PAPER NAME

The Ring Homomorphisms of Matrix Rin gs over Skew Generalized Power Series Rings (1).pdf

AUTHOR
Ahmad Faisol

Ahmad Faisol

WORD COUNT
3212 Words

PAGE COUNT
7 Pages

SUBMISSION DATE
Aug 19, 2022 10:03 PM GMT+7

CHARACTER COUNT
14022 Characters

FILE SIZE
709.5KB

Aug 19, 2022 10:03 PM GMT+7

- 11\% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 10\% Internet database
- Crossref database
- 0\% Submitted Works database

- Excluded from Similarity Report

- Bibliographic material
- Cited material
- Manually excluded sources
- 3\% Publications database
- Crossref Posted Content database
- Quoted material
- Small Matches (Less then 10 words)
- Manually excluded text blocks

The Ring Homomorphisms of Matrix Rings over Skew Generalized Power Series Rings

Ahmad Faisol ${ }^{1}$, Fitriani 2
1,2Department of Mathematics, Faculty of Mathematics and Natural Sciences
Universitas Lampung, Bandar Lampung
Email: ahmadfaisol@fmipa.unila.ac.id, fitriani.1984@fmipa.unila.ac.id

Abstract

Let $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ and $\left.M_{n}\left(R_{2}\left[{ }_{1} S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ De a matrix rings over skew generalized power series rings, where R_{1}, R_{2} are commutative rings with an identi ${ }_{1}$ element, $\left(S_{1}, \leq_{1}\right),\left(S_{2}, \leq_{2}\right)$ are strictly ordered monoids, $\omega_{1}: S_{1} \rightarrow \operatorname{End}\left(R_{1}\right), \omega_{2}: S_{2} \rightarrow \operatorname{End}\left(R_{2}\right)$ are monoid homomorphisms. In this research, we define a mapping τ from $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ to $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ Dy using a strictly ordered monoid homomorphism $\delta:\left(S_{1}, \leq_{1}\right) \rightarrow\left(S_{2}, \leq_{2}\right)$, and ring hor morphisms $\mu: R_{1} \rightarrow R_{2}$ and $\sigma: R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right] \rightarrow R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$. Furthermore, we prove that $\tau \mathbb{S}$ a ring homomorphism, and also we give the sufficient conditions for τ to be a monomorphism, epimorphism, and isomorphism.

Keywords: matrix rings; homomorphisms; skew generalized power series rings.

INTRODUCTION

In [1], it has been explained that a matrix is an arrangement of mathematical objects in rectangular rows and columns enclosed by square brackets or regular brackets. These mathematical objects are commonly called entries. If the matrix entries are members of a ring, the matrix is called the matrix over the ring [2]. A ring is a nonempty set with two binary operations and satisfies several axioms [3]. The skew generalized power seri ${ }_{4}$ rings (SGPSR) $R[[S, \leq, \omega]]$ is one example of a ring [4]. This ring is defined as the set of all functions ${ }_{5}{ }_{5}$ from a strictly ordered monoid (S, \leq) to a ring R with an identity element, that $\operatorname{supp}(f)$ is Artinian and narrow, with pointwise addition operation and convolution multiplication operation using a monoid homomorphism $\omega: S \rightarrow \operatorname{End}(R)$. Some research related to the properties of SGPSR $R[[S, \leq, \omega]]$, can be seen in Mazurek et al. [5]-[10] and Faisol et al. [11]-[16].

A set of matrices over a ring that forms a ring und ${ }_{3}$ matrix addition and matrix multiplication is called a matrix ring [17]. Furthermore, the set of all $n \times n$ matrices with entries in ring R is a matrix ring denoted by $M_{n}(R)$. In 2021, Rugayah et al. [18] have constructed the set of all matrices over SGPSR $R[[S, \leq, \omega]]$, denoted by $M_{n}(R[[S, \leq, \omega]])$. Moreover, they have defined the ideal of matrix ring over SGPSR $R[[S, \leq, \omega]]$ and studied its ideal properties.

