PAPER NAME

A Generalization of Basis and Free Modu les Relatives to a Family U of R-Modules AUTHOR

Fitriani Fitriani

WORD COUNT 4022 Words	CHARACTER COUNT 17028 Characters
PAGE COUNT 7 Pages	FILE SIZE 456.3KB
SUBMISSION DATE Aug 19, 2022 10:29 PM GMT+7	REPORT DATE Aug 19, 2022 10:29 PM GMT+7

• 14% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 10% Internet database
- Crossref database
- 2% Submitted Works database

• Excluded from Similarity Report

- Bibliographic material
- Cited material
- Manually excluded sources

- 9% Publications database
- Crossref Posted Content database
- Quoted material
- Small Matches (Less then 10 words)
- Manually excluded text blocks

PAPER • OPEN ACCESS

A Generalization of Basis and Free Modules Relatives to a Family $\overline{\mathcal{H}}$ of *R*-Modules

To cite this article: Fitriani et al 2018 J. Phys.: Conf. Ser. 1097 012087

View the article online for updates and enhancements.

IOP ebooks[™]

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

IOP Publishing

A Generalization of Basis and Free Modules Relatives to a Family *U*of *R*-Modules

Fitriani^{1,2}, I E Wijayanti¹ and B Surodjo¹

¹Department of Mathematics, Universitas Gadjah Mada ²Department of Mathematics, Universitas Lampung

Corresponding author: fitriani27@mail.ugm.ac.id

Abstract. Let \mathscr{U} be a family of *R*-modules and *V* be a submodule of a direct sum of some elements in \mathscr{U} The aim of this paper is to generalize basis and free modules. We use the concept of \mathscr{U}_{v} -generated module and *X*-sublinearly independent to provide the definition of \mathscr{U} -basis and \mathscr{U} -free module. We construct a $\underline{\mathscr{U}}$ -basis of an *R*-module *M* as a pair (*X*, *V*), which a family \mathscr{U} is *X*-sub-linearly independent to *M* and *M* is a \mathscr{U} -generated module. Furthermore, we define \mathscr{U} -basis of *M* as a $\underline{\mathscr{U}}$ -basis which has the maximal element on the first component and the minimal element on the second component of a pair (*X*, *V*). The results show that the first component of (*X*, *V*) in \mathscr{U} -basis is closed under submodules and intersections. Moreover, we prove that the second component of (*X*, *V*) in \mathscr{U} -basis is closed under direct sums. We also determine some \mathscr{U} -free modules related to a family \mathscr{U} which contains all Z-module Z modulo *p* power of *n*, where *p* prime and $n \ge 2$.

1. Introduction

Let *R* be a ring, *A*, *B* and *C* be *R*-modules and let ${}_{A\to B\to C}^{f}{}_{B\to C}^{g}$ be an exact sequence, i.e. image of *f* is equal to the kernel of $g(g^{-1}(0))[1,2]$. Davvaz and Parnian-Garamaleky establish a quasi-exact sequence as a generalization of exact sequence. Let *U* be a submodule of *C*. A sequence ${}_{A\to B\to C}^{f}$ is *U*-exact in *B* if Im $f = g^{-1}(U)[3]$. For a submodule *V* of *A*, they also define a *V*-coexact sequence as a dual of a *U*-exact sequence.

Then, Anvariyeh dan Davvaz [4] generalize the Schanuel Lemma by using the quasi-exact sequences. Furthermore, Davvaz and Shabani-Solt [5] give a generalization of homological algebra. In [6], Anvariyeh and Davvaz investigate the connections between projective modules and *U*-split sequences. Then, Madanshekaf [7] gives some results about quasi-exact sequences. In [8], Amizadeh et al. provide a quasi-exact sequence of S-acts.

Motivated by definition of *U*-exact sequence, Fitriani et al. [9] introduce a sub exact sequence as a generalization of an exact sequence of modules. As an application of a sub-exact sequence, Fitriani et al. also establish the notion of an *X*-sub-linearly independent module as a generalization of the linearly independent set in *R*-modules [10]. Furthermore, Fitriani et al. [11] introduce a \mathcal{U}_{d} -generated module by using coexact sequence. We can say that this notion is a dual of *X*-sub-linearly independent module. This concept is motivated by the definition of \mathcal{U}_{d} -generated module from [12-14].

