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Abstract 

In this paper, we investigate the sufficient conditions for T[[S,]] to be a multiplicative subset of 

skew generalized power series ring R[[S,]], where R is a ring, T  R a multiplicative set, (S,≤) 

a strictly ordered monoid, and  : S→End(R) a monoid homomorphism. Furthermore, we obtain 

sufficient conditions for skew generalized power series module M[[S,]] to be a T[[S,]]-

Noetherian R[[S,]]-module, where M is an R-module.  

Keywords: Monoid homomorphism; multiplicative set; skew generalized power series; strictly 

ordered monoid; T-Noetherian 

 

INTRODUCTION  

Mazurek and Ziembowski (2008) introduce the structure of Skew Generalized Power 

Series Rings (SGPSR) R[[S,]], where R is a ring, T  R a multiplicatively closed set, (S, ≤) a 

strictly ordered monoid and  : S → End(R) a monoid homomorphism. This ring is a 

generalization of the Generalized Power Series Rings (GPSR) R[[S]], the result of the 

construction of Ribenboim (1990). SGPSR R[[S,]] is also a generalization of the semigroup 

ring R[S], the Laurent ring R[[X,X–1]], the formal power series ring R[[X]], the Laurent 

polynomial ring R[X,X–1], and the polynomial ring R[X], by taking trivially , and some monoid 

S and partial order ≤. On the other hand, Varadarajan (2001) studies the structure of the 

Generalized Power Series Module (GPSM) M[[S]] which is a module over GPSR R[[S]], where 

M is a module over ring R. Furthermore, Varadarajan also determines the necessary and 

sufficient conditions for M[[S]] to be a Noetherian module over R[[S]]. 

The concept of Noetherian rings and modules can be seen in (Adkins & Weintraub, 2012), 

one of which is the sufficient conditions for the polynomial ring R[X] to be a Noetherian ring. 

In the module structure, Varadarajan (1982) determines the sufficient conditions for the R[X]-

module M[X], R[X, X-1]-module M[X, X-1], and R[[X]]-module M[[X]] to be Noetherian. For the 

case of the noncommutative ring, the concept of Noetherian rings and modules can be seen in 

(Goodearl & Warfield, 2004) as well as (Lam, 2001). Furthermore, Gilmer (1984) shows that 

the semigroup ring R[S] is Noetherian if and only if R is Noetherian and S is finitely generated. 

As a generalization of semigroup ring R[S], Ribenboim (1992) determines the necessary and 

sufficient conditions for GPSR R[[S]] to be a Noetherian ring. 

As a generalization of the concept of Noetherian ring R and Noetherian modules over R, 

Anderson, and Dumitrescu (2002) introduce the concept of T-Noetherian rings and modules, 

where T is a multiplicative subset of ring R. For the noncommutative case, some properties of 

T-Noetherian rings and modules investigated by Baeck et al. (2016). Anderson and Dumitrescu 

also give sufficient conditions for R[X] and R[[X]] to be T-Noetherian rings, where TR is an 

anti-Archimedean multiplicative set and an anti-Archimedean multiplicative set containing 

nonzero divisors, respectively. On the other hand, Faisol et al. (2019 (1)) determine the 

mailto:ahmadfaisol@fmipa.unila.ac.id
mailto:ahmadfaisol@fmipa.unila.ac.id


 

Al-Jabar: Jurnal Pendidikan Matematika  

     Vol. 10, No. 2, 2019, Hal 285 - 292  

 

 286 

sufficient conditions for R[X]-module M[X]  and  R[[X]]-module M[[X]] to be T[X]-Noetherian 

module and T[[X]]-Noetherian (respectively), where T[X] and T[[X]] are multiplicative subsets 

of R[X] and R[[X]] (respectively). 

Furthermore, Zhongkui (2007) gives the necessary and sufficient conditions for 

GPSR R[[S]] to be a T-Noetherian ring, while Faisol et al. (2019 (2)) determine the sufficient 

conditions for R[[S]]-module M[[S]] to be T[[S]]-Noetherian, where T[[S]] is a multiplicative 

subset of R[[S]]. These sufficient conditions are obtained by applying some of the properties 

that have been studied in Faisol et al. (2018). 