One of the essential concepts in the ring structure is a ring homomorphism, a mapping from ring to ring that preserves binary operations on these rings. In [19], the matrix ring homomorphism from $M_{n}\left(R_{1}\right)$ to $M_{n}\left(R_{2}\right)$ defined by $\sigma\left(\left[a_{i j}\right]\right)=\left[\mu\left(a_{i j}\right)\right]$ for
every $a_{i j} \in R_{1}$ where $\mu: R_{1} \rightarrow R_{2}$ is a ring homomorphism has constructed. Several studies related to matrix ring homomorphism can be seen in [20],[21]. This construction motivates us to study the ring homomorphism on the ring matrix over SGPSR $R[[S, \leq$ $, \omega]]$. Therefore, in this research, matrix rings over the SGPSR $R[[S, \leq, \omega]]$ were constructed, i.e., $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ and $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ where R_{1}, R_{2} are rings, $\left(S_{1}, \leq_{1}\right),\left(S_{2}, \leq_{2}\right)$ are strictly ordered monoids, and $\omega_{1}: S_{1} \rightarrow \operatorname{End}\left(R_{1}\right), \omega_{2}: S_{2} \rightarrow \operatorname{End}\left(R_{2}\right)$ are monoid homo ${ }_{1}$ prphisms. Next, the maping τ from $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ to $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ is defined by using a strictly ordered monoid homomorphism $\delta:\left(S_{1}, \leq_{1}\right) \rightarrow\left(S_{1} \leq_{2}\right)$, and ring homomorphisms $\mu: R_{1} \rightarrow R_{2}$ and $\sigma: R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right] \rightarrow$ $R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$. rurthermore, it is proved that τ is a matrix ring homomorphism, and the sufficient conditions for τ to be a monomorphism, epimorphism, and isomorphism are also given.

METHODS

The method used in this research is a literature study from books and scientific journals. The following steps can be obtained in the results. We construct the matrix rings over SGPSR $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ and $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$, where R_{1}, R_{2} are given rings, strictly ordered monoid $\left(S_{1}, \leq_{1}\right),\left(S_{2}, \leq_{2}\right)$, strictly ordered monoid homomorphism $\delta:\left(S_{1}, \leq_{1}\right) \rightarrow\left(S_{2}, \leq_{2}\right)$, and monoid homomorphisms $\omega_{1}: S_{1} \rightarrow \operatorname{End}\left(R_{1}\right), \omega_{2}: S_{2} \rightarrow$ ${ }_{1} \mathrm{nd}\left(R_{2}\right)$. Next, we define a mapping τ from $\mathrm{M}_{\mathrm{n}}\left(\mathrm{R}_{1}\left[\left[\mathrm{~S}_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ to $\mathrm{M}_{\mathrm{n}}\left(\mathrm{R}_{2}\left[\left[\mathrm{~S}_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$, Dy using a strictly ordered monoid homomorphism $\delta:\left(S_{1}, \leq_{1}\right) \rightarrow\left(S_{2}, \leq_{2}\right)$, ring homomorphisms $\mu: R_{1} \rightarrow R_{2}$ and $\sigma: R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right] \rightarrow R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$. Furthermore, we prove that τ is a ring homomorphism. Finally, we give sufficient conditions for τ to be a monomorphism, epimorphism, and isomorphism.

RESULTS AND DISCUSSION

Mazurek and Ziembowski [4] give the structure of skew generalized power series rings (SGPSR) as follows.

Let R_{1}, R_{2} are rings, $\left(S_{1}, \leq_{1}\right),\left(S_{2}, \leq_{2}\right)$ are strictly ordered monoids, and $\omega_{1}: S_{1} \rightarrow$ $\operatorname{End}\left(R_{1}\right), \omega_{2}: S_{2} \rightarrow \operatorname{End}\left(R_{2}\right)$ are monoid homomorphisms. Homomorphic image of ω_{1} and ω_{2} are denoted by ω_{1}^{s} and ω_{2}^{u} for all $s \in S_{1}$ and $\in S_{2}$. Therefore,

$$
\begin{equation*}
\omega_{1}^{s+t}=\omega_{1}(s+t)=\omega_{1}(s)+\omega_{1}(t)=\omega_{1}^{s}+\omega_{1}^{t} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{2}^{u+v}=\omega_{2}(u+v)=\omega_{2}(u)+\omega_{2}(v)=\omega_{2}^{u}+\omega_{2}^{v} \tag{2}
\end{equation*}
$$