IOP Publishing

In this paper, we use the concept of \mathcal{U}_{e} -generated module and X-sub-linearly independent module to construct a \mathcal{U}_{e} basis and a \mathcal{U}_{e} free module which are a basis and a free module relative to a family \mathcal{U}_{e} of *R*-modules. Moreover, we determine some \mathcal{U}_{e} free modules, where \mathcal{U}_{e} is a family of all Z-modules Z modulo p^{n} , *p* prime and *n* is an integer greater than 2.

A Methods

The aim of this paper is to generalize basis and free modules to basis and free modules relative to a family \mathscr{U} of *R*-modules. If a free module *F* has a basis *X*, then $F \cong \bigoplus_{x \in X} R_x$ with each $R_x \cong R$. We can choose $\mathscr{U} = \{R\}$ so that *F* is a free module relative to \mathscr{U} In this case, a family \mathscr{U} only contain *R* as an *R*-module.

We construct a basis and a free module relative to a family $\mathcal{U} = \{U_{\lambda}\}_{\Lambda}$, where U_{λ} is an *R*-module, for every $\lambda \in \Lambda$. We use the concept of \mathcal{U}_{0} -generated module and *X*-sublinearly independent module to provide this concept. We construct a $\underline{\mathcal{U}}$ -basis of an *R*-module *M* as a pair (*X*, *V*), which a family \mathcal{U} is *X*-sub-linearly independent to *M* and *M* is a \mathcal{U}_{v} -generated module. Next, we define \mathcal{U} -basis of *M* as a $\underline{\mathcal{U}}$ -basis which has the maximal element on the first component and the minimal element on the second component of a pair (*X*, *V*). Furthermore, we determine some \mathcal{U} -free module, where \mathcal{U} is a family of all Z modulo p^{n} , *p* prime, $n \in \mathbb{N}$, $n \ge 2$ as a Z-module by using the properties of Z_{n} as an Abelian group.

3. Results and Discussions

We recall the definition of a \mathcal{U}_{σ} -generated module as follows: Given a family $\mathcal{U} = \{U_{\lambda}\}_{\Lambda}$ of *R*-modules, *V* be a submodule of $\bigoplus_{\Lambda} U_{\lambda}$. An *R*-module *N* is \mathcal{U}_{σ} -generated if there exists a surjective homomorphism from *V* to *N* [11]. If we take $V = \bigoplus_{\Lambda} U_{\lambda}$, then a \mathcal{U}_{σ} -generated module is a \mathcal{U}_{σ} -generated module. From this fact, we can say that every \mathcal{U}_{σ} -generated module is a \mathcal{U}_{σ} -generated module. But, the converse need not be true.

Now, we define the following sets:

$$\sigma(0, \oplus_{\Lambda} U_{\lambda}, M) = \{X \subseteq \oplus_{\Lambda} U_{\lambda} \mid \mathcal{U} \text{ is } X \text{-sub-linearly independent to } M$$
(1)

and

$$\mathscr{U}(M) = \{ V \subseteq \bigoplus_{\Lambda} U_{\lambda} | M \text{ is } U_{\nu} \text{-generated} \}$$
(2)

The set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ contains all submodules of $\bigoplus_{\Lambda} U_{\lambda}$ which $\stackrel{4}{}_{N} X$ -sub-linearly independent to M. Hence, if there is an injective homomorphism from Y to M, where Y is a submodule of $\bigoplus_{\Lambda} U_{\lambda}$, then Y is in the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$.

Suppose that X is in $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$. Consequently, a family \mathcal{U}_{i} is X-sub-linearly independent to M. Therefore, there exists a monomorphism f from X to M. We already know that for every submodule X' of X, we always have a monomorphism i from X' to X. Then \mathcal{U} is also X'-sub-linearly independent to M, for every submodule X' of X [10]. Similarly, if a family \mathcal{U} of R-modules is X_i^* sub-linearly independent to an R-module M for every $i \in I$, then a family \mathcal{U} is also $\bigcap_{i \in I} X_i$ -sub-linearly independent to M.

