Far East J. Math. Sci.(FJMS), 4(2), 209-219.
Clark, J., Lomp, C., Vanaja, N., \& Wisbauer, R. (2006). Lifting Modules. Switzerland: Birkhauser Verlag. https://doi.org/10.1007/3-7643-7573-6
Davvaz, B., \& Parnian-Garamaleky, Y. A. (1999). A Note on Exact Sequences, Bull.Malays. Math. Sci. Soc. 22(1), 53-56.
Davvaz, B., \& Shabani-Solt, H. A. (2002). Generalization of Homological Algebra. J. Korean Math. Soc. 39(6), 881-898.
Fitriani, Surodjo, B., \& Wijayanti, I. E. (2016). On X-sub-exact Sequences. Far East J. Math. Sci.(FJMS) 100(7), 1055-1065. http://dx.doi.org/10.17654/MS100071055
Fitriani, Surodjo, B., \& Wijayanti, I. E. (2017). On X-sub-linearly Independent Modules. J. Phys.: Conf. Ser. 893, 012008. https://doi.org/10.1088/1742-6596/893/1/012008

Özcan, A. Ç., Harmanci, A., \& Smith, P. F. (2006). Duo Modules. Glasgow Math. J., 48, 533-545. https://doi.org/10.1017/S0017089506003260
Wisbauer, R. (1991). Foundation of Module and Ring Theory. Philadelphia: Gordon and Breach.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

- 21% Overall Similarity

Top sources found in the following databases:

- 17\% Internet database
- Crossref database
- 10% Submitted Works database
- 11\% Publications database
- Crossref Posted Content database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 nozdr.ru

Internet

2
Binus University International on 2018-08-17
Submitted works

3 scribd.com
Internet

4
Jawad Y. Abuhlail. "Rational Modules for Corings", Communications in ... < 1% Crossref
arxiv.org
Internet

6 ijmsi.ir
Internet
(Paul E. Bland. "6 Classical Ring Theory", Walter de Gruyter GmbH, $2011<1 \%$
Crossref

Frank W. Anderson, Kent R. Fuller. "Rings and Categories of Modules", ... <1\% Crossref

```
Inaam Mohammed Ali Hadi, Rana Noori Majeed. "On P-duo modules", I...
```

Crossref
Ramji Lal. "Algebra 2", Springer Science and Business Media LLC, 2017 Crossref
gtg.webhost.uoradea.roInternet
University of Babylon on 2015-02-17 < 1%
Submitted worksusers.metu.edu.trInternet$<1 \%$University of Mustansiriyah on 2014-11-02Submitted works$<1 \%$15 ams.orgInternet$<1 \%$
16
jacodesmath.com <1\%InternetSeyed Shahin Mousavi, Mina Abbaszade. " Projective and injective dim...< 1%CrossrefJocelyn S. Paradero-Vilela, Agnes T. Paras. "On Quasi-Regular Torsion... <1\%Crossref
William A. Adkins, Steven H. Weintraub. "Chapter 3 Modules and Vecto... <1\%
Crossrefacikerisim.deu.edu.trInternet

"Modules and Comodules", Springer Science and Business Media LLC, ... < 1% Crossref

Constantin Nastasescu, Freddy Van Oystaeyen. "Methods of Graded Ri... <1\%
CrossrefDavid Eisenbud. "Commutative Algebra", Springer Nature, 1995<1\%Crossref
Najmeh Dehghani, Fatma A. Ebrahim, S. Tariq Rizvi. "On the Schröder-... $<1 \%$Crossrefmafiadoc.com$<1 \%$
Internet
fc.up.pt <1\%
Internet

- Excluded from Similarity Report
- Bibliographic material
- Quoted material
- Cited material
- Small Matches (Less then 10 words)
- Manually excluded sources
- Manually excluded text blocks

EXCLUDED SOURCES

Fitriani Fitriani, Indah Wijayanti, Budi Surodjo. "Generalization of \$\mathcal\{U\}.
Fitriani Fitriani, Indah Emilia Wijayanti, Budi Surodjo. "Generalization of \$\mat. 71\%
Binus University International on 2018-08-06 14\%
Submitted works
repository.lppm.unila.ac.id 9\%
Internet
ccsenet.org 9\%
Internet
ccsenet.org 9\%
Internet
Fitriani, I E Wijayanti, B Surodjo. " A Generalization of Basis and Free Modules 6\%
Crossref
Fitriani, B Surodjo, I E Wijayanti. " On -sub-linearly independent modules ", Jo... 2\%
Crossref
B H S Utami, Fitriani, M Usman, Warsono, J I Daoud. "Sub-Exact Sequence On... <1\%

EXCLUDED TEXT BLOCKS

Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia2 De... irep.iium.edu.my

Received: April

Ibrahima DIEDHIOU, Salimata Gueye DIAGNE, Ndiaga THIAM, Coumba Diallo DIOP et al. "Optimization of Sa..
Journal of Mathematics Research; Vol. 10, No. 4; August 2018ISSN 1916-9795 E-I... mafiadoc.com

ccsenet.orgJournal of

Turun yliopisto on 2020-03-09

http

Tafila Technical University on 2022-08-08

