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Abstract

Let U be a non-empty set of R-modules. R-module N is generated by U if there is an epimorphism from ⊕ΛUλ to N,
where Uλ ∈ U, for every λ ∈ Λ. R-module M is a subgenerator for N if N is isomorphic to a submodule of an M-
generated module. In this paper, we introduce a UV -generator, where V be a submodule of ⊕ΛUλ, as a generalization of
U-generator by using the concept of V-coexact sequence. We also provide aUV -subgenerator motivated by the concept
of M-subgenerator. Furthermore, we give some properties of UV -generated and UV -subgenerated modules related to
category σ[M]. We also investigate the existence of pullback and pushout of a pair of morphisms of UV -subgenerated
modules. We prove that the collection ofUV -subgenerated modules is closed under submodules and factor modules.

Keywords: U-generator,UV -generator, V-coexact sequences, M-subgenerator,UV -subgenerator

1. Introduction

The concept of exact sequences of R-modules and R-module homomorphisms is a useful tool in the study of modules.
A sequence A → B → C is exact if Im f = Kerg(= g−1(0)). Davvaz and Parnian-Garamaleky (1999) provide the
generalization of exact sequences, i.e. quasi-exact sequences. They substitute the submodule {0} to any submodule U of
C.

Then Anvariyeh dan Davvaz (2005) investigate further results about quasi-exact sequences. They also introduce the ge-
neralization of Schanuel’s Lemma. Furthermore, Davvaz and ShabaniSolt (2002) give a generalization of some notions in
homological algebra. In 2002, Anvariyeh and Davvaz provide U-split sequences. They also establish several connections
between U-split sequences and projective modules.

Motivated by the definition of U-exact and V-coexact sequence, Fitriani et al. (2016) provide an X-sub exact sequence,
which is a generalization of exact sequence. In 2017, they introduce X-sublinearly independent module by using the
concept of X-sub exact sequence.

Let U be a non-empty set of R-modules. An R-module N is generated by U if there is an epimorphism from ⊕ΛUλ to
N, where Uλ ∈ U, for every λ ∈ Λ. The trace of U is defined by Tr(U,M) =

∑{Imh|h : U → M, for some U ∈ U}. If
U = {U} is a singleton, then Tr(U,M) =

∑{Imh|h ∈ HomR(U,M)}. Tr(U,M) is the unique largest submodule L of M
generated byU (Wisbauer, 1991). Clearly, Tr(U,M) = M if and only ifU generates M (Anderson & Fuller, 1992). For
an indexed set (Mα)α∈A of modules and class of modulesU, the direct sum of the traces Tr(U,M) is contained in ⊕AMα.
The trace of M in an R-module N is the sum of all M-generated submodules of N (Clark et al., 2006).

Proposition 1 (Wisbauer, 1991) If (Mα)α∈A is an indexed set of modules, then for each module M

Tr(U,⊕AMα) = ⊕ATr(U,Mα).

Furthermore, an M-subgenerated module is defined as follows.

Definition 2 (Wisbauer, 1991) Let M be an R-module. We say that an R-module N is subgenerated by M, or that M is a
subgenerator for N, if N is isomorphic to a submodule of an M -generated module.

A subcategory C of R-MOD is said to be subgenerated by M, or M is a subgenerator for C, if every object in C is
subgenerated by M. Category σ[M] is the full subcategory of R − MOD whose objects are all R-modules subgenerated
by M. This category is a category closely connected to M and hence reflecting properties of M.
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The properties of σ[M] given by the following proposition:

Proposition 3 (Wisbauer, 1991) For an R-module M we have:

1. For N in σ[M], all factor modules and submodules of N belong to σ[M], i.e. σ[M] has kernels and cokernels.

2. The direct sum of a family of modules in σ[M] belong to σ[M] and is equal to the coproduct of these modules in
σ[M].

3. Pullback and pushout of morphisms in σ[M] belong to σ[M].

As a generalization of exact sequence of R-modules, Anvanriyeh and Davvaz (1999) defined U-exact sequences as follows:

A sequence of R-modules A
f
−→ B

g
−→ C if there exists a submodule U of C such that Im f = g−1(U). In this case, the

sequence is said to be U-exact (at B). If f (V) = Ker g, where V is a submodule of A, then the sequence is said to be
V-coexact.