Consider the set $\mathcal{U}(M) = \{ V \subseteq \bigoplus_{\Lambda} U_{\lambda} | M \text{ is } \mathcal{U}_{0}^{2} \text{ generated} \}$. In this set, we collect all submodules V of $\bigoplus_{\Lambda} U_{\lambda}$ which M is \mathcal{U}_{0} -generated. If V is in $\mathcal{U}(M)$, we have a surective homomorphism g from V to M. If R-module X_{1} is $\mathcal{U}_{v_{1}}$ -generated and R-module X_{1} is $\mathcal{U}_{v_{2}}$ -generated, then $X_{1} \oplus X_{2}$ is $\mathcal{U}_{v_{1} \oplus v_{2}}$ -generated, where V_{1} and V_{2} be submodules of $\bigoplus_{\Lambda} U_{\lambda}$, $U_{\lambda} \in \mathcal{U}_{\lambda}$ for every $\lambda \in \Lambda$. Based on [11], we have the set $\mathcal{U}(M)$ is closed under direct sums and homomorphic images. We will use the properties of the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ and $\mathcal{U}(M)$ to investigate some characteristics of \mathcal{U}_{λ} basis and \mathcal{U}_{λ} free module.

Now, we will construct the definition of \mathcal{U} -basis and \mathcal{U} -free module by using the concept of X-sublinearly independent to an *R*-module *M* and \mathcal{U} -generated module.

Definition 2.1. Given a family \mathscr{U} of *R*-modules *A* pair of submodules (*X*, *V*) of $\bigoplus_{\Lambda} U_{\lambda}$ is said to be a $\underline{\mathscr{U}}$ basis of *R*-module *M*-if \mathscr{U} is an *X*-sublinearly independent to *M* and *M* is a \mathscr{U} -generated module.

From Definition 2.1, \mathcal{U}_{L} basis of *R*-module *M* is a pair of two submodules *X* and *V* of $\bigoplus_{\Lambda} U_{\lambda}$ which \mathcal{U} is an *X*-sublinearly independent to *M* and *M* is a \mathcal{U}_{L} -generated module. In other words, if (X, V) is a \mathcal{U}_{L} basis of *R*-module *M*, then there are a monomorphism *f* from *X* to *M* and an epimorphism *g* from *V* to *M*. Then we will give some examples of \mathcal{U}_{L} -basis of an *R*-module.

Example 2.2. Let $\mathcal{U} = \{Z_p \mid p \text{ prime}\}$, a family of Z-modules, where Z is a set of integers. We consider Z₆ as a Z-module. We will find $\underline{\mathcal{U}}$ -basis of Z-module Z₆. We can define monomorphisms from 0, Z₂, Z₃ and Z₂ \oplus Z₃ to Z₆. Also, we can define an epimorphism from Z₂ \oplus Z₃ to Z₆. Therefore, we have some $\underline{\mathcal{U}}$ -basis of Z-module Z₆ as follows: $(0, \underline{\mathcal{U}}_2 \oplus Z_3), (Z_2, Z_2 \oplus Z_3), (Z_3, Z_2 \oplus Z_3), (Z_2 \oplus Z_3), (Z_2 \oplus Z_3).$

Example 2.3. Let $\mathcal{U} = \{\mathbb{Z}\}\)$, a family of Z-module, where Z is a set of integers. We will find \mathcal{Q} -basis of Z-module Z₄. Clearly, there is a monomorphism from 0 to Z₄ and hence a family \mathcal{U} is 0-sub-linearly independent to Z₄. Furthermore, we can define an epimorphism from Z to Z₄. As a consequence, (0, Z) is a \mathcal{Q} -basis of Z-module Z₄. In general, we can show that (0, Z) is a \mathcal{Q} -basis of Z-module Z_n, for every $n \ge 2$.

Now, we will give some properties of $\underline{\mathscr{U}}$ -basis of an *R*-module *M*. We already know that the set $\sigma(0, \oplus_{\Lambda} U_{\lambda}, M)$ is closed under intersections [10]. We will use this property to show the following proposition. **Proposition 2.4.** *Given a family* \mathscr{U} of *R*-modules. If (X_{α}, V) is a $\underline{\mathscr{U}}$ -basis of an *R*-module *M*, for every $\alpha \in A$, then $(\bigcap_{\alpha} X_{\alpha}, V)$ is $\underline{\mathscr{U}}$ -basis of *M*.

