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Rough Set Theory (RST) is an essential mathematical tool to deal with 

imprecise, inconsistent, incomplete information and knowledge Rough 

Some algebra structures, such as groups, rings, and modules, have been 

presented on rough set theory. The sub-exact sequence is a generalization 

of the exact sequence. In this paper, we introduce the notion of a sub-exact 

sequence of groups. Furthermore, we give some properties of the rough 

group and rough sub-exact sequence of groups. 

 

 

INTRODUCTION 

Pawlak first introduced the rough set theory in 1982 (Pawlak, 1991). This is an advanced 

theory of set theory, in which the subsets of the universal set are explained by a tuple of lower 

approximations and upper approximations. The basic concept of a rough set is the equivalence 

relation.  

Let 𝑈 is a finite non-empty set called universal set, and 𝜃 is an equivalence relation in 𝑈. 

The tuple (𝑈,𝜃) is called the approximation space (Miao et al., 2005). The lower 

approximation of a set is a combination of all equivalence classes, the smallest subset. The 

upper approximation of a set X, denote by Apr(X), combines all equivalence classes with the 

largest set. A tuple (𝐴,𝐵)∈𝑃(𝑈)×𝑃(𝑈) is called a rough set in (𝑈,𝜃) if  (𝐴,𝐵)=𝐴𝑝𝑟(𝑋) for 

𝑋∈𝑃(𝑈),  where 𝑃(𝑈) is the power set of (𝑈) and 𝐴𝑝𝑟(𝑋) is the approximation of 𝑋.  

In 1994, Biswas and Nanda (Biswas & Nanda, 1994) introduced the rough subgroup. 

Furthermore, Kuroki (Kuroki, 1997) introduced the idea of rough ideals in semigroups in 

1997. In 2001, Han Suqing (Miao et al., 2005) investigated homomorphism and isomorphism 

on rough set. Subsequently, Davvaz (Davvaz, 2004) studied the relationship between the 

rough set and the ring theory by considering the ring as a universal set and introducing the 

abstraction ideal notation and the abstraction subring concerning the ideal of a ring. In 2006, 

Davvaz and Mahdavipour (Davvaz & Mahdavipour, 2006) investigated the rough module. 

Furthermore, rough semigroups on approximation space (Bagirmaz & Ozcan, 2015), 

homomorphism of rough groups (Jesmalar, 2017), rough G-modules (Isaac & Paul, 2017), 

and direct products of rough subgroups (Bagirmaz, 2019) are investigated. Besides that, Sinha 

and Prakash (Sinha & Prakash, 2016) studied the exact sequence of the rough module. They 

define the exact sequence of rough modules on the rough ring 𝐴𝑝𝑟 (𝑅).  

Let 𝑅 be a ring and let 𝐴
𝑓
→ 𝐵

𝑔
→ 𝐶 is the exact sequence over 𝑅-module such that Im 𝑓 = 

Ker 𝑔 (=𝑔−1(0)). Davvaz & Parnian-Garamaleky (1999) introduced the concept of 𝑈-exact by 

replacing 0 with sub-module 𝑈⊆𝐶. Motivated by Davvaz and Parnian-Garamaleky, who 

introduced the 𝑈-exact sequence concept. In 2016, Fitriani et al. gave new ideas from 

generalizing exact sequences to the 𝑋-sub-exact sequence of modules by replacing R-module How to cite Setyaningsih, N., Fitriani, F., & Faisol, A. (2021). Sub-exact sequence of rough groups. Al-Jabar: Jurnal 
Pendidikan Matematika, 12(2), 267-272. 
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Define the rough sub-exact sequence of 
rough groups

Investigate the properties of rough groups

Construct the example of the rough sub-
exact sequence of rough groups using the 

finite set

Investigate the properties of rough sub-
exact sequence of rough groups

𝐵 with arbitrary submodule 𝑋 of 𝐵 (Fitriani et al., 2016). Besides that, motivated by the U-

exact sequence, Elfiyanti et al. give an Abelian property of the category of U-complexes 

(Elfiyanti et al., 2016). In 2017, Aminizadeh et al. (Aminizadeh et al., 2018) introduced quasi 

exact sequence of S-acts. Furthermore, Fitriani et al. gave an X-sub-linearly independent 

module a new concept (Fitriani et al., 2017). In 2018, they introduced a U-generated module 

(Fitriani et al., 2018b). Furthermore, they established U-basis and U-free modules by using 

the concept of a sub-exact sequence of modules (Fitriani et al., 2018a). In addition, the sub-

exact sequences can be used to determine the Noetherian property of the submodule of the 

generalized power series module (Faisol et al., 2021).  