for every all $s, t \in S_{1}$ and $u, v \in S_{2}$.
Next, let $R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]={ }_{6}\left\{f: S_{1} \rightarrow R_{1} \mid \operatorname{supp}(f)\right.$ Artinian and narrow $\}$ and $R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]=\left\{\alpha: S_{2} \rightarrow R_{2} \mid \operatorname{supp}(\alpha)\right.$ Artinian and narrow $\}$, where $\operatorname{supp}(f)=$ $\left\{s \in S_{1} \mid f(s) \neq 0\right\}$ and $\operatorname{supp}(\alpha)=\left\{u \in S_{2} \mid \alpha(u) \neq 0\right\}$. Under pointwise addition and convolution multiplication defined by

$$
\begin{align*}
& (f+g)(s)=f(s)+g(s) \tag{3}\\
& (\alpha+\beta)(u)=\alpha(u)+\beta(u) \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
& (f g)(s)=\sum_{x+y=s} f(x) \omega_{1}^{x}(g(y)) \tag{5}\\
& (\alpha \beta)(u)=\sum_{p+q=u} \alpha(p) \omega_{2}^{p}(\beta(q)) \tag{6}
\end{align*}
$$

$R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$ and $R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$ be a skew generalized power series rings, for every $s \in S_{1}, f, g \in R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$, and $u \in S_{2}, \alpha, \beta \in R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$.

According to [22], a strictly ordered monoid homomorphism $\delta:\left(\mathrm{S}_{1}, \leq_{1}\right) \rightarrow$ $\left(S_{2}, s_{2}\right)$ is a monoid homomorphism such that if $s<_{1} t$, then $\delta(s)<_{2} \delta(t)$ for every $s, t \in$ S_{1}. Now, let δ oe a monomorphism such that for any Artinian and r_{2} rrow subset T of S_{1}, $\delta(T)$ is an Artinian and narrow subset of S_{2}, and $\mu: \mathrm{R}_{1} \rightarrow \mathrm{R}_{2}$ is a ring homomorphism such that for every s $\in S_{1}$ the following diagram is commutative:

$$
\begin{array}{rll}
& S_{1} & \xrightarrow{\delta} \\
\downarrow & & S_{2} \\
R_{1} & \xrightarrow{\mu} & \downarrow \alpha \\
\omega_{2}^{s} \downarrow & \circlearrowright & \downarrow \omega_{2}^{\delta(s)} \\
R_{1} & \vec{\mu} & R_{2}
\end{array}
$$

Figure 1. Commutative diagram $\omega_{2}^{\delta(s)} \circ \mu=\mu \circ \omega_{1}^{s}$
For $f \in \mathrm{R}_{1}\left[\left[\mathrm{~S}_{1}, \leq_{1}, \omega_{1}\right]\right]$, let $\alpha: S_{2} \rightarrow R_{2}$ be the map defined as follows:

$$
\alpha(t)=\left\{\begin{array}{cc}
\mu \circ f \circ \delta^{-1}(t) & \text { if } t \in \delta\left(S_{1}\right) \tag{7}\\
0 & \text { otherwise }
\end{array}\right.
$$

Since $\operatorname{supp}(\alpha) \subseteq \delta(\operatorname{supp}(f))$, based on [23](1.(a)), $\alpha \in R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$. Therefore, we can define a map $\sigma: R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right] \rightarrow R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$ by putting $\sigma(f)=\alpha$ in (7). According to [24](Lemma 8.1.6), the map $\sigma: \mathrm{R}_{1}\left[\left[\mathrm{~S}_{1}, \leq_{1}, \omega_{1}\right]\right] \rightarrow \mathrm{R}_{2}\left[\left[\mathrm{~S}_{2}, \leq_{2}, \omega_{2}\right]\right]$ is a ring homomorphism, and $\operatorname{Ker}(\sigma)=(\operatorname{Ker}(\mu))\left[\left[\mathrm{S}_{1}, \leq_{1}, \omega_{1}\right]\right]$.