Proof. Suppose that (X_{α}, V) is a $\underline{\mathscr{U}}$ basis of an *R*-module *M*, for every $\alpha \in A$. Consequently, a family \mathscr{U} is X_{α} -sub-linearly independent to *M*, for every $\alpha \in A$. Hence, $X_{\alpha} \in \sigma (0, \bigoplus_{\Lambda} U_{\lambda}, M)$, for every $\alpha \in A$. Based on [10], the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ is closed under intersections. As a consequence, we have $(\bigcap_{\alpha} X_{\alpha}, V)$ is in $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$. In other words, a family \mathscr{U} is $\bigcap_{\alpha} X_{\alpha}$ -sub-linearly independent to *M* and hence we have $(\bigcap_{\alpha} X_{\alpha}, V)$ is a $\underline{\mathscr{U}}$ -basis of *M*. QED

Next, we will use the fact that the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ is closed under submodules to proof the following property of $\underline{\mathscr{U}}$ -basis of M.

Proposition 2.5. Given a family \mathscr{U} of *R*-modules. If (X, V) is a \mathscr{D} -basis of *R*-module *M*, then a pair (X', V) is a \mathscr{U} -basis of *M*, for every submodule X' of *X*.

Proof. Let a pair (X, V) is a $\underline{\mathscr{Q}}_{\ell}$ -basis of an *R*-module *M*. Then a family \mathfrak{Q}_{ℓ}^{4} is *X*-sub-linearly independent to *M*. This implies that $X \in \sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$. Based on [10], $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ is closed under submodules. So, for every submodule *X'* of *X*, *X'* is in $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$. Therefore, (X', V) is a $\underline{\mathscr{Q}}_{\ell}$ -basis of *M*, for every submodule *X'* of *X*. QED

In the next proposition, we focus on the second component of a pair (X, V) which is \mathcal{Q}_{ℓ} basis of an *R*-module *M*. We will use the properties of the set $\mathcal{Q}(M)$ to proof the next property of $\underline{\mathcal{Q}}_{\ell}$ basis.

Proposition 2.6. Given a family \mathscr{U} of *R*-modules. If (X, V_{β}) is a $\underline{\mathscr{U}}$ basis of *R*-module *M*, for every $\beta \in B$, then $(X, \mathcal{D}_{\beta}V_{\beta})$ is a $\underline{\mathscr{U}}$ basis of *M*.

Proof. Suppose that (X, V_{β}) is a \mathcal{Q}_{ℓ} basis of *R*-module *M*, for every $\beta \in B$. Then *M* is a $\mathcal{Q}_{\nu_{\beta}}$ -generated module. This implies $V_{\beta} \in \mathcal{Q}(M)$, for every $\beta \in B$. Based in [11], we already know that the set $\mathcal{Q}(M)$ is closed under direct sums. Therefore, we have $\bigoplus_{B} V_{\beta} \in \mathcal{Q}(M)$. In other words, we can say *M* is a $\mathcal{Q}_{\bigoplus_{B} \nu_{\beta}}$

-generated module. Hence, a pair $(X, \bigoplus_B V_\beta)$ is a \mathscr{U} -basis of M. QED

Proposition 2.7. *Given a family* \mathscr{U} *of* R*-modules. If* (X_{γ}, V_{γ}) *is a* $\underline{\mathscr{U}}$ *basis of* R*-module* M_{γ} *, for every* $\gamma \in \Gamma$ *, then* $(\oplus_{\Gamma} X_{\gamma}, \oplus_{\Gamma} V_{\gamma})$ *is* $\underline{\mathscr{U}}$ *basis of* $\oplus_{\Gamma} M_{\gamma}$.

Proof. Suppose that (X_{γ}, V_{γ}) is a $\underline{\mathscr{U}}$ -basis of *R*-module *M*, for every $\gamma \in \Gamma$. From this we have a family \mathscr{U} is X_{γ} -sub-linearly independent to M_{γ} and M_{γ} is $\mathscr{U}_{\gamma_{\alpha}}$ -generated. This implies $X_{\gamma} \in \sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ and

 $V_{\gamma} \in \mathcal{U}(M)$, for every $\gamma \in \Gamma$. Therefore, we have a monomorphism from X_{γ} to M and an epimorphism from V_{γ} to M_{γ} for every $\gamma \in \Gamma$. Clearly, we can construct a monomorphism from $\bigoplus_{\Lambda} X_{\lambda}$ to $\bigoplus_{\Lambda} M_{\lambda}$. Also, we can define an epimorphism from $\bigoplus_{\Lambda} V_{\lambda}$ to $\bigoplus_{\Lambda} M_{\lambda}$. Hence $\bigoplus_{\Gamma} X_{\gamma} \in \sigma(0, \bigoplus_{\Lambda} U_{\lambda}, \bigoplus_{\Lambda} M_{\lambda})$ and $\bigoplus_{\Gamma} V_{\gamma} \in \mathcal{U}$ $(\bigoplus_{\Lambda} M_{\lambda})$. Therefore, $(\bigoplus_{\Gamma} X_{\gamma}, \bigoplus_{\Gamma} V_{\gamma})$ is $\underline{\mathcal{U}}$ -basis of $\bigoplus_{\Gamma} M_{\gamma}$. QED