Let U’, U, U’’ be R-modules and 𝑋 be a submodule of U. The triple (U’, U, U’’) is said to 

be an 𝑋-sub-exact on U if there is 𝑅-homomorphisms 𝑓 and 𝑔 so the sequence of 𝑅-modules 

𝑈′
𝑓
→ 𝑈

𝑔
→ 𝑈′′ is exact. The set of all submodule 𝑋 in 𝐿 such that the sequence 𝑈′

𝑓
→ 𝑈

𝑔
→ 𝑈′′ is 

exact, is denoted by (U’, U, U’’).  

Based on the definition of sub-exact sequence, we introduce the notion of a sub-exact 

sequence of rough groups in this paper. Furthermore, we give some properties of the rough 

group and sub-exact sequence of rough groups. These properties can be used to determine all 

submodules X in U so that the triple (U’, U, U’’) is rough X-sub-exact. 

 

METHODS 

The research methods are based on literature, especially those related to the standard set, the 

upper and lower approximations space, the rough group, the exact sequence, and the sub-

exact sequence. Our research steps are as follows. First, we define the rough sub-exact 

sequences of rough groups. Furthermore, we investigate the properties of the rough group and 

construct the example of the rough sub-exact sequence of groups using the finite set. Finally, 

we investigate the properties of the rough sub-exact sequences of rough groups.  

 

 

 

 

 

 

 

 

 

Figure 1. Research stage diagram 

 

RESULTS AND DISCUSSION 

Before we construct the rough sub-exact of groups, we recall the definition of rough group, 

sub-exact sequence, and exact sequence of the rough module over the rough ring as follows.  

Definition 1. (Miao et al., 2005) Let 𝐾 = (𝑈, 𝑅) be an approximation space and ∗ be a binary 

operation defined on 𝑈. A subset 𝐺 (𝐺 ≠ ∅) of universe 𝑈 is called a rough group if 

𝐴𝑝𝑟 (𝐺) = (𝐴𝑝𝑟 (𝐺), 𝐴𝑝𝑟 (𝐺)) the following properties are satisfied:  

(1) for every 𝑥 ∗ 𝑦 ∈ 𝐴𝑝𝑟 (𝐺), 𝑥 ∗ 𝑦 ∈ 𝐺; 

(2) association property holds in 𝐴𝑝𝑟 (𝐺); 
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(3) there exists 𝑒 ∈ 𝐴𝑝𝑟 (𝐺) such that 𝑥 ∈ 𝐺, 𝑥 ∗ 𝑒 = 𝑒 ∗ 𝑥 = 𝑥; 𝑒 is called the rough 

identity element of rough group 𝐺; 

(4) for every  𝑥 ∈ 𝐺, there exists  𝑦 ∈ 𝐺, such that 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 = 𝑒; 𝑦 is called the 

rough inverse element of 𝑥 in 𝐺. 
 

Definition 2. (Fitriani et al., 2016) Let 𝐾, 𝐿, 𝑀 be R-modules and 𝑋 be a submodule of 𝐿. 

Then the triple (𝐾, 𝐿, 𝑀) is said to be 𝑋-sub-exact at 𝐿 if there exist 𝑅- homomorphisms 𝑓 and 

𝑔 such that the sequence of 𝑅-modules and 𝑅-homomorphisms 𝐾
𝑓
→ 𝑋

𝑔
→ 𝑀 is exact. 

 

Definition 3. (Sinha & Prakash, 2016) A sequence 𝐴𝑝𝑟(𝑀′)  
𝑓
→ 𝐴𝑝𝑟(𝑀)  

𝑔
→ 𝐴𝑝𝑟(𝑀′′)  of two 

homomorphism of a module over the ring (𝑅) is said to be rough exact if Im 𝑓 = Ker 𝑔. This 

happens if and only if gf = 0, and the relation g(𝑥)=0, 𝑥∈𝐴𝑝𝑟(𝑀), implies that 𝑥 = f (𝑥′) for 

some 𝑥′∈𝐴𝑝𝑟(𝑀′). 