Padashnik et al. (2016) give the necessary and sufficient conditions for GPSR R[[S, ]] 

to be T-Noetherian. On the other hand, Faisol et al. (2016) determine the necessary conditions 

for Skew Generalized Power Series Module (SGPSM) M[[S,]] to be a T-Noetherian R[[S,]]-

module. But, sufficient conditions for M[[S,]] to be T-Noetherian have not been investigating 

to date. This fact gives us the motivation to investigate the sufficient conditions for 

SGPSM M[[S,]] to be a T-Noetherian R[[S,]]-module.      

The main results of this paper are the sufficient conditions for M[[S,]] to be T-

Noetherian R[[S,]]-module. Furthermore, we also obtain sufficient conditions for M[[S,]] to 

be a T[[S,]]-Noetherian R[[S,]]-module, by first determining the sufficient condition for 

T[[S,]] to be a multiplicative subset of R[[S,]]. 

 

THE RESEARCH METHODS 

This research, based on the study of literature books and scientific journals, specifically 

relating to the concept of Noetherian rings and modules, T-Noetherian rings and modules, and 

SGPSR R[[S,]]. 

In the first stage, we investigate the impact of monoid homomorphism  on the structure 

of SGPSR R[[S,]]. These results are then used to determine the sufficient conditions for 

SGPSM M[[S,]] to be a finitely generated module over R[[S,]]. 

In the second step, we determine the sufficient conditions for M[[S,]] to be a Noetherian 

R[[S,]]-module and a T-Noetherian R[[S,]]-module. This is obtained by first determining the 

sufficient conditions of M[[S,]] is a finitely generated module. 

In the final step, we give sufficient conditions for M[[S,]] to be a T[[S,]]-Noetherian 

module. This is obtained by first determining the sufficient conditions of the set T[[S,]] is a 

multiplicative set in R[[S,]]. 

 

THE RESULTS OF THE RESEARCH AND THE DISCUSSION  

In this section, we give sufficient conditions for SGPSM M[[S,]] to be Noetherian, T-

Noetherian, and a T[[S,]]-Noetherian R[[S,]]-module. Before that, we review the 

construction of SGPSR R[[S,]], which is introduced by Mazurek and Ziembowski (2008). 

Furthermore, we give the structure of SGPSM M[[S,]] by following GPSM M[[S]] 

construction method by Varadarajan (2001). 
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Regarding ordered sets, strictly ordered monoids, Artinian and narrow sets, we will be 

following the terminology in (Ribenboim, 1990).  (S,≤) is said to be a strictly ordered monoid 

if for any s, s’, u  S, s < s’ implies su < s’u and us < us’.  The sequence (sn) in (S,≤) is said to 

be strictly ascending sequence if sn < sn+1 for n = 1, 2, …, and it is said to be strictly descending 

sequence if sn > sn+1 for n = 1, 2, … . A partially ordered set (S,≤) is said to be  Artinian if every 

strictly descending sequence of elements of S are finite, and it is said to be narrow if S does not 

contain an infinite subset consisting of pairwise incomparable elements.  

Now, we recall the construction of SGPSR R[[S,]]. Let (S,≤) be a strictly ordered 

monoid, R  a ring with identity element, and  : S → End(R) a monoid homomorphism. For 

any s  S,  (s) denoted by s. In other word, s is a ring homomorphism of R.  If 1  S is an 

identity element, then 1 = idR is an identity element of End(R).  Let RS = {f | f: S → R} and 

R[[S,]] = {f  RS | supp(f) Artinian and narrow}, where supp(f) = {sS | f (s)  0}.  

Since the set 𝜒𝑠(𝑓, 𝑔) = {(𝑥, 𝑦) ∈ supp(𝑓) × supp(𝑔)|𝑥𝑦 = 𝑠} is finite, we can define 

the convolution multiplication on R[[S,]] by:  

                          (𝑓𝑔)(𝑠) = ∑ 𝑓(𝑥)𝜔𝑥( 𝑔(𝑦)(𝑥,𝑦)∈𝜒𝑠(𝑓,𝑔) ),       (1) 

for every sS and f , g  R[[S,]]. Under pointwise addition and convolution multiplication 

(1), R[[S,]] becomes a ring, which is called Skew Generalized Power Series Rings (SGPSR). 

For any r ∈ R and s, x ∈ S, we define the maps cr, es: S → R by: 

 𝑐𝑟(𝑥) = {
1 ;  if  𝑥 = 1
0 ;  if  𝑥 ≠ 1

     ........................................................... (2) 

and 

 𝑒𝑠(𝑥) = {
1 ;  if  𝑥 = 𝑠
0 ;  if  𝑥 ≠ 𝑠

     ............................................................ (3) 

Based on equations (2) and (3), 𝑟 ↦ 𝑐𝑟 is a ring embedding from R to R[[S,]], and 𝑠 ↦ 𝑒𝑠 is 

a monoid embedding from S to R[[S,]].   