We can see from Example 2.2 that $\underline{\mathcal{U}}$ basis of an *R*-module *M* is not uniquely determined. From this fact, we will choose a maximal element in first part of $\underline{\mathcal{U}}$ basis of *M* and a minimal element in second part of $\underline{\mathcal{U}}$ basis of *M*. In other words, we will find a maximal element of the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ and a minimal element of $\mathcal{U}(M)$ Based on [10], the set $\sigma(0, \bigoplus_{\Lambda} U_{\lambda}, M)$ always has a maximal element. We will denote $\underline{\mathcal{U}}$ basis of *M* which has a maximal element in the first component and a minimal element in the second component of a pair (X, V), a \mathcal{U} basis of *M*. Now, we give the formal definition of \mathcal{U} basis of *M* and \mathcal{U} free module.

Definition 2.8. Given a family \mathscr{U} of *R*-modules. A pair (X, V) is said to be a \mathscr{U} -basis if (X, V) is $\underline{\mathscr{U}}$ basis of *M*, X is a maximal element of $\sigma(0, \mathcal{D}_A U_\lambda, M)$ and V is a minimal element of $\mathscr{U}(M)$. An *R*-module *M* is called \mathscr{U} -free if *M* has \mathscr{U} -basis.

Example 2.9. Given a family \mathcal{U} of *R*-modules. Then a pair (0,0) is \mathcal{U} -basis of *R*-module 0.

Example 2.10. Given a family $\mathcal{U} = \{Z_n \mid n \text{ prime}\}$ of Z-modules. From Example 2.2, we have some $\underline{\mathcal{U}}$ -basis of Z-module Z_6 , i.e. $(0, 2_2 \oplus Z_3), (Z_2, Z_2 \oplus Z_3), (Z_3, Z_2 \oplus Z_3), (Z_2 \oplus Z_3, Z_2 \oplus Z_3)$. Therefore, we have $Z_2 \oplus Z_3$ is a maximal element in the first component of $\underline{\mathcal{U}}$ -basis and also a minimal element of the second component of $\underline{\mathcal{U}}$ -basis of Z_6 . Hence, a pair $(Z_2 \oplus Z_3, Z_2 \oplus Z_3)$ is a \mathcal{U} -basis of Z-module Z_6 .

Example 2.11. Given a family \mathcal{U} of Z-module. Based on Example 2.3, we have a pair $(0, \mathbb{Z})$ is a \mathcal{U} basis of Z-module \mathbb{Z}_n , where $n \ge 2$.

We already know that Z-module \mathbb{Z}_n is not a free module. But, from Example 2.11 we have Z-module \mathbb{Z}_n is a \mathscr{U} -free module relative to a family $\mathscr{U} = \{\mathbb{Z}\}$ of Z-module, where $n \ge 2$.

In the Proposition 2.7, we have proved that a $\underline{\mathcal{U}}$ -basis of an *R*-module *M* is closed under direct sums. A similar result holds for an \mathcal{U} -basis of an *R*-module *M*.

Proposition 2.12. Given a family \mathscr{U} of *R*-modules. If (X_{γ}, V_{γ}) is a \mathscr{U} basis of *R*-module M_{γ} , for every $\gamma \in \Gamma$, then $(\bigoplus_{I} X_{\gamma}, \bigoplus_{I} V_{\gamma})$ is \mathscr{U} basis of $\bigoplus_{I} M_{\gamma}$.

In the previous examples, a submodule *X* and *V* of $\bigoplus_{\Lambda} U_{\lambda}$ which is a \mathcal{U}_{λ} basis of an *R*-module *M* need not be isomorphic. In case *X* is isomorphic to *V*, we will introduce a \mathcal{U}_{λ} strictly basis and a \mathcal{U}_{λ} strictly free module as follows:

Definition 2.13. Given a family \mathscr{U} of *R*-modules. A pair (X, V) is said to be a \mathscr{U} strictly basis if (X, V) is \mathscr{U} basis of M and X is isomorphic to V. An *R*-module M is called a \mathscr{U} strictly free if M has \mathscr{U} strictly basis.