Now, we construct the matrix rings $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ and $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$, that are the sets of all matrices over SGPSR $R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$ and $R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$ defined by

$$
\begin{equation*}
M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)=\left\{\left[f_{i j}\right] \mid f_{i j} \in R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right] ; i, j=1,2, \cdots, n\right\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)=\left\{\left[\alpha_{i j}\right] \mid \alpha_{i j} \in R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right] ; i, j=1,2, \cdots, n\right\}, \tag{9}
\end{equation*}
$$

with addition matrix operation

$$
\begin{align*}
& {\left[f_{i j}\right]+\left[g_{i j}\right]=\left[f_{i j}+g_{i j}\right]} \tag{10}\\
& {\left[\alpha_{i j}\right]+\left[\beta_{i j}\right]=\left[\alpha_{i j}+\beta_{i j}\right]} \tag{11}
\end{align*}
$$

and multiplication matrix operation

$$
\begin{align*}
& {\left[f_{i j}\right]\left[g_{i j}\right]=\left[h_{i j}\right]} \tag{12}\\
& {\left[\alpha_{i j}\right]\left[\beta_{i j}\right]=\left[\gamma_{i j}\right]} \tag{13}
\end{align*}
$$

where $\quad h_{i j}=\sum_{k=1}^{n} f_{i k} g_{k j} \quad$ dan $\quad \gamma_{i j}=\sum_{k=1}^{n} \alpha_{i k} \beta_{k j} \quad, \quad$ for every $\left[f_{i j}\right],\left[g_{i j}\right] \in$ $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ and $\left[\alpha_{i j}\right],\left[\beta_{i j}\right] \in M_{n}\left(R_{2} R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$.

For every $\left[f_{i j}\right] \in M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ we define the map $\tau: M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right) \rightarrow M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ by

$$
\begin{equation*}
\tau\left(\left[f_{i j}\right]\right)=\left[\sigma\left(f_{i j}\right)\right] \tag{14}
\end{equation*}
$$

for every $\left[f_{i j}\right] \in M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$. The following theorem shows that τ is a ring homomorphism.

Proposition 1 Let $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ and $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ be matrix rings over SGPSR. The mapping τ that is defined in (14) is a ring homomorphism.
Proof Based on [24](Lemma 8.1.6), for $\mathrm{i}, \mathrm{j}=1,2, \cdots, \mathrm{n}$, there is $\alpha_{i j}=\sigma\left(f_{i j}\right) \in$ $\mathrm{R}_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$ for every $f_{i j} \in R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$. Therefore, $\tau\left(\left[f_{i j}\right]\right)=\left[\sigma\left(f_{i j}\right)\right]=\left[\alpha_{i j}\right]$ is well-defined.
For any $t \in S_{2}, f_{i j}, g_{i j} \in R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$, we have

$$
\begin{aligned}
\mu \circ\left(f_{i j}+g_{i j}\right) \circ \delta^{-1}(t) & =\mu\left(\left(f_{i j}+g_{i j}\right)\left(\delta^{-1}(t)\right)\right) \\
& =\mu\left(f_{i j}\left(\delta^{-1}(t)\right)+g_{i j}\left(\delta^{-1}(t)\right)\right) \\
& =\mu\left(f_{i j}\left(\delta^{-1}(t)\right)\right)+\mu\left(g_{i j}\left(\delta^{-1}(t)\right)\right) \\
& =\left(\mu \circ f_{i j} \circ \delta^{-1}\right)(t)+\left(\mu \circ g_{i j} \circ \delta^{-1}\right)(t),
\end{aligned}
$$