Next, we give the structure of SGPSM M[[S,]] over R[[S,]]. Let (S,≤) be a strictly 

ordered monoid, R a commutative ring with identity element, M an R-module, and  : S → 

End(R) a monoid homomorphism. Let M S={f  |f : S →M} and M[[S,]] = { M S |supp( ) 

Artin and narrow}, where supp( )={sS | (s)  0}. 

Since the set 𝜒𝑠(, 𝑓) = {(𝑥, 𝑦) ∈ supp() × supp(𝑓)|𝑥𝑦 = 𝑠} is finite, we can define 

the scalar multiplication by:  

                           (𝑓)(𝑠) = ∑ (𝑥)𝜔𝑥(𝑓(𝑦)(𝑥,𝑦)∈𝜒𝑠(,𝑓) ),        (4) 

For every sS, M[[S,]] and fR[[S,]]. 

Under pointwise addition and scalar multiplication (4), M[[S,]] becomes a module over 

R[[S,]]. This module is called Skew Generalized Power Series Module (SGPSM). 

 

 

For any m  M and s  S, we define a map 𝑑𝑚
𝑠 : S → M  by: 

  𝑑𝑚
𝑠 (𝑥) = {

𝑚 ;  if  𝑥 = 𝑠
0 ;  if  𝑥 ≠ 𝑠

     ........................................................ (5) 
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Based on equation (5), it is clear that 𝑚 ↦ 𝑑𝑚
0  is a module embedding of M into M[[S,]].

 For any ring R and 𝑛 ≥ 1, 𝑅 ⊕ 𝑅 ⊕ ⋯ ⊕ 𝑅 (n factor) is denoted by ⊕𝑖=1
𝑛 𝑅. Necessary 

and sufficient conditions for R-module M to be a finitely generated module are given by 

following lemma. 

Lemma 1. (Faisol, Surodjo, & Wahyuni, 2019(1)) Let M be a module over a ring R.  M is 

finitely generated if and only if it is isomorphic to a quotient of  ⊕𝑖=1
𝑛 𝑅, for some n>0.  

For any subset N of R-module M, let 𝑁[[𝑆, 𝜔]] = {𝛼 ∈ 𝑀[[𝑆, 𝜔]] |𝛼(𝑠) ∈ 𝑁; ∀ 𝑠 ∈ 𝑆}. 

This following lemma shows that N[[S,]] is an R[[S,]]-submodule of M[[S,]]. 

Lemma 2. Let R be a ring, M an R-module, (S,≤) a strictly ordered monoid, and  : S → End(R) 

a monoid homomorphism. If N is an R-submodule of M, then N[[S,]] is an R[[S,]]-submodul 

of M[[S,]].   

Proof: For any 𝛼, 𝛽 ∈ 𝑁[[𝑆, 𝜔]] and 𝑓, 𝑔 ∈ 𝑅[[𝑆, 𝜔]], we will show that 𝛼𝑓 + 𝛽𝑔 ∈ 𝑁[[𝑆, 𝜔]]. 

In other word, it is enough to show that (𝛼𝑓 + 𝛽𝑔)(𝑠) ∈ 𝑁, for all 𝑠 ∈ 𝑆. For any 𝛼 ∈

𝑁[[𝑆, 𝜔]], 𝑓 ∈ 𝑅[[𝑆, 𝜔]], and 𝑠 ∈ 𝑆, (𝛼𝑓)(𝑠) = ∑ 𝛼(𝑢)𝜔𝑢(𝑓(𝑣))𝑢𝑣=𝑠 . Since N is an R-

submodule of M, we obtain 𝛼(𝑢)𝜔𝑢(𝑓(𝑣)) ∈ 𝑁 for every 𝑢𝑣 = 𝑠 ∈ 𝑆. Therefore, (𝛼𝑓)(𝑠) ∈

𝑁 for every 𝑠 ∈ 𝑆. In a similar way, for any 𝛽 ∈ 𝑁[[𝑆, 𝜔]], 𝑔 ∈ 𝑅[[𝑆, 𝜔]], and 𝑠 ∈ 𝑆, we have 

(𝛽𝑔)(𝑠) ∈ 𝑁. Hence, (𝛼𝑓 + 𝛽𝑔)(𝑠) ∈ 𝑁 for every 𝑠 ∈ 𝑆. So, it is prove that N[[S, 𝜔]] is an 

R[[S,]]-submodul of M[[S,]]. ∎ 

In Lemma 2. above, if we take  trivially, i.e. (s) = 1 for all 𝑠 ∈ 𝑆, then we get Lemma 

3.2. in (Faisol, Surodjo, & Wahyuni, 2019(2)). The following proposition shows that SGPSM 

with coefisien in module quotient of 𝑀/𝑁 is isomorphic to a module quotient of 

𝑀[[𝑆, 𝜔]]/𝑁[[𝑆, 𝜔]]. 