Since X is isomorphic to V, we simply write X instead (X, V) as a \mathscr{U} -strictly basis of an *R*-module *M*. We will determine a family \mathscr{U} of *R*-modules to regard a free module as a \mathscr{U} -strictly free module. We already know that if a free module *F* has a basis X, then $F \cong \bigoplus_{x \in X} R_x$ with each $R_x \cong R$. We can choose \mathscr{U} = {*R*} as a family of *R*-module. Hence, we have $\bigoplus_{x \in X} R_x = R^{(X)}$ is a \mathscr{U} -strictly basis of *F*. This implies *F* is \mathscr{U} -strictly free. From this fact, we can say that every free *R*-module *F* is a \mathscr{U} -strictly free module. Based on Example 2.9, a pair (0,0) is \mathscr{U} -basis of *R*-module 0, for any family \mathscr{U} of *R*-modules. As a consequence, *R*-module 0 is \mathscr{U} -strictly free.

Moreover, in case X is an element of \mathcal{U} . X is \mathcal{U} -strictly free. Furthermore, we consider the result of Proposition 2.12. If M_i is a \mathcal{U} -strictly free module for every i = 1, 2, ..., n, then $\bigoplus_{i=1}^n M_i$ is also a \mathcal{U} -strictly free module. Now, we will give some examples of \mathcal{U} -strictly free modules.

IOP Publishing

Example 2.14. Let *R* be a commutative ring with unit and $\mathcal{U} = \{U_{\lambda}\}_{\Lambda}$ be a family of *R*-modules, where $U_{\lambda} = \operatorname{Hom}_{R}(R, M_{\lambda})$ for every $\lambda \in \Lambda$. Based on [1], we can define a homomorphism φ from $\operatorname{Hom}_{R}(R, M_{\lambda})$ to M_{λ} , where $\varphi(f) := f(1)$. We can show that φ is an isomorphism. This implies that a family \mathcal{U} is U_{λ} -sub-linearly independent to M_{λ} and M_{λ} is $\mathcal{U}_{\nu_{\gamma}}$ -generated. Therefore, we can conclude that M_{λ} is $\mathcal{U}_{\nu_{\gamma}}$.

strictly free.

Example 2.15. Given a family $\mathcal{U} = \{\mathbb{Z}_n \mid n \in \mathbb{Z}, n \ge 2\}$ of \mathbb{Z} -modules. Let $M = \mathbb{Z}_4^{(\mathbb{N})}$ and $N = \mathbb{Z}_2 \oplus M$ be \mathbb{Z} -modules. Since a family \mathcal{U} is M-sub-linearly independent to M and M is \mathcal{U}_N -generated, (M, N) is \mathcal{U} -basis of M. We will show that M is not isomorphic to N. Assume that there is an isomorphism f from M to N. Since $(1,0,0,\ldots) \in N$, there is $0 \neq (a_i) \in M$ such that $f((a_i)) = (1,0,0,\ldots)$. Then $f(2(a_i)) = 2f((a_i)) = 2(1,0,0,\ldots) = 0$. By hypothesis, f is a monomorphism. So, we have $2(a_i) = 0$. Therefore, $a_1 = 0$ or 1 and $a_i = 0$ or 2, for $i \ge 2$. So, there is $(b_i) \in M$ such that $(a_i) = 2(b_i)$. This implies $b_1 = 0$ or 1 and $b_i = 0, 1$ or 3, for $i \ge 2$. Hence, $0 = 2f((b_i)) = f(2(b_i)) = f((a_i))$. But $1 = f((a_i))_1 = 0$, a contradiction. We can conclude that M is not isomorphic to N and hence (M, N) is not \mathcal{U} -strictly basis of M.

Now, we consider the following properties of Z_n as an Abelian group.

Theorem 2.16. [15] Let *m* and *n* be positive integers. If gcd(m,n)=1 (i.e. *m* and *n* are relative prime), then $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to \mathbb{Z}_{mn} and (1,1) is a generator of $\mathbb{Z}_m \times \mathbb{Z}_n$.