LetU be a family of R-modules and V be a submodule of ⊕ΛUλ, where Uλ ∈ U, for every λ ∈ Λ. The aim of this paper is
to generalize the concept ofU-generator to aUV -generator, where V is a submodule of ⊕ΛUλ. Furthermore, we provide
a UV -subgenerator as a generalization of M-subgenerator. We also investigate the properties of UV -generated modules
andUV -subgenerated modules related to the properties of the category σ[M].

2. Results

2.1UV -Generated Modules

LetU be a family of R-modules. It is possible that an R-module M is not aU-generated module, i.e. there no epimorphism
from ⊕ΛUλ to M, but we can define an epimorphism from a submodule V ⊕ΛUλ to M. Therefore we can generalize the
concept of aU-generated module to aUV -generated module by using the definition of V-coexact sequence.

Definition 4 Let U be a non-empty set of R-modules, V be a submodule of ⊕ΛUλ, where Uλ ∈ U, for every λ ∈ Λ. We
say that an R-module N is generated byUV if there exists an epimorphism V → N → 0.

A set {Uλ}Λ is calledUV -generator for N. Furthermore, the set {Uλ}Λ is called minimalUV -generator for N if

Λ = min{ΛV |N isUV − generated, V ⊆ ⊕ΛV Uλ}.

If we take V = ⊕ΛUλ, then a UV -generated module is a U-generated module. Clearly, every U-generated module is
UV -generated. But, a UV -generated module need not be a U-generated. For example, if we take U = {Q}, then Z-
module Z is aUZ-generated module. But, we can not define an epimorphism from Q to Z and hence Z-module Z is not
aU-generated module.

Now, we give some examples ofUV -generated modules. Example 1

1. LetU be the set of all free R-modules and P be projective R-module. Since P is projective, P is a direct summand
of a free module F. Hence P isUF-generated module.

2. Let U = {Zp|pprime}, a family of Z-modules. Z-module Z6 is a UV -generated, where V = Z2 ⊕ Z3. In general,
Z-module Zpq is aUV -generated, where V = Zp ⊕ Zq, p and q are relative prime.

3. LetU = {Q}. Z-module Zn, n ≥ 2, isUV -generated, where V = Z.

4. Let R be a commutative ring with unit and U = {Uλ}Λ be a family of R-modules, where Uλ = HomR(R,Mλ), for
every λ ∈ Λ.
Based on Adkins & Weintraub (1992), we can define

ϕ : HomR(R,M)→ M,

where ϕ( f ) := f (1). Then Mλ isUUλ -generated.

5. Let U = {Zn|n ∈ Z} be a family of Z-modules. Let M = Z(N)
4 and N = Z2 ⊕ M be Z-modules. Then M is

UN-generated and N isUM-generated.

If there exists a finite index set E ⊆ Λ such that M is UV -generated and V is a submodule of ⊕EUe, then we define a
finitelyUV -generated module as follows:
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Definition 5 LetU be a non-empty set of R-modules and N be an R-module. If there exists a finite index set E ⊆ Λ such
that V ⊆ ⊕EUe and M isUV -generated, then R-module N is said to be finitelyUV -generated.

Example 2 LetU = {Zp|p prime} be a family of Z-modules. Z-module Zpq is a finitelyUV -generated, where V = Zp⊕Zq,
p and q are relative prime.

Then, we will give some basic properties ofUV -generated modules. LetU be a non-empty set of R-modules and N be an
R-module. We define:

U(N) = {V ⊆ ⊕ΛUλ,Uλ ∈ U|N isUV -generated}.

In this set, we collect all submodules V of ⊕ΛUλ such that N is aUV -generated module. In the following proposition, we
prove that if Vλ ∈ U(Nλ) for every λ ∈ Λ, then ⊕ΛVλ ∈ U(⊕ΛNλ).

Proposition 6 Let U be a non-empty set of R-modules, Vλ be a submodule of ⊕ΛUλ, where Uλ ∈ Λ for every λ ∈ Λ. If
Nλ isUVλ-generated, for every λ ∈ Λ, then ⊕ΛNλ isU⊕ΛVλ-generated.