Proposition 3. Let R be a ring, M an R-module, (S,≤) a strictly ordered monoid, and  : S → 

End(R) a monoid homomorphism. If N is an R-submodule of M, then (𝑀/𝑁)[[𝑆, 𝜔]] ≅

𝑀[[𝑆, 𝜔]]/𝑁[[𝑆, 𝜔]]. 

Proof: For any R-submodule N of M, we define pN as a natural projection. Next, we define a 

map 𝜑: 𝑀[[𝑆, 𝜔]] → (𝑀/𝑁)[[𝑆, 𝜔]] by: 

     𝛼 ⟼ 𝛼 = 𝑝𝑁 ∘ 𝛼, 

for every 𝛼 ∈ 𝑀[[𝑆, 𝜔]]. It is clear that supp(𝛼) is Artinian and narrow, which is imply 𝛼 ∈

(𝑀/𝑁)[[𝑆, 𝜔]]. For any 𝛼 ∈ (𝑀/𝑁)[[𝑆, 𝜔]], there is 𝛼 ∈ 𝑀[[𝑆, 𝜔]] such that 𝜑(𝑎) = 𝛼. 

Hence, 𝜑 is surjective. Therefore, 𝐼𝑚(𝜑) = (𝑀/𝑁)[[𝑆, 𝜔]]. Furthermore, if 𝜑(𝛼) = 0 for any 

𝛼 ∈ 𝑀[[𝑆, 𝜔]], then 𝛼 = 𝑝𝑁 ∘ 𝛼 = 0. Therefore, 𝛼(𝑠) ∈ 𝑁 for all 𝑠 ∈ 𝑆. So, 𝐾𝑒𝑟(𝜑) =

𝑁[[𝑆, 𝜔]]. Then based on the Isomorphism Fundamental Theore, we obtain (𝑀/𝑁)[[𝑆, 𝜔]] ≅

𝑀[[𝑆, 𝜔]]/𝑁[[𝑆, 𝜔]].   ∎ 

In Proposition 3. above, if we take  trivially, then we get Proposition 3.3. in (Faisol, 

Surodjo, & Wahyuni, 2019(2)). If 𝜔(1): S → End(𝑅1) and 𝜔(2): S → End(𝑅2) are monoid 
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homomorphisms, then 𝜔(1) ⊕ 𝜔(2): S → End(𝑅1 ⊕ 𝑅2) is also a monoid homomorphism with 

definition (𝜔(1) ⊕ 𝜔(2))
𝑠
(𝑟1, 𝑟2) = (𝜔𝑠

(1)(𝑟1), 𝜔𝑠
(2)(𝑟2)), for all 𝑠 ∈ 𝑆 and (𝑟1, 𝑟2) ∈ 𝑅1 ⊕ 𝑅2 

(Faisol, Surodjo, & Wahyuni, 2018). 

The following Proposition shows that SGPSR with coefisien in  ⊕𝑖=1
𝑛 𝑅 is isomorphic to 

direct sum of SGPSR 𝑅1[[𝑆, 𝜔(1)]] ⊕ ⋯ ⊕ 𝑅𝑛[[𝑆, 𝜔(𝑛)]] (n factor). In the other side, the 

following proposition is a generalization of Proposition 2.7. in (Faisol, Surodjo, & Wahyuni, 

2018).  

Proposition 4.  Let 𝑅𝑖 be a ring, (S,≤) a strictly ordered monoid, and 𝜔(𝑖): S → End(𝑅𝑖)  a 

monoid homomorphism, with i =1,2,…n, then  

( ⊕𝑖=1
𝑛 𝑅𝑖)[[𝑆,⊕𝑖=1

𝑛 𝜔(𝑖)]] ≅⊕𝑖=1
𝑛 (𝑅𝑖[[𝑆, 𝜔(𝑖)]]). 