Theorem 2.17. [15] The group $\Pi_{i=1}^{n} \mathbb{Z}_{mi}^{8}$ cyclic and isomorphic to $\mathbb{Z}_{m_{1}m_{2}...m_{n}}$ if and only if the numbers m_{i} for i = 1, ..., n are pairwise relative prime, that is, the gcd of two of them is 1.

Therefore, by using Theorem 2.16 and 2.17, we can determine some \mathcal{U} -strictly free modules as follows.

Proposition 2.18. Given a family $\mathscr{U}= \{Z_p \mid p \text{ prime}\}\$ of Z-modules and q, r be two distinct primes. Then Z-module Z_{qr} is \mathscr{U} -strictly free.

Proof. Since q and r are relative primes, $\mathbb{Z}_q \oplus \mathbb{Z}_r$ is \mathscr{U} -strictly basis of \mathbb{Z}_{qr} . Hence, Z-modules \mathbb{Z}_{qr} is a \mathscr{U} -strictly free. QED

Proposition 2.19. Given a family $\mathscr{U} = \{Z_{p^n} | p \text{ prime, } n \in \mathbb{N}\}\$ of Z-modules. Then Z_n is a \mathscr{U} strictly free module, for every positive in the prime $n \ge 2$.

Proof. We already know mat every positive integer *n* can be uniquely factorized as a product of distinct prime number $n = p_1^{n_1} p_2^{n_2} \dots p_r^{n_r}$, where p_i prime and $n_i \in \mathbb{N}$ for $i = 1, 2, \dots, r$. By Theorem 2.17, we have:

$$\mathbf{Z}_n \cong \mathbf{Z}^{p_1^{n_1}} \times \mathbf{Z}^{p_2^{n_2}} \times \ldots \times \mathbf{Z}^{p_r^{n_r}}$$

Therefore, we have $\mathbb{Z}_{p_1^{n_1}} \times \mathbb{Z}_{p_2^{n_2}} \times \ldots \times \mathbb{Z}_{p_r^{n_r}}$ is a \mathscr{U} -strictly basis of \mathbb{Z}_n . This implies that \mathbb{Z}_n is a \mathscr{U} -strictly free module, for every positive integer *n*. QED

From Proposition 2.18, we have some \mathscr{U} -strictly free modules, where \mathscr{U} is a family of Z-modules Z modulo p, p prime. Z-module \mathbb{Z}_{qr} is \mathscr{U} -strictly free for every two distinct primes q and r. Moreover, based on Proposition 2.19, we have Z-modules \mathbb{Z}_n are \mathscr{U} -strictly free module relative to a family \mathscr{U} which contains all Z-modules \mathbb{Z}_{p^n} , p prime, for every positive integer $n \ge 2$.

We already know that since Z-module Z_n is not linearly independent, Z_n is not a free module, for every positive integer *n* greater than 2. But, this module is \mathcal{U} -strictly free module relative to a family \mathcal{U} = { $Z_p | p \text{ prime}$ } of Z-modules. Consequently, \mathcal{U} -strictly free module is a generalization of a free module. If we take \mathcal{U} ={R}, where \overline{x} is a ring, then an *R*-module *M* is \mathcal{U} -strictly free if and only if *R*-module *M* is free. But, if \mathcal{U} is another family of *R*-module, then not every \mathcal{U} -strictly free module is a free module.

4. Conclussions

A \mathscr{U} -basis and a \mathscr{U} -free modules are a basis and a free module relative to a family \mathscr{U} of *R*-module. These notions are the generalization of the concept of a basis and a free module. Every free module *F* is a \mathscr{U} -free module, where $\mathscr{U} = \{R\}$ as a family of *R*-module. But not every \mathscr{U} -free module is a free module. For example, Z-module Z_n is a \mathscr{U} -strictly free module, but Z-module Z_n is not a free module.

If \mathscr{U} be a family of all Z-module \mathbb{Z}_p , where *p* prime, then Z-module \mathbb{Z}_{qr} is a \mathscr{U} -strictly free module, where *q* and *r* be distinct primes. Furthermore, if \mathscr{U} be a family of all \mathbb{Z} modulo *p* power of *n*, where *p* prime and *n* positive integer larger than 2, Z-module \mathbb{Z}_n is a \mathscr{U} -strictly free module, for every positive integer $n \ge 2$.

2 cknowledgment

The authors thank the Directorate of Research and Community Service of the Republic of Indonesia for the funding of PDD-2018 with contract number 385/UN26.21/PN/2018.