Proof. Since Nλ isUVλ -generated, for every λ ∈ Λ, the sequences Vλ → Nλ → 0 is exact for every λ ∈ Λ. Therefore, the
sequence

⊕ΛVλ → ⊕ΛNλ → 0

is exact. Hence, ⊕ΛNλ isU⊕ΛVλ-generated. So, we can say that if Vλ ∈ U(Nλ) for every λ ∈ Λ, then ⊕ΛVλ ∈ U(⊕ΛNλ).

As a corollary of Proposition 6, we obtain:

Corollary 7 LetU be a non-empty set of R-modules. If R-module Ni isUVi -generated for every i = 1, 2, ..., n, then ⊕n
i=1Xi

isU⊕n
i=1Vi -generated, where Vi be submodule of ⊕ΛUλ, Uλ ∈ Λ, for every i = 1, 2, ..., n and λ ∈ Λ.

In the following proposition, we will show that if V ∈ U(N), for an R-module N, then V is inU(N
′
), for every homomor-

phic image N
′

of N.

Proposition 8 Let U be a non-empty set of R-modules. If R-module N is UV -generated, then N
′

is UV -generated, for
every homomorphic image N

′
of N.

Proof. If R-module N isUV -generated, then the sequence

⊕ΛUλ
f
−→ N → 0

is V-coexact. Let N
′

be homomorphic image of N, then there is an epimorphism p : N → N
′
. Hence, g = p ◦ f is a

homomorphism from V to N
′
. Since f and p are epimorphisms, then g is an epimorphism. So, N

′
isUV -generated.

In the next proposition, we will prove that UV (N) is closed under direct sum, i.e. if Vλ is in U(N) for every λ ∈ Λ, then
⊕λ∈ΛVλ is inU(N).

Proposition 9 Let U be a non-empty set of R-modules and Vα be submodules of ⊕ΛUλ, Uλ ∈ U for every λ ∈ Λ. If
R-module M isUVα -generated, for every α ∈ A, then M isU⊕α∈AVα -generated.

Proof. Since R-module M is UVα -generated for every α ∈ A, there is an epimorphism fα such that the sequence:

Vα
fα−→ M → 0 is exact for every α ∈ A. We can define f : ⊕α∈AVα → M, where f ((vα)A) = fαi (vαi ), αi ∈ A. From this, we

have f is an epimorphism from ⊕α∈A to M. Hence, M isU⊕α∈AVα -generated.

As a corollary of Proposition 9, we obtain:

Proposition 10 LetU be a non-empty set of R-modules. If R-module M isUVi -generated for every i = 1, 2, ..., n, then M
isU⊕n

i=1Vi -generated, where Vi be submodule of ⊕ΛUλ for every i = 1, 2, ..., n.

If V2 ∈ U(N) and V1 ∈ U(V2) i.e. N isUV1 -generated and V2 isUV1 -generated, with modules V1 and V2 are submodules
of ⊕ΛUλ, Uλ ∈ U, then we will show that V1 ∈ U(N), i.e. N isUV1 -generated module.

Proposition 11 LetU be a non-empty set of R-modules. If R-module N isUV2 -generated and V2 isUV1 -generated, then
N isUV1 -generated, where V1,V2 be submodules of ⊕ΛUλ, Uλ ∈ Λ, for every λ ∈ Λ.

Proof. Since N isUV2 -generated and V2 isUV1 -generated, there exists epimorphisms α : V2 → N and β : V1 → V2. So,
we can define g = α ◦ β : V1 → N. Since α and β are epimorphisms, g is an epimorphism. Finally, N isUV1 -generated.

As a corollary we obtain:

Corollary 12 LetU be a non-empty set of R-modules. If R-module N isUV -generated and V isU-generated, then N is
U-generated, where V be submodule of ⊕ΛUλ, Uλ ∈ Λ, for every λ ∈ Λ.
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Proof. Since R-module N isUV -generated and V isU-generated, by Proposition 11, we have N isU⊕ΛUλ -generated. In
other words, N isU-generated.

Corollary 12 Let U be a non-empty set of R-modules and V ⊂ ⊕ΛUλ, with modules Uλ ∈ U. If R-module M is
UV -subgenerated and V is aU-generated module, then the sequence

⊕ΛUλ → M → 0

is V-coexact.