Based on the definition of the sub-exact sequence of modules, we define the exact 

sequence of rough groups as follows. 
 

Definition 4. Let 𝑈′, 𝑈, 𝑈′′ be rough groups, and 𝑋 be a rough subgroup of 𝑈. Then the triple 

(𝑈′, 𝑈, 𝑈′′ ) is said to be rough 𝑋-sub-exact at 𝑈 if there exist rough homomorphisms 𝑓 and 𝑔 

such that the sequence of rough groups and rough group homomorphisms: 

𝐴𝑝𝑟(𝑈′)
𝑓
→ 𝐴𝑝𝑟(𝑈)

𝑔
→ 𝐴𝑝𝑟(𝑈′′)  

is exact. 

Based on Definition 4, every rough exact sequence is a rough sub-exact sequence of 

groups. However, the converse need not be true. Therefore, before we give the properties of a 

rough sub-exact sequence, we provide the properties of the rough group as follows. 
 

Proposition 5. Let (𝑈, 𝜃) be an approximation space, and let 𝑋1, 𝑋2 be subsets of U. If 𝑋1 and 

𝑋2 are rough groups with 𝐴𝑝𝑟 (𝑋1) = 𝐴𝑝𝑟 (𝑋2), then 𝑋1 ∪ 𝑋2 is also the rough group. 

Proof. Let ∗ be a binary operation defined on 𝑈. It is clear that 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2) = 𝐴𝑝𝑟 (𝑋1) ∪

𝐴𝑝𝑟 (𝑋2). By assumption, 𝐴𝑝𝑟 (𝑋1) = 𝐴𝑝𝑟 (𝑋2). Let 𝑎 ∈ 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2) and 𝑏 ∈ 𝐴𝑝𝑟 (𝑋1 ∪

𝑋2). Then 𝑎 ∈ 𝐴𝑝𝑟 (𝑋1) and 𝑏 ∈ 𝐴𝑝𝑟 (𝑋1). Since 𝑋1 is the rough group, we have 𝑎 ∗ 𝑏 ∈

𝐴𝑝𝑟 (𝑋1). Hence 𝑎 ∗ 𝑏 ∈ 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2). For every 𝑎, 𝑏, 𝑐 ∈ 𝑋1 ∪ 𝑋2, the associative property 

holds in 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2), i.e., 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐. Since 𝑋1 is a rough group, we have the 

identity element 𝑒 ∈ 𝐴𝑝𝑟(𝑋1) = 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2). Finally, we want to show that every element 

in 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2) has an inverse. By assumption, 𝐴𝑝𝑟 (𝑋1) = 𝐴𝑝𝑟 (𝑋2), so that 𝐴𝑝𝑟 (𝑋1 ∪

𝑋2) = 𝐴𝑝𝑟 (𝑋1). This implies that every element in the set 𝑋1 ∪ 𝑋2 has an inverse in 

𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2). Therefore, it proved (𝑋1 ∪ 𝑋2) is a rough group.      

By applying Proposition 5 to a finite number of subsets U, we have the following 

property of the rough group. 
 

Corollary 6. Let (𝑈, 𝜃) be an approximation space, and let 𝑋1, 𝑋2, … 𝑋n be subsets of U. If 

𝑋1,𝑋2, … , 𝑋n are rough groups with 𝐴𝑝𝑟 (𝑋1) = 𝐴𝑝𝑟 (𝑋2) = ⋯ = 𝐴𝑝𝑟 (𝑋n), then ⋃𝑖=1
𝑛 𝑋i is 

also the rough group. 

Example 1. Let 𝑈 = {0,1,2,3,4, … ,149}. We define the relation 𝜃 in 𝑈, where 𝑢 𝜃 𝑣 if and 

only if 𝑢 − 𝑣 = 13𝑘, for some 𝑘 ∈ ℤ.  It is easy to show that 𝜃 is an equivalence relation on 

1
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𝑈. From this equivalence relation, we have 13 equivalence classes as described in the 

following table. 
 