and

$$
\begin{aligned}
\mu \circ\left(f_{i j} g_{i j}\right) \circ \delta^{-1}(t) & =\mu\left(\left(f_{i j} g_{i j}\right)\left(\delta^{-1}(t)\right)\right) \\
& =\mu\left(\sum_{x+y=\delta^{-1}(t)} f_{i j}(x) \omega_{1}^{x}\left(g_{i j}(y)\right)\right) \\
& =\sum_{x+y=\delta^{-1}(t)} \mu\left(f_{i j}(x) \omega_{1}^{x}\left(g_{i j}(y)\right)\right) \\
& =\sum_{x+y=\delta^{-1}(t)} \mu\left(f_{i j}(x)\right) \mu\left(\omega_{1}^{x}\left(g_{i j}(y)\right)\right) \\
& =\sum_{x+y=\delta^{-1}(t)} \mu\left(f_{i j}(x)\right) \omega_{2}^{\delta(x)}\left(\mu\left(g_{i j}(y)\right)\right) \\
& =\sum_{\delta(x)+\delta(y)=t}^{u+v=t} \mu\left(f_{i j}\left(\delta^{-1}(u)\right)\right) \omega_{2}^{u}\left(\mu\left(g_{i j}\left(\delta^{-1}(v)\right)\right)\right) \\
& =\sum^{u+v=t}\left(\mu \circ f_{i j} \circ \delta^{-1}\right)(u) \omega_{2}^{u}\left(\left(\mu \circ g_{i j} \circ \delta^{-1}\right)(v)\right) \\
& =\left(\mu \circ f_{i j} \circ \delta^{-1}\right)\left(\mu \circ g_{i j} \circ \delta^{-1}\right)(t) .
\end{aligned}
$$

In other words, $\mu \circ\left(f_{i j}+g_{i j}\right) \circ \delta^{-1}=\left(\mu \circ f_{i j} \circ \delta^{-1}\right)+\left(\mu \circ g_{i j} \circ \delta^{-1}\right)$ and $\mu \circ\left(f_{i j} g_{i j}\right) \circ$ $\delta^{-1}=\left(\mu \circ f_{i j} \circ \delta^{-1}\right)\left(\mu \circ g_{i j} \circ \delta^{-1}\right)$ for every $f_{\mathrm{ij}}, g_{\mathrm{ij}} \in R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$.

Now, we prove that τ is a ring homomorphism. For any $\left[f_{i j}\right],\left[g_{i j}\right] \in$ $\mathrm{M}_{\mathrm{n}}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$, we obtain:
(i) $\tau\left(\left[f_{i j}\right]+\left[g_{i j}\right]\right)=\tau\left(\left[f_{i j}+g_{i j}\right]\right)$

$$
=\left[\sigma\left(f_{i j}+g_{i j}\right)\right]
$$

$$
=\left[\mu \circ\left(f_{i j}+g_{i j}\right) \circ \delta^{-1}\right]
$$

$$
=\left[\left(\mu \circ f_{i j} \circ \delta^{-1}\right)+\left(\mu \circ g_{i j} \circ \delta^{-1}\right)\right]
$$

$$
=\left[\mu \circ f_{i j} \circ \delta^{-1}\right]+\left[\mu \circ g_{i j} \circ \delta^{-1}\right]
$$

$$
=\left[\sigma\left(f_{i j}\right)\right]+\left[\sigma\left(g_{i j}\right)\right]
$$

$$
=\tau\left(\left[f_{i j}\right]\right)+\tau\left(\left[g_{i j}\right]\right)
$$

(ii)

$$
\begin{aligned}
\tau\left(\left[f_{i j}\right]\left[g_{i j}\right]\right) & =\tau\left(\left[\sum_{k=1}^{n} f_{i k} g_{k j}\right]\right) \\
& =\left[\sigma\left(\sum_{k=1}^{n} f_{i k} g_{k j}\right)\right] \\
& =\left[\mu \circ\left(\sum_{k=1}^{n} f_{i k} g_{k j}\right) \circ \delta^{-1}\right] \\
& =\left[\sum_{k=1}^{n} \mu \circ\left(f_{i k} g_{k j}\right) \circ \delta^{-1}\right] \\
& =\left[\sum_{k=1}^{n}\left(\mu \circ f_{i k} \circ \delta^{-1}\right)\left(\mu \circ g_{k j} \circ \delta^{-1}\right)\right] \\
& =\left[\mu \circ f_{i j} \circ \delta^{-1}\right]\left[\mu \circ g_{i j} \circ \delta^{-1}\right] \\
& =\left[\sigma\left(f_{i j}\right)\right]\left[\sigma\left(g_{i j}\right)\right] \\
& =\tau\left(\left[f_{i j}\right]\right) \tau\left(\left[g_{i j}\right]\right)
\end{aligned}
$$

According to (i) and (ii), it is proved that τ is a ring homomorphism.

$$
\text { The following proposition shows that } \operatorname{Ker}(\tau)=M_{n}\left((\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right) \text {. }
$$

Proposition 2 Let $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ and $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ be matrix rings over SGPSR. Let $\tau: M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right) \rightarrow M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ is the map that is defined in (14). Then, $\operatorname{Ker}(\tau)=M_{n}\left((\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$.