Proof. Since R-module M isUV -subgenerated, there is an epimorphism α : V → M. By asumption, V is aU-generated
module. So, there is an epimorphism π : ⊕ΛUλ → V . Hence, g = α ◦ π is an epimorphism from ⊕ΛUλ to M such that
g|V = α. We have the sequence

⊕ΛUλ
g
−→ M → 0

is V-coexact.

Corollary 13 Let U be a non-empty set of semisimple R-modules. If R-module M is UV -generated, then M is U-
generated, where V is a submodule of ⊕ΛUλ.

Proof. We assume that R-module M is a UV -generated. Since every submodule of semisimple module ⊕ΛUλ is a direct
summand, M isU-generated by using Proposition 11.

2.2UV -Subgenerated Modules

We already know that an M-subgenerated module is a generalization of a U-generated module. In the similar way, we
can obtain aUV -subgenerated module as a generalization ofUV -generated module.

Definition 14 Let U be a non-empty set of R-modules, V be a submodule of ⊕ΛUλ. We say that an R-module N is
subgenerated byUV if N isomorphic to a submodule of aUV -generated module.

M-subgenerated module is a special case ofUV -subgenerated modules by takingU = {M} and V = M(Λ). By Definition
14, everyUV -generated module is aUV -subgenerated module. But the converse need not be true. For example, letU the
set of all Z-modules. Z-module Z isUQ-subgenerated. But, Z-module Z is notUQ-generated.

Proposition 15 Let U be a non-empty set of R-modules and V be a submodule of ⊕ΛUλ. If R-module N is UV -
subgenerated and N is a direct summand of aUV -generated module, then N isUV -generated module.

LetU be a non-empty set of R-modules and N be an R-module. In σ[M], Wisbauer (1991) collect all R-modules subgen-
erated by M. In the similar way, we will collect all R-modules subgenerated byUV , we denote it by σV (U):

σV (U) = {N|N isUV -subgenerated}.

The full subcategory σ[M] of R−MOD is a special case of σV (U) by takingU = {M} and V = M(Λ). Next, we will show
that σV (U) is closed under submodules and factor modules.

Proposition 16 Let U be a non-empty set of R-modules and V be a submodule of ⊕ΛUλ. If R-module N is UV -
subgenerated, then N

′
is aUV -subgenerated module, for every submodule N

′
of N.

Proof. Since N is a UV -subgenerated, then N isomorphic to a submodule of a UV -generated module. So, there is an
epimorphism:

V
f
−→ K → 0

and N is isomorphic to a submodule of K. Let N
′

be a submodule of N. We have N
′

is somorphic to a submodule of K
and N

′
is aUV -subgenerated module.

Proposition 17 Let U be a non-empty set of R-modules and V be a submodule of ⊕ΛUλ. If R-module N is UV -
subgenerated, then N/L isUV -subgenerated module, for every factor module N/L of N.

Proof. Since N is aUV -subgenerated, there is aUV -generated module K and an epimorphism:

V
f
−→ K → 0

and N is isomorphic to a submodule of K. Let L be a submodule of N. We have L is isomorphic to a submodule of K and
hence N/L is is isomorphic to a submodule of K/L

′
, where L � L

′
. Since K/L

′
is aUV -generated module, we get N/L is

aUV -subgenerated module.
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As a corolarry of Proposition 16 and 17, we obtain:

Corollary 18 LetU be a non-empty set of R-modules, V be a submodule of ⊕ΛUλ and

0→ K → L→ M → 0

be an exact sequence of R-modules. If L is aUV -subgenerated module, then K and M areUV -subgenerated modules.

If R-module N1 and N2 are UV -subgenerated, then we have two exact sequences: V → M1 → 0 and V → M1 →
0. Furthermore, N1 and N2 are isomorphic to submodules of M1 and M2, respectively. Hence Tr(V,M1) = M1 and
Tr(V,M2) = M2. By Proposition 1, we have Tr(V,M1 ⊕M2) = Tr(V,M1) ⊕ Tr(V,M2) = M1 ⊕M2. But, N1 ⊕ N2 need not
be aUV -subgenerated module. By Proposition 6, we have N1 ⊕ N2 is aUV1⊕V2 -subgenerated module.