References

- [1] Adkins W A and Weintraub S H 1992 *Algebra, An Approach via Module Theory* (New York: Springer-Verlag)
- [2] Dummit D S and Foote R M 2004 Abstract Algebra (USA: John Wiley and Sons, Inc.)
- [3] Davvaz B and Parnian-Garamaleky Y A 1999 A Note on Exact Sequences *Bull. Malaysian Math.* Soc. **22** 53–6
- [4] Anvanriyeh S M and Davvaz B 2005 On Quasi-Exact Sequences Bull. Korean Math. Soc 42 149– 55
- [5] Davvaz B and Shabani-Solt H 2002 A generalization of homological algebra J. Korean Math. Soc. 39 881–98
- [6] Anvanriyeh S M and Davvaz B 2002 U-Split Exact Sequences Far East J. Math. Sci. 4 209–19
- [7] Madanshekaf A 2008 Quasi-Exact Sequence and Finitely Presented Modules Iran. J. Math. Sci. Informatics 3 49–53
- [8] Aminizadeh R, Rasouli H and Tehranian A 2017 Quasi-exact Sequences of S-Act *Bull. Malaysian Math. Soc.*
- [9] Fitriani, Surodjo B and Wijayanti I E 2016 On sub-exact sequences Far East J. Math. Sci. 100 1055–65
- [10] Fitriani, Surodjo B and Wijayanti I E 2017 On X-sub-linearly independent modules J. Phys. Conf. Ser. 893
- [11] Fitriani, Wijayanti I E and Surodjo B 2018 Generalization of U -Generator and M -Subgenerator Related to Category σ [M] *Journal Math. Res.* 10 101–6
- [12] Anderson F W and Fuller K R 1992 Rings and Categories of Modules (New York: Springer-Verlag)
- [13] Wisbauer R 1991 *Foundation of Module and Ring Theory* (Philadelphia, USA: Gordon and Breach)
- [14] Clark J, Lomp C, Vanaja N and Wisbauer R 2006 *Lifting modules : supplements and projectivity in module theory* (Birkhäuser Verlag)
- [15] Hill V E 2000 Groups and characters (Chapman & Hall/CRC)

14% Overall Similarity Top sources found in the following databases: 10% Internet database 9% Publications database Crossref database Crossref Posted Content database 2% Submitted Works database **TOP SOURCES** The sources with the highest number of matches within the submission. Overlapping sources will not be displayed. icmss.ulm.ac.id 1 3% Internet Fitriani Fitriani, Indah Wijayanti, Budi Surodjo. "Generalization of \$\mat... 3% 2 Crossref iopscience.iop.org 3 3% Internet Fitriani, B Surodjo, I E Wijayanti. " On -sub-linearly independent module... 4 2% Crossref sciencepubco.com 1% 5 Internet B H S Utami, Fitriani, M Usman, Warsono, J I Daoud. "Sub-Exact Seque.... 6 Crossref The University of Manchester on 2014-05-15 7 <1% Submitted works Samsul Arifin, Indra Bayu Muktyas, Klara Iswara Sukmawati. "Product ... <1% 8 Crossref

9	ofsbrandssitesbucket.s3.amazonaws.com	<1%
10	paperzz.com Internet	<1%
11	1pdf.net Internet	<1%
12	University of Sheffield on 2019-04-08 Submitted works	<1%
13	ejournal.radenintan.ac.id	<1%
14	MA, S.y "Variable-rate convolutional network coding", The Journal of Crossref	<1%
15	pasca.unila.ac.id	<1%

Excluded from Similarity Report Bibliographic material Cited material Manually excluded sources Manually excluded text blocks

EXCLUDED SOURCES

Fitriani, I E Wijayanti, B Surodjo. " A Generalization of Basis and Free Modules . Crossref	71%
Binus University International on 2018-08-17 Submitted works	71%
Binus University International on 2018-08-06 Submitted works	67%
repository.lppm.unila.ac.id	8%

EXCLUDED TEXT BLOCKS

OPEN ACCESSA Generalization of Basis and Free Modules Relatives to a Family

iopscience.iop.org

To cite this article

eprints.unm.ac.id

ICRIEMS 5IOP PublishingIOP Conf. Series: Journal of Physics: Conf. Ser1i2e3s415...

Universitas Negeri Semarang on 2021-01-28

Content from this work may be used under the terms of the Creative Commons Att...

cyberleninka.org