Proof For any $\left[f_{i j}\right] \in \operatorname{Ker}(\tau)$, we have $\tau\left(\left[f_{i j}\right]\right)=\left[\sigma\left(f_{i j}\right)\right]=[0]$. Therefore, for $\mathrm{i}, \mathrm{j}=$ $1,2, \cdots, \mathrm{n}, \sigma\left(f_{i j}\right)=0$. So, $f_{i j} \in \operatorname{Ker}(\sigma)$. Based on [24](Lemma 8.1.6), $\operatorname{Ker}(\sigma)=$ $(\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$. Therefore, $f_{i j} \in(\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$ for all $\mathrm{i}, \mathrm{j}=1,2, \cdots, \mathrm{n}$. So, $\left[f_{i j}\right] \in M_{n}\left((\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$. Then, we get $\operatorname{Ker}(\tau) \subset M_{n}\left((\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$.

On the other side, for any $\left[f_{i j}\right] \in M_{n}\left((\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$, we have $f_{i j} \in$ $(\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$ for all $\mathrm{i}, \mathrm{j}=1,2, \cdots, \mathrm{n}$. According to [24](Lemma 8.1.6), $\operatorname{Ker}(\sigma)=$ $(\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$. Therefore, $f_{i j} \in \operatorname{Ker}(\sigma)$. Then, $\sigma\left(f_{i j}\right)=0$ for all $\mathrm{i}, \mathrm{j}=1,2, \cdots, \mathrm{n}$. So, we get $\left[\sigma\left(f_{i j}\right)\right]=[0]=\tau\left(\left[f_{i j}\right]\right)$. In other words, $\left[f_{i j}\right] \in \operatorname{Ker}(\tau)$. Hence, $M_{n}\left((\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right) \subset \operatorname{Ker}(\tau)$.

So, it is proved that $\operatorname{Ker}(\tau)=M_{n}\left((\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$
Next, we give sufficient conditions for τ to be a monomorphism, epimorphism, and isomorphism.

Proposition 3 Let $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ and $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ be matrix rings over SGPSR. Let $\tau: M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right) \rightarrow M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ is the map that is defined in (14). If δ is an isomorphism and μ is a monomorphism, then τ is a monomorphism.

Proof Based on Proposition 1, it is clear that τ is a ring homomorphism. So, we only have to show that τ is injective. If $\tau\left(\left[f_{i j}\right]\right)=\tau\left(\left[g_{i j}\right]\right)$, then $\left[\sigma\left(f_{i j}\right)\right]=\left[\sigma\left(g_{i j}\right)\right]$. Hence, $\left[\mu \circ f_{i j} \circ \delta^{-1}\right]=\left[\mu \circ g_{i j} \circ \delta^{-1}\right]$. Therefore, we get $\mu \circ f_{i j} \circ \delta^{-1}=\mu \circ g_{i j} \circ \delta^{-1}$ for all $\mathrm{i}, \mathrm{j}=$
$1,2, \cdots$, n. In other words, for any $t \in S_{2}$, we have $\mu\left(f_{i j}\left(\delta^{-1}(\mathrm{t})\right)\right)=\mu\left(g_{i j}\left(\delta^{-1}(\mathrm{t})\right)\right)$. Since μ is a monomorphism, $f_{i j}\left(\delta^{-1}(\mathrm{t})\right)=g_{i j}\left(\delta^{-1}(\mathrm{t})\right)$. Since δ is an isomorphism, $f_{i j}(\mathrm{~s})=$ $g_{i j}(\mathrm{~s})$ for every $\mathrm{s} \in \mathrm{S}_{1}$. So, $f_{i j}=g_{i j}$ for all $i, j=1,2, \cdots, \mathrm{n}$. Therefore $\left[f_{i j}\right]=\left[g_{i j}\right]$. So, it is proved that if $\tau\left(\left[f_{i j}\right]\right)=\tau\left(\left[g_{i j}\right]\right)$, then $\left[f_{i j}\right]=\left[g_{i j}\right]$. Hence, τ is injective.