In the following proposition, we will show the existence of pullback and pushout of a pair of morphisms of UV -
subgenerated modules.

Proposition 19 Let U be a non-empty set of R-modules. If N1 is UV1 -subgenerated and N2 is UV2 -subgenerated, then
pullback of f1 : N1 → N and f2 : N2 → N isUV1⊕V2 -subgenerated module, where V1,V2 are submodules of ⊕ΛUλ.

Proof. Since N1 isUV1 -subgenerated and N2 isUV2 -subgenerated, N1 and N2 areUV1⊕V2 -subgenerated. Let f1 : N1 → M,
f2 : N2 → M be a pair of morphisms ofUV1⊕V2 -subgenerated modules. We have N1 ⊕N2 isUV1⊕V2 -subgenerated module.
Based on Wisbauer (1991), pullback of ( f1, f2) is a submodule of N1⊕N2. Since every submodule ofUV1⊕V2 -subgenerated
module is aUV1⊕V2 -subgenerated, the pullback of ( f1, f2) is aUV1⊕V2 -subgenerated module.

Proposition 20 Let U be a non-empty set of R-modules. If N1 is UV1 -subgenerated and N2 is UV2 -subgenerated, then
pushout of g1 : X → N1 and g2 : X → N2 isUV1⊕V2 -subgenerated module, where V1,V2 are submodules of ⊕ΛUλ.

Proof. Since N1 isUV1 -subgenerated and N2 isUV2 -subgenerated, N1 and N2 areUV1⊕V2 -subgenerated. Let g1 : X → N1,
g2 : X → N2 be a pair of morphisms ofUV1⊕V2 -subgenerated module. We have N1 ⊕ N2 isUV1⊕V2 -subgenerated modules.
Based on Wisbauer (1991), pushout of (g1, g2) is a factor module of N1 ⊕ N2. Since every factor module of UV1⊕V2 -
subgenerated module is aUV1⊕V2 -subgenerated, the pushout of (g1, g2) is aUV1⊕V2 -subgenerated module.

A submodule N of R-module M is called fully invariant if f (N) is contained in N for every R-endomorphism f of M. M
is called a duo module provided every submodule of M is fully invariant (Özcan et al., 2006).

The following theorem shows that the properties of R-modules in σVU are reflecting the properties of V .

Theorem 21 LetU be a non-empty set of R-modules and V be a submodule of ⊕ΛUλ, Uλ ∈ U, for every λ ∈ Λ.

1. If R-module U is V-injective (V-projective), then U is N-injective (N-projective), for every N ∈ σV (U).

2. If V is semisimple, then every module in σV (U) is semisimple.

3. If V is Noetherian (Artinian), then N is Noetherian (Artinian), for every N ∈ σV (U).

4. If V is a duo module, quasi-injective and quasi-projective, then N is a duo module, V-projective and V-injective,
for every N ∈ σV (U).

Proof.

1. Let N ∈ σVU. Then N is isomorphic to a submodule ofUV -generated module, say M. We have the following exact
sequence:

0→ Ker f → V
f
−→ M → 0.

Based on Wisbauer (1991), if U is V-injective, then U is M-injective. Therefore by Wisbauer (1991) 16.3, U is
N-injective.
2 and 3 can be shown in a similar way to 1.

4 Based on Özcan et. al. (2006), if V is a duo module and quasi-injective, then every submodule of V is a duo module.
Futhermore, if V is a duo module and quasi-projective, then every homomorphic image of V is a duo module. From
1, we have N is V-projective and V-injective, for every N in σV (U).
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3. Conclusions

AUV -generator is a generalization ofU-generator. If an R-module N isUV -generated, then every homomorphic image of
N is alsoUV -generated. Furthermore, direct sums ofUV -generated R-modules areUV ′ -generated, for some submodules
V
′

of ⊕ΛUλ. In the set U(N), we collect all submodules V of ⊕ΛUλ such that N is a UV -generated module and we have
U(N) is closed under direct sums.

In the set σV (U), we collect all R-modules subgenerated by UV . The full subcategory σ[M] of R − MOD is a special
case of σV (U) by taking U = {M} and V = M(Λ). The set σV (U) is closed under submodules and factor modules.
Furthermore, the properties of R-modules in σV (U) are reflecting the properties of V .
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