 A direct consequence of Proposition 4. is Proposition 3.4. in (Faisol, Surodjo, & 

Wahyuni, 2019(2)) by taking  trivially. Next, sufficient conditions for R[[S, 𝜔]]-modul 

M[[S, 𝜔]] to be a finitely generated module are given by the following proposition. 

Proposition 5. Let R be a ring, M an R-module, (S,≤) a strictly ordered monoid, and  : S → 

End(R) a monoid homomorphism. If R-module M is finitely generated, then M[[S,]] is a finitely 

generated module over R[[S,]].  

Proof: Based on Lemma 1., it is enough to show that 𝑀[[𝑆,]] ≅  (⊕𝑖=1
𝑛 (𝑅[[𝑆,]]))/𝑁, for 

some submodule N of ⊕𝑖=1
𝑛 𝑅[[𝑆,]]. Since M is finitely generated, based on Lemma 1., 𝑀 ≅

 (⊕𝑖=1
𝑛 𝑅)/𝐾, for some submodule K of ⊕𝑖=1

𝑛 𝑅. Hence, based on Lemma 2., K[[S,]] is 

submodule of (⊕𝑖=1
𝑛 𝑅)[[𝑆,⊕𝑖=1

𝑛 𝜔]]. Next, based on Proposition 4., we obtain K[[S,]] is 

submodule of ⊕𝑖=1
𝑛 (𝑅[[𝑆,]]). Therefore, we can choose N = K[[S,]]. Based on Proposition 

3., we have  

((⊕𝑖=1
𝑛 𝑅)/𝐾)[[𝑆,]] ≅ (⊕𝑖=1

𝑛 𝑅)[[𝑆,⊕𝑖=1
𝑛 ]]/𝐾[[𝑆,]]. 

Moreover, by using Proposition 4., we get ((⊕𝑖=1
𝑛 𝑅)/𝐾)[[𝑆,]] ≅ (⊕𝑖=1

𝑛 𝑅)[[𝑆,⊕𝑖=1
𝑛 ]]/

𝐾[[𝑆,]] ≅  (⊕𝑖=1
𝑛 (𝑅[[𝑆,]]))/𝐾[[𝑆,]].  

In the other word, 𝑀[[𝑆,]] ≅  (⊕𝑖=1
𝑛 (𝑅[[𝑆,]]))/𝑁, with N = K[[S,]] is submodule of  

𝑀[[𝑆,]] over 𝑅[[𝑆,]].   So, it is proving that M[[S,]] is a finitely generated module over 

R[[S,]]. ∎ 

 

The following theorem gives the sufficient conditions for SGPSM M[[S,]] to be a 

Noetherian R[[S,]]-module.    

Theorem 6. Let R be a ring, M an R-module, (S,≤) a positive strictly ordered monoid, and  : 

S → End(R) a monoid homomorphism such that s is an automorphism of R with su = us 
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for every s,u  S. If R is Noetherian, M and S are finitely generated, then M[[S,]] is a 

Noetherian R[[S,]]-module. 

Proof: Since R is a Noetherian ring, (S,≤) a positive strictly ordered monoid, S finitely 

generated, and s an automorphism of R such that su = us, for every s,u  S, based on 

Theorem 3.2. (Padashnik, Moussavi, & Mousavi, 2016) R[[S,]] is a Noetherian ring. 

Furthermore, since M is a finitely generated module over R, based on Proposition 5. M[[S,]] 

is a finitely generated R[[S,]]-module. Therefore, M[[S,]] is a Noetherian module over 

R[[S,]].       ∎  

Next, for any subset T of a ring R, we define  

   𝑇[[𝑆,]] =  {𝑓 ∈ 𝑅[[𝑆,]]|𝑓(𝑠) ∈ 𝑇; ∀𝑠 ∈ supp(𝑓)}.  

It is clear that, 𝑇[[𝑆,]] ⊆ 𝑅[[𝑆,]]. The sufficient conditions for 𝑇[[𝑆,]] to be 

multiplicatively closed subset of SGPSM 𝑅[[𝑆,]] are given by the following lemma.  

Lemma 7.  Let R be a ring, T ⊆ R a multiplicative set, (S, ≤)  a strictly ordered monoid, and  

: S → End(R) a monoid homomorphism. If T is closed under addition, then T[[S,]] is a 

multiplicative subset of R[[S,]].  