Table 1. The Equivalence Classes of U 

No The Equivalence Class The Elements 

1 𝐸1 = [1] {1,14,27,40,53,66,79,92,105,118,131,144} 

2 𝐸2 = [2] {2,15,28,41,54,67,80,93,106,119,132,145} 

3 𝐸3 = [3] {3,16,29,42,55,68,81,94,107,120,133,146} 

4 𝐸4 = [4] {4,17,30,43,56,69,82,95,108,121,134,147} 

5 𝐸5 = [5] {5,18,31,44,57,70,83,96,109,122,135,148} 

6 𝐸6 = [6] {6,19,32,45,58,71,84,97,110,123,136,149} 

7 𝐸7 = [7] {7,20,33,46,59,72,85,98,111,124,137} 

8 𝐸8 = [8] {8,21,34,47,60,73,86,99,112,125,138} 

9 𝐸9 = [9] {9,22,35,48,61,74,87,100,113,126,139} 

10 𝐸10 = [10] {10,23,36,49,62,75,88,101,114,127,140} 

11 𝐸11 = [11] {11,24,37,50,63,76,89,102,115,128,141} 

12 𝐸12 = [12] {12,25,38,51,64,77,90,103,116,129,142} 

13 𝐸13 = [0] {0,13,26,39,52,65,78,91,104,117,130,143} 
 

The tuple (𝑈, 𝜃) is an approximate space. Furthermore, we give a subset 𝑋 =

{8,9,10,14,28,42,56,70,80,94,108,122,136,140,141,142} ⊆ 𝑈. Then the lower 

approximations of 𝑋 is 𝐴𝑝𝑟 (𝑋) = ∅, and the upper approximations of  X is 𝐴𝑝𝑟 (𝑋) = 𝐸1 ∪

𝐸2 ∪ 𝐸3 ∪ 𝐸4 ∪ 𝐸5 ∪ 𝐸6 ∪ 𝐸7 ∪ 𝐸8 ∪ 𝐸9 ∪ 𝐸10 ∪ 𝐸11 ∪ 𝐸12 ∪ 𝐸13 = 𝑈. The rough set Apr(𝑋) 

is the ordered pair of the lower and upper approximations written as Apr(𝑋) =

(𝐴𝑝𝑟 (𝑋), 𝐴𝑝𝑟 (𝑋)) = ({ }, {0,1,2,3,4,5,6,7,8, … ,147,148,149,149}). Next, we define the 

binary operation +150 on rough set 𝐴𝑝𝑟(𝑋). We will show that X is a rough group.  

(1) For every 𝑎, 𝑏 ∈ 𝑋, (𝑎 +150 𝑏) ∈ 𝐴𝑝𝑟 (𝑋), 

(2) Association property holds in 𝐴𝑝𝑟 (𝑋); 

(3) There exists 0 ∈ 𝐴𝑝𝑟 (𝑋) such that for every 𝑥 ∈ 𝑋, 𝑥+150 0 = 0 +150 𝑥 = 𝑥. 

(4) Table 2 shows that every element in X has an inverse in  𝐴𝑝𝑟 (𝑋). 
 

Table 2. Inverse Element on X 

No 1 2 3 4 5 6 7 8 

x  X 8 9 10 14 28 42 56 70 

Inverse of x 142 141 140 136 122 108 94 80 
 

It follows from Table 2 that every element of 𝑋 has an inverse in 𝐴𝑝𝑟 (𝑋). Hence 𝑋 is a rough 

group on U.  

If we take 𝑋1 = {8,9,10,14,28,31,42,56,70,80,94,108,119,122,136,140,141, 142}, and 

𝑋2 = {8,9,10,14,28,42,44,56,70,80,94,106,108,122, 136,140,141,142}. We can see that 

every element of 𝑋1 has invers in 𝑋1. The same thing happened to the set 𝑋2. Next, the sets 𝑋1 

and 𝑋2 satisfy all the properties of rough group. Hence, 𝑋1 dan 𝑋2 are rough groups. 