Proposition 4 Let $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ and $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ be matrix rings over SGPSR. Let $\tau: M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right) \rightarrow M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ is the map that is defined in (14). If σ is an epimorphism, then τ is an epimorphism.

Proof Based on Proposition 1, τ is a ring homomorphism. So, we only have to show that τ is surjective. In other words, we have to prove that $\operatorname{Im}(\tau)=M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$. It is clear that $\operatorname{Im}(\tau) \subset M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$, so it suffices to show that $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right) \subset \operatorname{Im}(\tau)$.

For any $\left[\alpha_{\mathrm{ij}}\right] \in \mathrm{M}_{\mathrm{n}}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$, then $\alpha_{i j} \in R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$ for all $i, j=$ $1,2, \cdots, n$. Since σ is an epimorphism, there is $f_{i j} \in R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$ such that $\sigma\left(f_{i j}\right)=\alpha_{i j}$. Therefore, there is $\left[f_{i j}\right] \in M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ such that $\left[\alpha_{i j}\right]=\left[\sigma\left(f_{i j}\right)\right]=\tau\left(\left[f_{i j}\right]\right)$ for every $\quad\left[\alpha_{i j}\right] \in M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$. So, $\quad\left[\alpha_{i j}\right] \in \operatorname{Im}(\tau)$. In other words, $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right) \subset \operatorname{Im}(\tau)$. Hence, that τ is surjective.

Corollary 5 Let $M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ and $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ be matrix rings over SGPSR. Let $\tau: M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right) \rightarrow M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ is the map that is defined in (14). If δ is an isomorphism, μ is a monomorphism, and σ is an epimorphism, then τ is an isomorphism.

CONCLUSIONS

A ring homomorphism τ from the matrix ${ }_{1}{ }_{1} M_{n}\left(R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]\right)$ to the matrix ring $M_{n}\left(R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]\right)$ can be constructed Dy using a strictly ordered monoid homomorphism $\delta:\left(S_{1}, \leq_{1}\right) \rightarrow\left(S_{2}, \leq_{2}\right)$, and ring homomorphisms $\mu: R_{1} \rightarrow R_{2}$ and $\sigma: R_{1}\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right] \rightarrow R_{2}\left[\left[S_{2}, \leq_{2}, \omega_{2}\right]\right]$. Furthermore, it also proves that $\operatorname{Ker}(\tau)$ is equal to the matrix ring over $\operatorname{SGPSR}(\operatorname{Ker}(\mu))\left[\left[S_{1}, \leq_{1}, \omega_{1}\right]\right]$. Moreover, if δ is an isomorphism and μ is a monomorphism, then τ is a monomorphism. While, if σ is an epimorphism, then τ is an epimorphism. Consequently, τ is an isomorphism if δ is an isomorphism, μ is a monomorphism, and τ is an epimorphism.