Proof: For any 𝑓, 𝑔 ∈ 𝑇[[𝑆,]], we will show that 𝑓𝑔 ∈ 𝑇[[𝑆,]]. Based on convolution 

multiplication on (1), for any 𝑠 ∈ supp(𝑓𝑔) we obtain (𝑓𝑔)(𝑠) = ∑ 𝑓(𝑥)𝜔𝑥(𝑔(𝑦)) 𝑥𝑦=𝑠 . Since 

T  R is closed under multiplication, we get 𝑓(𝑥)𝜔𝑥(𝑔(𝑦)) ∈ 𝑇  for every xy = s ∈ supp(𝑓𝑔). 

Next, since T is closed under additona, we have ∑ 𝑓(𝑥)𝜔𝑥(𝑔(𝑦))  𝑥𝑦=𝑠 ∈ 𝑇 for every 𝑠 ∈

supp(𝑓𝑔). In the other word, 𝑓𝑔 ∈ 𝑇[[𝑆,]]. So, it is proving that T[[S,]] is a multiplicative 

subset of R[[S,]]. ∎ 

Based on equation (2), it is easy to shoew that R is isomorphis to a subring {cr | r R} of 

R[[S,]]. Hence, we get the following lemma. 

Lemma 8. If T is a multiplicative subset of a ring R, then C(T) = {ct | t T} is a multiplicative 

subset of SGPSR R[[S,]], and T  C(T)  T[[S,]]. 

A multiplicative set T  R is called anti-Archimedean if ⋂ 𝑡𝑛𝑅𝑛≥1 ∩ 𝑇 ≠ ∅, for all 𝑡 ∈ 𝑇 

(Anderson, & Dumitrescu, 2002). The sufficient conditions for M[[S,]] to be a T[[S,]]-

Noetherian R[[S,]]-module are given by the following theorem 

Teorema 9. Let R be a duo ring, M an R-module, T  R is a denominator s-anti-Archimedean 

consicting nonzero divisor, (S,≤) a commutative positive strictly ordered monoid, and    : S 

→ End(R) is a monoid homomorphism such that s is a monomorphism of R, with su = us 

for every s,u  S. If R is Noetherian, R[[S,]] is duo ring, and both M and S are finitely 

generated, then M[[S,]] is a T[[S,]]-Noetherian module over R[[S,]]. 

Proof:  Since R is a duo ring and also Noetherian, (S,≤) a commutative positive strictly ordered 

monoid,  : S → End(R) a monoid homomorphism such that s is a monomorphism of R, with 
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su = us for every s,u  S, and T  R a denominator s-anti-Archimedean consicting 

nonzero divisor,  based on Theorem 4.8. (Padashnik, Moussavi, & Mousavi, 2016) R[[S,]] is 

a T-Noetherian ring. Based on Lemma 8., T  T[[S,]]. Therefore, based on Remark 2.11.(2) 

in (Baeck, Lee, & Lim, 2016), R[[S,]] is T[[S,]]-Noetherian ring. Next, since M is a finitely 

generated module over R, based on Proposition 5. M[[S,]] is a finitely generated R[[S,]]-

module. Then, based on Lemma 2.14.(4) in (Baeck, Lee, & Lim, 2016), it is proving that 

M[[S,]] is T[[S,]]-Noetherian.    ∎

CONCLUSION AND SUGGESTION  

SGPSM M[[S,]] is a T[[S,]]-Noetherian module over R[[S,]], if we give the following 

conditions: (1) Duo ring R that also Noetherian; (2) Commutative positive strictly ordered 

monoid (S,≤)  that also finitely generated; (3) Monoid homomorphism  : S → End(R) with s 

is a monomorphism of R such that su = us for all s,u  S; (4) Semiring denominator s-

anti-Archimedean T  R consisting nonzero divisors. 

In this paper, determination of sufficient conditions for SGPSM M[[S,w]] to be 

a T[[S,w]]-Noetherian module over R[[S,w]] is done by applying the properties of a finitely 

generated module over T-Noetherian ring is a T-Noetherian module. In other words, the results 

of this paper depend on the sufficient conditions of M[[S,w]] is a finitely generated R[[S,w]]-

module. The use of module M as a T-Noetherian module over R as one of the sufficient 

conditions to show M [[S, ]] T-Noether is an open problem that can be studied further. Also, 

there are still opportunities to study the sufficient conditions of M[[S, ]] is T-Noetherian by 

applying the relation between the concept of an almost Noetherian module, an almost finitely 

generated module, and T-Noetherian module that has been studied by Faisol et al. (2019 (3)). 
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