Furthermore, we will show that 𝑋1 ∪ 𝑋2 is a rough group in approximation space (𝑈, 𝜃). 

We have 𝑋1 ∪ 𝑋2 = {8,9,10,14,28,31,42,44,56,70,80,94,106,108,119,122, 136,140, 

141,142 }. This implies 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2) = 𝑈. If we take +150 as a binary operation in U, we 

get (𝑎 +150 𝑏) ∈ 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2), for every 𝑎, 𝑏 ∈ 𝑋1 ∪ 𝑋2. Furthermore, the associative 

property holds in 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2). It has an 𝑒 ∈ 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2) identity element, i.e. 0 ∈

𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2) so that for each 𝑥 ∈ 𝑋1 ∪ 𝑋2, 𝑥+150 0 = 0 +150 𝑥 = 𝑥. Then 0 is an element of 
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identity in 𝑋1 ∪ 𝑋2. Every element in the 𝑋1 ∪ 𝑋2 has an inverse in 𝐴𝑝𝑟 (𝑋1 ∪ 𝑋2) = 𝑈. So, 

the set (𝑋1 ∪ 𝑋2) is a rough group in approximation space (𝑈, 𝜃). This shows that the union of 

two rough groups with the same upper approximation is also a rough group. 

Next, we will give the properties of the sub-exact sequence of rough groups. 
 

Proposition 7. Let (𝑈, 𝜃) be an approximation space, and let 𝑋1, 𝑋2 be rough groups of U, 

such that 𝐴𝑝𝑟(𝑋1) = 𝐴𝑝𝑟(𝑋2). The triple (𝑈′, 𝑈, 𝑈′′) is a rough 𝑋1-sub-exact sequence if and 

only if the triple (𝑈′, 𝑈, 𝑈′′) is a rough 𝑋2-sub-exact sequence. 

Proof. We assume that the triple (𝑈′, 𝑈, 𝑈′′) is a rough 𝑋1-sub-exact sequence. Based on 

Definition 4, the following sequence: 

𝐴𝑝𝑟(𝑈′)
𝑓
→ 𝐴𝑝𝑟(𝑋1)

𝑔
→ 𝐴𝑝𝑟(𝑈′′) 

is rough exact. It implies Im(𝑓) = Ker(𝑔), where f is a rough homomorphism from 𝐴𝑝𝑟(𝑈′) 

to 𝐴𝑝𝑟(𝑋1), and g is a rough homomorphism from 𝐴𝑝𝑟(𝑋1) to 𝐴𝑝𝑟(𝑈′′). The rough 

homomorphism f maps every element of 𝐴𝑝𝑟 (U′) to 𝐴𝑝𝑟 (𝑋1), and the rough homomorphism 

g maps every element of 𝐴𝑝𝑟 (𝑋1) to 𝐴𝑝𝑟(𝑈′′). By hypothesis, 𝐴𝑝𝑟(𝑋1) = 𝐴𝑝𝑟(𝑋2) and 

hence the following sequence: 

𝐴𝑝𝑟(𝑈′)
𝑓
→ 𝐴𝑝𝑟(𝑋2)

𝑔
→ 𝐴𝑝𝑟(𝑈′′) 

is rough exact. So, the triple (𝑈′, 𝑈, 𝑈′′) is a rough 𝑋2-sub-exact sequence.        

To prove the triple (𝑈′, 𝑈, 𝑈′′) is a rough 𝑋2-sub-exact sequence implies the triple (𝑈′, 𝑈, 𝑈′′) 

is a rough 𝑋1-sub-exact sequence can be shown in a similar way.   
 

CONCLUSIONS 

The sub-exact sequence of rough groups is a generalization of the exact sequence of rough 

groups. Furthermore, the union of finite rough groups which the same upper approximation is 

also a rough group. If (𝑈, 𝜃) is an approximation space, and  𝑋1, 𝑋2 are rough groups of U 

such that 𝐴𝑝𝑟(𝑋1) = 𝐴𝑝𝑟(𝑋2), then the triple (𝑈′, 𝑈, 𝑈′′) is an 𝑋1-sub-exact sequence if and 

only if the triple (𝑈′, 𝑈, 𝑈′′) is an 𝑋2-sub-exact sequence. 
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