REFERENCES

[1] H. Anton and C. Rorres, Elementary Linear Algebra: Applications Version, 9th Edition. New Jersey, 2005.
[2] W. C. Brown, Matrices Over Commutative Rings. New York: Marcel Dekker Inc., 1993.
[3] D. S. Dummit and R. M. Foote, Abstract Algebra, Third Edit. John Wiley and Sons, Inc., 2004.
[4] R. Mazurek and M. Ziembowski, "Uniserial rings of skew generalized power series," J. Algebr., vol. 318, no. 2, pp. 737-764, 2007.
[5] R. Mazurek and M. Ziembowski, "On von Neumann regular rings of skew generalized power series," Commun. Algebr., vol. 36, no. 5, pp. 1855-1868, 2008.
[6] R. Mazurek and M. Ziembowski, "The ascending chain condition for principal left
or right ideals of skew generalized power series rings," J. Algebr., vol. 322, no. 4, pp. 983-994, 2009.
[7] R. Mazurek and M. Ziembowski, "Weak dimension and right distributivity of skew generalized power series rings," J. Math. Soc. Japan, vol. 62, no. 4, pp. 1093-1112, 2010.
[8] R. Mazurek, "Rota-Baxter operators on skew generalized power series rings," J. Algebr. its Appl., vol. 13, no. 7, pp. 1-10, 2014.
[9] R. Mazurek, "Left principally quasi-Baer and left APP-rings of skew generalized power series," J. Algebr. its Appl., vol. 14, no. 3, pp. 1-36, 2015.
[10] R. Mazurek and K. Paykan, "Simplicity of skew generalized power series rings," New York J. Math., vol. 23, pp. 1273-1293, 2017.
[11] A. Faisol, "Homomorfisam Ring Deret Pangkat Teritlak Miring," J. Sains MIPA, vol. 15, no. 2, pp. 119-124, 2009.
[12] A. Faisol, "Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring," in Prosiding Semirata FMIPA Univerisitas Lampung, 2013, pp. 1-5.
[13] A. Faisol, "Endomorfisma Rigid dan Compatible pada Ring Deret Pangkat Tergeneralisasi Miring," J. Mat., vol. 17, no. 2, pp. 45-49, 2014.
[14] A. Faisol, B. Surodjo, and S. Wahyuni, "Modul Deret Pangkat Tergeneralisasi Skew T-Noether," in Prosiding Seminar Nasional Aljabar, Penerapan dan Pembelajarannya, 2016, pp. 95-100.
[15] A. Faisol, B. Surodjo, and S. Wahyuni, "The Impact of the Monoid Homomorphism on The Structure of Skew Generalized Power Series Rings," Far East J. Math. Sci., vol. 103, no. 7, pp. 1215-1227, 2018.
[16] A. Faisol and Fitriani, "The Sufficient Conditions for Skew Generalized Power Series Module M[[S,w]] to be T[[S,w]]-Noetherian R[[S,w]]-module," Al-Jabar J. Pendidik. Mat., vol. 10, no. 2, pp. 285-292, 2019.
[17] T. Y. Lam, A First Course in Noncommutative Rings. New York: Springer-Verlag, 1991.
[18] S. Rugayah, A. Faisol, and Fitriani, "Matriks atas Ring Deret Pangkat Tergeneralisasi Miring," BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 1, pp. 157166, 2021.
[19] A. Kovacs, "Homomorphisms of Matrix Rings into Matrix Rings," Pacific J. Math., vol. 49, no. 1, pp. 161-170, 1973.
[20] Y. Wang and Y. Wang, "Jordan homomorphisms of upper triangular matrix rings," Linear Algebra Appl., vol. 439, no. 12, pp. 4063-4069, 2013.
[21] Y. Du and Y. Wang, "Jordan homomorphisms of upper triangular matrix rings over a prime ring," Linear Algebra Appl., vol. 458, pp. 197-206, 2014.
[22] P. Ribenboim, "Rings of Generalized Power Series: Nilpotent Elements," Abh. Math. Sem. Univ. Hambg., vol. 61, pp. 15-33, 1991.
[23] G. A. Elliott and P. Ribenboim, "Fields of generalized power series," Arch. der Math., vol. 54, no. 4, pp. 365-371, 1990.
[24] M. Ziembowski, "Right Gaussian Rings and Related Topics," University of Edinburgh, 2010.

11\% Overall Similarity

Top sources found in the following databases:

- 10\% Internet database
- 3\% Publications database
- Crossref database
- 0\% Submitted Works database
- Crossref Posted Content database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

3 en.wikipedia.org
Internet

4 koreascience.or.kr
<1\%
Internet

5
Kamal Paykan, Ahmad Moussavi. "McCoy property and nilpotent eleme... < $\%$ Crossref
ejournal.radenintan.ac.id

- Excluded from Similarity Report

- Bibliographic material
- Cited material
- Manually excluded sources
- Quoted material
- Small Matches (Less then 10 words)
- Manually excluded text blocks

EXCLUDED SOURCES

repository.lppm.unila.ac.id	66%
Internet	
doaj.org	9%

EXCLUDED TEXT BLOCKS

CAUCHY -Jurnal Matematika Murni dan AplikasiVolume 7(1) (2021), Pages

 repository.uin-malang.ac.idof Mathematics, Faculty of Mathematics and Natural SciencesUniversitas Lampung M N Huda, Sifriyani, Fitriani. "Real time epidemic modeling using Richards model: application for the Covid-..

The Ring Homomorphisms
ejournal.uin-malang.ac.id

